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PREFACE TO VOL. II

THIS volume contains that portion of the subject

which is suitable to students who can apply a know-

ledge of advanced mathematics.

The first edition of this work contained certain

chapters which are omitted in this edition e.g. those

on thermodynamics and wave motion under the action

of gravity inasmuch as students are likely to study

these subjects at greater length in special treatises.

The treatment of the general equations of pressure,

of bodies floating freely and under constraint, and of

the ellipsoidal figures of a revolving self-attracting

liquid, has, however, been considerably enlarged. New

graphic constructions for the Maclaurin and Jacobi

ellipsoids (exhibited at a meeting of the Oxford Mathe-

matical and Physical Society) are also introduced.

I have again to acknowledge the assistance kindly

given to me by Mr. Pidduck in the work of revision.

GEORGE M. MINCHIN.

OXFORD,

September, 1912.
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CHAPTER I

CENTKES OF PRESSUEE

51. CONFINING our attention still to the case in which

pressure in a fluid is due to gravity only, when the contour

of a plane area consists of a curve, and not merely of straight

lines, something more than the simple rules of the preceding
section is required. We have usually in this ease to break

up the area into narrow horizontal strips, apply the principle
of mass-moments, and integrate.

For example, suppose a plane area bounded by a parabola

and a double ordinate to be immersed vertically in a liquid

with the vertex in the surface of the liquid and the ordinate

horizontal
;

it is required to find the position of the centre

of pressure. Divide the area into narrow horizontal strips,

such as PQ (Fig. i). Let x be the depth of PQ, dx its

breadth and y
2 = 4 ax the equation of the parabola.
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Then the pressure on PQ is

iwydx'xx ;

and its force-moment about the horizontal plane at is

2wxz
ydx.

Hence the total moment of pressure about the plane is

Pk
2 w xz

ydx,

if h is the height of the area, or the depth of AB below 0.

This moment = 4wa? x?dx = f wa* JA
;
and the whole

Jo

pressure on the area

f* i r
;'

3 is= zwi xydx 4was r?dx = %iva?fa ;

Jo Jo

and if z is the depth of its point of application,

WO? fa.Z = y 1V(A JA,

.-. z = $Ji.

Since the pressure on each strip acts at its middle point,

and all the middle points lie on the vertical OC, the centre

of pressure, /, is on OC. If the base, AB, of the area is in

the surface and below, x being still the distance of PQ
from 0, the pressure on the strip is

2 wy (h x) dx,

and its moment about the surface is

2 wy (h x)
2
fix

;

so that if z is the depth of the centre of pressure,

p/i
rh

z y (hx) dx =
\ y (hxfdx,

Jo Jo
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In this case we may, of course, take force-moments

about the horizontal plane through instead of about the

surface ;
and if / is the distance of the centre of pressure

from 0, p/
t

p>,
/ y(hx)dx=. y(h x)xdx,
Jo Jo

Force-moments may be taken about any plane whatever,

but the depths on which the values of the pressures depend

must, of course,be measuredjrom the free surface of the liquid.

As another example take a board AOD (Fig. 2) in the

form of a quad-
rant of a circle im- B O Q A
mersed vertically

'

in a liquid with

one of its bound- HH^
ing radii, OA, in

the surface. It is :

required to find

the position of the

centre of pressure.

The area may be divided either into vertical or into

horizontal strips. Suppose the former. Let PQ be an

ordinate, y, and OQ the corresponding abscissa, x. The

pressure on the strip is

Fig. a.

wydx .

V

and it acts at a depth %y ;
hence its moment about the

surface OA is i. Wy
zdx

;

and if z is the depth of the centre of pressure below OA,

,\w\ y^dx = \w y^dx,
Jo Jo

the value of x running from o to r, where r = OA.

B 2
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If 6 is the angle POA, .r = r cos and y = r sin 0, so that

= r
I .

-; r I sii

-o

F

Jo

3*=
*T6

r<

This does not determine the position of the centre of

pressure ; it gives merely its distance from OA. Its

distance from OD must also be found. Taking force-

moments about the vertical plane through OD, if / is the

distance of 7 from OD,

z ,\wfy*dx = \wJ xy^dx,

since the distance of the point of application of the pressure

on the strip PQ from OD is x. Again using the angle

0, we have

//sin
3 6(16 = r/cos sin3 6(16,

It is to be observed that the depth of the centre of pressure

on the quadrant AD is the same as that of the centre of

pressure on the semicircular board ADS, since the centre

of pressure on the latter lies on OD and also on the line

II' joining the centres of pressure on the two quadrants.

If a plane area of
* O .

any form is immersed

j vertically in a liquid,

the depth of the centre

of pressure below the

surface of the liquid is

#2
> where k is the

radius of gyration of

the area about the line

AB (Fig. 3) in which the plane of the area cuts the surface
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of the liquid, and z is the depth of the centre of gravity

G, of the area.

Divide the area into horizontal strips by lines such as

PQ -,
let y be the depth of PQ, and let PQ =

ft. Then the

pressure on the strip is w.fidy.y, and its moment about

AB is iv . fiy^dy. The total moment of pressure is wffiy
z
dy ;

buty/syV/y = //
2

,
where A is the whole area. Also the

total pressure is (Art. 12) Aztv. Hence if is the depth of

the centre of pressure,

Azw . C = w ' Ak*

which result is often very convenient. Thus, in the case of

the semicircle ADS, Fig
1
. 2, since the distance of G from

4'/* . 1'"^

is
,
and K1 about AS is

, we have the depth of / as

377 4
before.

The result (a) does not, of course, determine the position

of the point completely.

It is well to point out that the position of the

centre of pressure on a plane area is unaltered if the

area, instead of being vertical, is rotated about the line AS
in which its plane cuts the surface of the liquid ; for, if y
still denotes the distance of a strip PQ, from AB, the depth
of the strip below the surface of the liquid isysinfl, where 6

is the angle made with the surface of the liquid by the

plane. Hence the pressure on the strip is w .fidy .^sin0,

and the moment of this about AB (that is, about a plane

through AB perpendicular to the plane of the rotated area)

w . ftdy .ysin# .y, or wfiy^sinQdy.

Hence if is the distance of the centre of pressure

from AB,
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or C=

since is a constant for all the strips.

In the same way if any line LM is drawn perpendicular
to AB in the plane of the revolving area, and if is the

distance of the mid point of the strip PQ, from LM, the

moment about LM of the pressure on the strip is

and the whole moment of pressure is

Dividing this by the whole pressure,

we have the distance of the centre of pressure from LM
;

and this again is independent of 0. Whatever be the

angle, therefore, through which the area turns round AB,
the centre of pressure remains fixed in the area.

It is sometimes desirable

to use polar co-ordinates

in calculations relating to

pressure. Thus, suppose

that a circular area is

immersed vertically in a

liquid with its highest

point, 0, Fig. 4, in the

surface, HK, of the liquid,

and that the position of

the centre of pressure on

Fig. 4 .
a segment OPQ is required.

Take any point j) in the

area; let pO r, LpOHQ, and describe the small

element ps of area, which is rdrdO, formed in the usual
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way by taking two close values of r and of 0. Then the

pressure on ps is wrdrdQ . r sin
;
and the moments of this

about OH and OA (the vertical diameter) are

wr3 sin
2 6drd 6 and wr3 sin d cos 6 drd 0.

We shall first integrate over the triangular strip POR;
that is, we keep constant and let r run from o to OP, or

from o to la sin 0, where a is the radius of the circle. Thus

we get for the moment about OH

p2asin0
w sin2 d 0\ rzdr, or 4 wa* sin . d 0.

Jo

Hence the whole moment is

Jo

where a = L QOH. The total pressure on the area OPQ is

and if is the distance of the centre of pressure from OH,

sin1

_ 3 Jo

sin4 0(10
o

Similarly, integrating the moment about OA of the

pressure on ps, if is the distance of the centre of pressure

from OA,
sin6 a

sin 4 0fl0
o

The integrals are easily found by the usual methods of

the Calculus.

The result can also be obtained by drawing the ordinate
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QN and considering the pressure on the area OPQNas the

resultant of that on the segment OPQ and that on the

triangle OQN.

EXAMPLES.

1. A circular area is immersed in water with its highest point
in the surface

;
show that a horizontal line drawn across the

area at a depth equal to f of the diameter divides the area into

two parts on which the pressures are in the ratio 2:1.

2. Find the position of the centre of pressure on the upper of

the above parts of the circle.

Result, f4 -

3. An area bounded hy the curve cy
1 x* and a double

ordinate at a distance h from the origin is placed vertically in

water with the double ordiuate in the surface
;
find the position

of the centre of pressure.

Result. On the axis of x at a distance f h from the origin.

4. If in the last case is the origin, PQ the double ordinate,

and A the point in which PQ is intersected by the vertical

through (axis of x), find the position of the centre of pressure
on the area OAQ of the curve.

Result. Its co-ordinates with respect to are

7 A n 5 f) A
-S^-Af , UA.

5. If in the last case a parabola is described having its vertex

at 0, its axis along OA, and passing through the point P, find

the position of the centre of pressure on the loop OP included

between the two curves.

Result. If
, t] are the co-ordinates of the centre of pressure

referred to the axes at 0, = i OA, 7j
= f^gAP.

(Consider the pressure on the parabolic area as the resultant

of that on the loop and that on the semi-cubical parabola

cy
2 = Xs

.)

6. A plane area bounded by a cycloid and its base AB is

immersed vertically in a liquid with the base in the surface
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and the vertex, 0, beneath
;
C is the middle point of AB. Find

the position of the centre of pressure on that part of the area

which lies at one side between the cycloid and the circle having
CO for diameter.

Result. If CO = 2 a, the depth of the centre of pressure is

v j -4. i- L f nn- 45T
2 128

ia, and its distance from CO is a.

907T

7. A plane area bounded by the lemniscate r2 = a? cos 2 6 is

placed with the origin of r in the surface of a liquid and its

axis vertical
;
find the position of the centre of pressure on one

half of the area made by the axis.

Result. At a depth (- H ) aVz, and distant a
from the axis. M 3^' 3*

52. Centre of Pressure referred to principal axes of

area. The position of the centre of pressure on a plane area

can be very easily expressed with reference to the principal

axes of the area at

its centre of gra- B N A
t

vity, G. Thus, let

CDE (Fig. 5) be

the plane area, its

plane being in-

clined to the ver-

tical at any angle,

6 ; let GA and GB Fig. 5-

be its principal

axes at G, intersecting the surface of the liquid in A and

B
; let GN

(
= h) be the perpendicular from G (in the

plane of the area) on the line AB, and let GN make the

angle a with GA.

The equation of AB with reference to GA and GB as

axes of x and y, respectively, is

# cos a +y sin a li = o
;
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and if P is any point in the area at which the element of

area dS is taken, the perpendicular Pn from P on AB is

h x cos a y sin a, if #, y are the co-ordinates of P with

reference to GA and GB. Hence the perpendicular, Pt,

from P on the surface of the liquid is

(h x cos a ^ sin a) cos 0,

and the pressure on dS is

w
(/&

x cos a y sin a) cos . (IS, . . . (a)

where w is the weight of the liquid per unit volume. Now
take the sum of the moments of the elementary pressures of

which (a) is the type about GA and equate it to the

moment of the resultant pressure, A x GT . ic, where A is

the area and GT the perpendicular from G on the surface.

If (> *?)
are the co-ordinates of 7, the centre of pressure,

we have

wA/icosd.rj = wcos0y (/t
a; cos a y sina)^/^' . (2)

= w cos bin a/'yV,
the other integrals vanishing since the principal axes at

the centre of area are those of co-ordinates. Now fy*dS
is the moment of inertia of the area about GA, which we

shall denote by A . k-f, k
l being the radius of gyration of

the area about GA. Hence, finally,

k 2

*/
= -

77~
sina ;....... (3)

and in the same way, equating the moment of the whole

pressure about GB to the sum of the moments of the

elementary pressures of the type (a), we have

k 2

(4)

Thus the co-ordinates are independent of the inclination

of the given plane area to the vertical, as we have previously

pointed out, so that if the area were turned round the Hue
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AS in which its plane intersects the surface of the liquid

through any angle, the centre of pressure, /, would continue

to be absolutely the same point in the area.

The expressions (3), (4) lead at once to an obvious geo-
metrical interpretation, viz. construct the ellipse whose

equation with reference to GA and GB is

9 9
X" y*
A~2 "*" TH = l

'K
i

K
'i

take the pole, Q, of the line AB with reference to this

ellipse ; the co-ordinates of Q are
( , rj),

so that if

the line QG is produced through G to /so that GI = QG,
we arrive at /, the centre of pressure.

These expressions (3), (4) give us at once some simple
results concerning the motion of the centre of pressure

produced by various displacements of the given area.

Thus, if the area is rotated in its own plane about G,

while G is fixed, the only variable in the values of
, 17

is a
;

and if this is eliminated from (3), (4), we have

which is the locus described in the area by the centre of

pressure viz. an ellipse.

To find the locus described in this case by the centre

of pressure with reference to fixed space, refer its position

to the line GN and the horizontal line through G in the

area as axes of of and y', respectively. If
(#', y'} are the

co-ordinates of / with reference to these axes, we have

= x cos a y sin a,

r\
= x sin a + tf cos a.

Substituting the above values of
, 77, and eliminating a,

we have 7.2,7.22 /. 2 _ z. 2 2
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which shows that / describes a circle in fixed space, the

centre of the circle being on the vertical through G.

Again, if the area is lowered into the liquid without

rotation, h is the only variable in (3) and (4), by eliminating
which we have ,

which shows that / describes a right line in the area
;
and

it describes also a right line in space, for (7) gives a linear

relation between x' and y''.

The equations (3) and (4) are of very great use in finding

the centre of pressure on a plane area. They are both

contained in the following rule: the distance of Ifrom either

principal axis is equal to the kz about thai axis divided by the

intercept made on the other principal axis by the surface of

the liquid.

Cor. i. If either principal axis at the centre of gravity
of any plane area is vertical, the centre of pressure lies on

that axis.

Cor. 2. If the momental ellipse of a plane area at G is a

circle, the centre of pressure lies on the vertical through G.

The deeper the area in the liquid, the more nearly does

the centre of pressure approach the centre of gravity ; so

that for a given direction of the line GA the centre of

pressure will be farthest from G when the area touches the

surface of the liquid (supposing the area to be completely

immersed). Hence if the area be given all positions of

complete immersion touching the surface, we get a curve

locus of / which marks the extreme positions of this point.

For all positions of complete immersion in which the area

can be placed below the surface of the liquid the centre of

pressure must lie within the area of this curve locus, which

is called the core of the given area.

The core of any area is therefore found bv drawing
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tangents to the .area all round its contour and supposing
these tangents to be successively the surface of the liquid

in which the area is completely immersed, and for each of

them determining the position of /; in other words,

eliminating h and o from equations (3) and (4). The

result will be a relation between and
T/,

which is the

equation of the core.

EXAMPLES.

1. Find the position of the centre of water pressure on a

circular area whose plane is vertical and whose centre is at

a given depth.
Take as the principal axes of reference at G the vertical and

horizontal diameters, and let h be the depth of G. Then in (3)
and (4) we have a = o and k* = k* = i r1

, where r is the

radius of the circle.

r2

Hence =
-^,

~n'= o,

r2

so that / is on the vertical diameter at a depth h + -r from

the free surface.

If the area is just immersed, h r, and the depth of / is

*?
In the case of an elliptic area whose centre is at a depth h,

and whose major axis makes an angle a with the vertical

a2
Z>
2

.

;- cos a, f]
= 7 sin a,

4/i 4"1

where a and b are the semi-axes.

Hence the core of a circular area of radius r is a concentric

T
circle of radius - The core of an elliptic area is obtained by

4'

expressing h in terms of a, 6 and a. Now
A2 = a'

2 cos2 a + 62 sin2
a,

since h is the perpendicular from the centre on a tangent.

Eliminating h and a from the values of and TJ, we have

4.3. -JL
"* *
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showing that the core is a concentric ellipse whose axes are

one-fourth of those of the given ellipse.

2. If a plane area, wholly immersed in all positions, turns

round any fixed point in its own plane, find the locus of the

centre of pressure in the ai'ea.

Let P be the point about which it turns, a, /3 the co-ordinates

ofP with respect to the principal axes at G, iz the perpendicular
from P on the surface of the liquid ;

then the equation of the

locus referred to the principal axes at G is

(aV
which is a hyperbola, an ellipse, or a parabola according as

GP>, <, or= VT.

If P is in the surface of the liquid, the locus is a right line.

3. A plane area which is a regular polygon of any number of

sides is immersed in a liquid with one side in the surface
;

show that the depth of the centre of pressure below the centre

of the area is

h r2

6 12^'

where r is the radius of the circumscribing circle of the polygon,
and h the perpendicular from the centre on a side.

(The momental ellipse at G is a circle, and the k* about any
h9 r2

line at G in the area 5? H )
6 12 '

4. If the plane area in the last question occupies any position

of complete submergence, where is the centre of pressure 1

Ans. On the vertical line through G at a depth

p V6 12'

below G, where p is the depth of G.

5. What is the core of an area in the shape of a regular

polygon of n sides ^
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Ans. A regular polygon of n sides, each of length

1 + 2 sin
2 a
-

ct,
1 2 sin a

where 2 a is the length of a side and 2 a the angle of the given

polygon.

(Let AB be a side of the polygon lying in the surface. Then
in this position / is on the perpendicular from G on AB at

h r2

a depth - H--- below G. Now let the area revolve about A :

6 12/4

then, since we can take GA and its perpendicular at G as the

principal axes of reference, Ex. 2 shows that the locus of

the centre of pressure is a line, IH, perpendicular to GA at

K* h* r
a depth, GH, which =

,
below G

;
that is. at a depth 4---

r 6r 12

below G. The centre of pressure will describe this line until

the next side, C, of the polygon comes into the surface, and at

this moment the centre of pressure is at /' on the line IH such

that 1'H - ffl, &c.)

6. What is the core of a parabolic area of latus rectum 4 a,

bounded by a double ordinate of length 2 c ?

Ans. A figure consisting of an arc of an ellipse arid two

right lines joining its extremities to a fixed point.

[Let the figure start from the position represented in Fig. i,

p. i. In this position let 7 be the centre of pressure; then

0J=40C=~. Also 6> = 10(7 = -^-. Taking GO and
28a 2oa

its perpendicular at G as the principal axes of x and y, we have

c2 3c*
&,

2 = -> k = -. Now let a tangent start from and
5 7ooa

2

move up to B
;
then taking for each tangent the perpendicular

from G and the angle a, and eliminating from the values of

and TJ in (3) and (4) of p. 10, we find the locus

<>

which is the locus until the tangent reaches B. When it reaches

B, it must turn round B until it coincides with EC. During
the process of turning, the centre of pressure (the revolving line

being always imagined to coincide with the surface of the liquid)
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describes a right line, uutil the revolving line reaches BC, and

then the centre of pressure, J, is on OC distant OC from 0.

The ordinate of the extremity of the elliptic arc in (a) is ->
4

and the rectilinear part of the core joins this point to J. The
core consists of two portions, one at one side and the other at the

other side of GC.~\

7. What is the core of a parallelogram ABCD 1

Ans. A parallelogram whose sides are parallel to the

diagonals AC, BD and equal to J AC, BD.

8. What is the core of a triangular area ASCI
Ans. A triangular area UK formed by the middle points

of the bisectors of the sides drawn from the vertices.

9. Find the position of the centre of pressure of a semicir-

cular area whose diameter is in the surface of water.

Result. If r is the radius of the circle, the centre of pressure

is at a distance ^ r from the horizontal diameter. (The centre
1 6

. A.T
of gravity of a semicircle is from the centre.)

377

10. If the diameter is horizontal and at a depth h, find the

depth of the centre of pressure.

Result. - .
-'^-i- below the horizontal diameter.

11. Find the position of the centre of pressure on a semicir-

cular area whose bounding diameter is vertical with one ex-

tremity in the surface of water.

1 7"

Result. Its distancefrom the vertical diameter is
,
and its

depth is f r.

(The point is on the vertical through the centre of gravity, G,
of the area, since this is one of the principal axes at G.)

12. Find the position of the centre of pressure on a semicir-

cular area completely immersed in water, the bounding diameter

being inclined at an angle a to the horizon and having one
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extremity in the surface of the water, and find the core of

the area.

Result. Let G be the centre of gravity of the area, C the

centre
;
draw GH perpendicular to GC

;
on CG produced through

on-* 64. r
G take / such that GI = *

-r; on GH take GJ = -

4811 4

The core consists of the line IJ and an elliptic arc.

Let us finally suppose the plane of the area to have any

position whatever, which we shall define in the usual way
by the Precession

and Nutation an- ^^^~ i^ _ i

gles 0, </>, \lr.

Take the verti-

cal (?/ as axis of

/, and any two

rectangular hori-

zontal lines, Gaf,

G/ ,
as axes of x

and y' . Let Gas,

Gy be the princi-

pal axes at G in

the plane of the given area, while Gz is the axis perpen-
dicular to this plane.

Then, since the direction-cosines of G/ with reference to

the axes of x, y, z are

sin
\}f

sin 0, cos
-fy

sin 0, cos d,

the length of the perpendicular from any point (#, y, o) in

the given area on the free surface AB is

k + ac sin
\{r

sin y cos
x//-

sin 0.

This multiplied by wds gives the pressure on the element

of area, and the total moment of pressure about Gx is

Ak^w cos
\\t

sin 0.

1424. J C
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Hence, as before,
k 2

=
-j-

sin
\l/

sin 9, ..... (8)

k 2

TJ
= --

j-
cos ^ sin ...... (9)

Suppose the area to be rotated, like a rigid body, round

any line, GL, fixed in space, the direction-cosines of this

line being l
t m, n with reference to the space axes Gaf, G-y' ,

Gz. Then the angles between GL and the principal axes

GV, Gy, Gz are all constant, and if we denote their cosines

by A, jot, v, respectively, we find, by eliminating and
\jr

from (8) and (9) by means of the constants A, /u, r, the

equation

which gives the curve described in the area by the centre

of pressure.

This agrees with (5) for the case in which the plane of

the area is always kept vertical
;
for in this case

TT= -
)

\Jr
= a, z> = I, = o, A. = jn

= o.
2

If the line GL is any one in the plane of the area v = o,

and the locus described by / in the area is a right line,

, .

}



CHAPTEE II

STABILITY OF A FLOATING BODY.

THE METACENTRE
THEORY OF

In connexion with the

A THEORETICAL equilibrium position of a body floating

freely in a liquid is any one in which the two conditions

given in Art. 20 are fulfilled ;
but if the body is very slightly

displaced from such a position and then left to itself, either

of two things will happen i, the body will return to its

position of equilibrium ;
or 2, it will fall away still further

from the position. If the first happens, the equilibrium is

stable, and if the second, the equilibrium is unstable.

The conditions on which stability depends are the subject

of this chapter.

53. Geometrical Theorem,

question of the stability of float-

ing bodies the following theorem

is important.
A volume AKB, Fig. 7, being

cut off from a solid body by a

plane section ALBL\ any other

plane, A'LJfL, making a small

angle with the first plane and

cutting off an equal volume,
A'KB', must pass through the centroid (or 'centre of

gravity'), C\ of the area ALBL'.

For, at any point, P, in the plane section ALBL' describe

a small element of area, (IS; let the perpendicular, Pn, from

c a
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P on the line, LL', of intersection of the two planes be

denoted by x
; let 5 be the angle between the two planes ;

and round the contour of dS draw perpendiculars to the

plane of dS, these forming a prism which intersects the

plane A'LffL' in a small area at Q. Then L QnP = 8 6,

QP x 8 6, and the volume of the small prism is very

nearly xdS.bd. Hence the new volume A'KB' vol.

AKB + bQfxdS, the prisms in the wedge L'LBB' being
taken positively, while those in the wedge I/LA'A are

taken negatively. If the two volumes cut off are the

same, we must have

fx dS o, (a)

the integration including all the elements of area of the

plane section ALBL'. Now, by the theorem of mass-

moments the left-hand side of (a) is Ax, where A is the

area of the plane section, and x the distance of its centroid

from the line LL'
;
hence x = o, i. e. the centroid of the

area must lie on LL' .

A visible representation of this fact is obtained by

holding in the hand a tumbler partly filled with water and

imparting to it small and rapid oscillations which cause

the surface of the water to oscillate from right to left
;
the

planes of the successive surfaces of the water can then be

seen to pass always through the centre of the horizontal

section.

54. Small Displacements. Metacentre. Suppose a

body, ACJ3, Fig. 8, floating in equilibrium in a homo-

geneous liquid to receive any small displacement ;
it is

required to find whether the equilibrium is stable or

unstable.

Every displacement can be regarded as consisting of two

kinds of displacement viz. a vertical displacement of

translation, upwards or downwards, which diminishes or

increases the volume of the displaced liquid, and a rotatory
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or side displacement which leaves the volume of the dis-

placed liquid unaltered.

If the displacement is small, these component displace-

ments can be treated separately, and it is evident that

equilibrium for the first kind of displacement is stable.

We shall confine our attention, then, to displacements of

rotation which leave the volume of the displaced liquid,

Fig. 8.

and therefore the magnitude of the force of buoyancy,
unaltered.

Let G be the centre of gravity of the body, Ax Bx' the

section of flotation
(i. e., the section of the body made by

the free surface of the liquid) before displacement, H the

centre of buoyancy (i.
e. the centre of volume of the

immersed portion ACB] before the displacement, and let

this section of flotation be supposed to be marked on the

surface of the body.



ii Hydrostatic* VOL. n

The body is represented as slightly displaced, the new
section of flotation being A'xB'x'; the new centre of

buoyancy (centre of volume A'CB'} is H', which must

be somewhere very close to fl, the centre of volume

of ACS.
If the body, having been displaced to the new position,

is then left to itself, it will be acted upon by two forces,

viz. its weight, W, acting through G, and the force of

buoyancy, L (which is equal to JT, since the volume of the

displaced liquid is constant), acting vertically upwards

through //'. These forces form a couple.

Now it is clear that if the line H'L cuts the line GH
above G, in a point M, the body will be acted upon by a

couple which tends to destroy the displacement ; while, if

M is below G, the moment of the couple, being in the

sense of the displacement, will cause the body to fall

farther from the position of equilibrium, which is therefore

unstable.

It may happen, on account of the shape of the body and

the position of the axis, x'x, of displacement, that the

vertical line through H' does not intersect the old line

GH of centres of gravity. At present we shall confine our

attention to cases in which it does intersect GH, and sub-

sequently we shall find the condition that such intersection

shall take place.

Manifestly if G is below H, the equilibrium will be

stable, and the consideration of this case may be dismissed.

The case in which G is above H is very important inas-

much as it is the case of ships generally, and especially
that of large ironclads, in which so much of the mass is in

the upper portion.

If p is the length of the perpendicular from G on the

Hne H'L. the moment

L-P (0
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of the new force of buoyancy about. G is called the moment

of stability.

To calculate p, or the position of the point M which

point is called the metacentre replace the actual force of

buoyancy due to liquid A'CB' by a force of buoyancy con-

sisting of three components, viz.,

(a) an upward force due to liquid ACB,

(b) an upward force due to liquid Bxx'B',

(c) a downward force due to liquid Ax'xA'.

The two sections of flotation intersect in the line xx'
t

and since the volumes ACB and A'CB' are equal, this line

xx' must pass through the centroid, 0, of the section of

flotation (Art. 53).

Since the volume of the wedge Bxx'B' = the volume of

the wedge Ax'xA', the forces (b) and
(.c), being the weights

of these wedges of liquid, form a couple, each acting

through the centre of gravity of the corresponding wedge ;

while force (a) is L acting up through H.

Also L .p = the sum of the moments of these forces

about the axis through G perpendicular to the plane of

displacement. Now since the forces () and
(c) form a

couple, the sum of their moments about all parallel axes is

the game, and hence the sum of their moments about the

horizontal axis through G = the sum of their moments

about xx', which latter we shall take. The wedges may
be broken up into an indefinitely great number of slender

prisms perpendicular either to the plane A'xB'x' or to the

plane Ax Bx'. Taking the latter mode, at any point P in

the area Ax Bx' describe an indefinitely small area (IS, and

round its contour erect perpendiculars which will cut off a

small area at Q on the plane A'xBx'. Let AOB be the

diameter at perpendicular to x'x
;
take Ox and OB as

axes of x and y ;
let the perpendicular Pn from P on x'x

be y, and let be the small angle, QP, through which the
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body is displaced round x'x. Then the volume of the

prism PQ, is QydS\ its weight (reversed for huoyancy) acts

at the middle point of PQ, and may be resolved into the

components OwyclScos parallel to PQ and QwydSein 6

parallel to Pn\ i.e. into components 6 wydS and 6*wydS in

these directions.

The moment of the latter, being
1 of the second order in 9,

may be neglected, while the moment of the former is

6wfdS. ....... (2)

By integrating (2) throughout both wedges, we obtain

the sum of the moments of the forces (b] and (c), since they
both give moments of the same sign about xx'.

Hence the moment of buoyancy due to the wedges is

S, ....... (3)

the integration extending all over the section Ax Bx' of

flotation.

If A is the area of this plane section, and k its radius of

gyration about the axis xx' of displacement, (3) is

6 to . Akz........ (4)

We see, therefore, that the new forces of buoyancy i. e.,

those acting in the displaced position are equivalent to

i an upward thrust, Vw> acting at H, and

2 a counterclockwise couple, . AlPiv.

Now we know that a force F accompanied by a couple of

moment M in the same plane compound into a force equal

and parallel to F, at a perpendicular distance -~r from the

original force. Hence the resultant of i and 2 is an

upward force equal to V-w acting in a line, Il'M, distant
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p
- from the point H ; hence the perpendicular from

Akz

H on H'M is -- . Q ; that is

(5)

which determines the position of the metacentre, M.
For stability, therefore,

(6)

Displacements of constant volume may take place round

any diameter of the section, Ax x', of flotation provided

that the diameter passes through the centroid of this section

(Art. 53) ;
and since for all such displacements both A and

V are constant, equation (5) shows that the metacentre will

be highest when the displacement takes place round that

diameter about which the moment of inertia of the section

of flotation is greatest, and lowest if it takes place round

the diameter about which the moment of inertia is least.

These two diameters are the principal axes of the section of

flotation at its centroid. If /

2 and k^ are the greatest and

least radii of gyration of the section of flotation about its

principal axes, and J/
2 ,
M

lt
the corresponding metacentres

for displacements round them,

(7)

The equilibrium will, then, be least stable when the dis-

placement takes place round the diameter of least moment
of inertia, which in the case of a ship is the line from stem

to stern.
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Since Vw W, (5) can be written

(8)

55. Experimental determination of Metacentre. The

height of the metacentre above the centre of gravity of a

ship can be found experimentally by means of a plumb-line
and a movable mass on the deck. Suppose one end of a

long string fastened to the top of one of the masts and let

a heavy particle hang from the other end of the string.

Now if a considerable mass, P, be shifted from one side of

the deck to the other, the ship will be tilted through a

small angle which can be measured by means of the pen-
dulum if the bob of the pendulum moves in front of a

vertical sheet of paper on which the amount ofdisplacement
of the bob can be marked. If I is the length of the string

and s the distance traversed on the paper by the bob while

the mass P is shifted across the deck, j,
is the circular

measure of the wrhole angle of deflection of the ship.

Let G be the centre of gravity of the ship, /SFthe weight
of the ship and movable mass together, a b the breadth of

the deck, a the perpendicular from G on the plane of the

deck, and 2 the whole angle, -^,
of deflection. Then, on

account of the symmetry of the ship, we can in Fig. 8 take

the line HG as passing through 0.

Let the mass P be at B, and take moments of the forces

acting about G
;
then

GM=^
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-,The value of a is usually much smaller than -, so that,

with sufficient accuracy, we have

2 ft

where =

Thus, in a ship of 10,000 tons the breadth of whose

deck is 40 feet, if a mass of 50 tons moved from one side

to the other causes the bob of a plumb-line 20 feet long-

to move over 10 inches, the metacentric height is about

4| feet.

The metacentric heights of large war vessels vary from

about 2- feet to 6 feet.

EXAMPLES or THE METACENTBE.

1 . A uniform rectangular block, of specific weight w', floats,

with one of its edges vertical, in a liquid of specific weight w ;

find the relation between its linear dimensions so that the equi-
librium shall be stable.

Let 2 a, 2 b be the lengths of the horizontal edges, and 2 c the

length of the vertical edge, and let b<a. Then the equilibrium
is most unsafe when a displacement is made round the longest
diameter of the section of notation. If x is the length of the

vertical edge immersed,
w

x = 2 c
w

and therefore

Also &2 = &
2 round the axis of most dangerous displacement,

W
and V

,
where W Sabcw' = weight of body. Hence
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so that for stability
- - > c( i ), that isJ
6 cw \ w '

b / , w' f w\-> A / 6 (i ).
' 'V t<; ^ w /

2. If the floating body is a solid cylinder, floating with its

axis vertical, find the condition for stability.

Result. If r is the radius of the base and h the height,

i>
3. If the floating body is a solid cone, floating with its axis

vertical and vertex downwards, find the condition for stability.

Result. If r is the radius of the base and h the height,

r

h>
/ , w ^
/ (,)

3 -i.
v ver/

4. If the floating body is a solid isosceles prism whose base is

uppermost, find the condition for stability.

Result. If 2 b is the length of the shorter side of the base

and h the height of the prism,

5. If the cone in example 3 floats with its vertex uppermost,
find the condition for stability.

Result. r

h>
6. A solid homogeneous prism whose cross-section is an isosceles

triangle of height 1 2 feet and base 1 2 feet floats with its vertex

downward in water. If on its base is constructed another

isosceles prism of the same substance, find the height of this

prism when the equilibrium becomes unstable for lateral dis-

placements, the specific gravity of the prism being f.

Result. 6 feet.
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7. A homogeneous paraboloid of revolution of specific weight
w'

t height h, and latus rectum 4 a floats, vertex down, in a

liquid of specific weight w, show that, whatever be the height,HM = 2 a, and that for stability

k
a > -

3 -)*!
8. Show that if the paraboloid floats with its vertex upper-

most the condition for stability is

h (w */w (w >'))a > < -
f >.

3 (w w 3

9. Prove that if a homogeneous right circular cone whose
vertical angle is 60 floats in any liquid with its vertex down-
ward the metacentre will lie in the plane of flotation.

10. A solid homogeneous prism whose section perpendicular
to its edge consists of the curve whose equation is c

n~ l
y = xn

and its reflexion in the axis of x (which axis is perpendicular
to the edge) floats in a liquid with the edge submerged. If h
is the height of the prism, find the condition for stability.

where w, w
f
are the specific weights of liquid and prism.

11. A half cylinder, obtained by cutting a solid homogeneous
cylinder by a plane through its axis, floats, with face of section

vertical, in a liquid ;
show that it will be stable if

r2
50 w / w'\

hz
7 w \ w )

'

12. A cylinder whose cross-section is any curve, ADB (Fig. 9),

symmetrical about an axis DO in its plane, floats with its axis

horizontal in a liquid; prove that if the metacentre coincides

with the centre of gravity (or if the equilibrium is apparently

neutral), the equilibrium is stable or unstable according as

p sin c > or < OB, where p is the radius of curvature of the

curve at JB, f is the angle between OS and the tangent at B,

and AOB is the original water-line.
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Let the figure represent the body slightly displaced ;
let the

equation of the curve referred to as origin and OB as initial

line be

......... (i)

where p = OB', <f>
= BOB7

. Let C be the point of intersec-

tion of the new water-line A'B' and AB; 00= c, CB' = r,

BCff = 6.

\A

We shall find the equation of the curve referred to C as pole,
and retain terms in as far as 62 and assume that c is a small

quantity compared with any value of r.
ril

Then p
2 = r9 + 2 cr (

i
-) + c

2 =
(r + c)

2
, by supposition

Again,
/) sin ^>

= r sin

(3)

Now p =/(o) + </>/(o)+ /
/r

(o) ;
therefore substituting for

and
(/>
we have

where /is used for/(o), &c.

This gives
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Now the buoyancy due to the wedge represented by the area
BOB' may be found by breaking the area into triangles such as

PCQ (Fig. 10), and the

buoyancy represented by
this triangle acts at g, _. - I /
its centre of gravity,

vertically upwards, its

moment about C being

Fig. 10.

if we now use /^ to denote

the whole angle BOB', the angle PCB being 0.

The real moment of buoyancy about the axis through C
parallel to the axis of the cylinder is the above multiplied by
Iw, where I is the length of the axis and w the weight per unit

volume of the liquid. We shall omit Iw for the present.
Hence the moment for the wedge BCB' is

Now (5) gives

if **[l-i(0-Jo
.... (6)

so that (6) becomes

t-/3 /^3 { >r\T8/ P \l)

Now if

OB = a, we have /(o) = a, f (o)
= a cot e,

a / . ft \

/ (o)
=
^n̂ ( I + cos e

j^-J
'

[The reason of the last is that in any curve r =f(6), we have

d(f> d^f r

~de
=

de
~ =

^Tn^~
l5

where is the angle between radius vector and tangent, and

d\lr
= angle between two consecutive tangents.]
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For the wedge ACA' we Lave c replaced by c aiid c replaced
by IT e, so that //" remain unaltered while c and/' change sign.

Hence, adding the righting moment of the wedge A CA' to

(7), the second and third terms disappear, and the whole
moment is Iw multiplied by

. (8)

If we assume the volume of immersion constant, the areas

BOB' and ACA' are equal, i.e., fr*dQ is the same for both.

This gives in the same way

the same for both, and therefore c = \f'/3.

Substituting this in (8), we have

t/^+i/W/'-s/'2

-/')/?',

so that if W is the weight of the cylinder and K its radius of

gyration about an axis through G parallel to the axis of the

cylinder, the equation of motion is

WK* <*3

which shows that the motion will be oscillatory if //' >/'
2
,
and

this is the same as the result at first announced.

13. A homogeneous circular cylinder floats with its axis

vertical in a liquid ;
show that if the equilibrium is apparently

neutral it is stable for all displacements, however great.
Let Oxy (Fig. n) be the original section of flotation and

DOx the new section intersecting the first in the diameter xx'.

We have to calculate the moment of the couple due to the

buoyancy of the wedge Dy and the downward action due to

D'y'. Take a section efk of the wedge Dy made by a plane at

a height ky, or z, above Oxy, and take a strip pq of this section.

= Vw . GHsinp-lw [-1/3/3+ i/(3//"_3/"_/<)/3*J.

Putting sin /3
=

ft ^/3
3

,
and assuming that the term in /3

nishes, we have Vw . GH = fIwf
3

,
and then
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Now if m denotes the tangent of the angle DOy, the co-

ordinates of /are
v z

in
z. The centre of the circle

ekf is on the axis Oz at C,
If the angle kCq is $ the
area ofthe strip pq is

and if we consider the

plate formed by the sec-

tion ekf and an infinitely
close parallel one, the

distance between them

being dz, we have the

elementary volume

2 a2
sin3

(f)d<j)dz

of liquid whose buoyancy
Fig. ii.

acts perpendicularly to DD' and is represented by the arrow.

The moment of this about xx' is

2 wa2
sin

2

<f>dfydz\Oc + (a cos
(|> Cc) cos

J,

where = LDOy = t&n~ l m. This moment is

2 wo? sin
2

< (z sin + a cos d cos $) d<f>dz.

Integrating this for the section ekf, we have

wo? . z sin 6 (a sin a cos a) + f w?a
3
sin

3 a cos 0,

where a = eCc. Now z = ma cos a, . . the moment for the

whole wedge is

/"?
%wa* sin 6 tan2

/ (2 a sin 2 a sin
2
2 a) da

Jo
f%

in0/ sin
4

Jo
ada

wa* sin 6 (2 + tan
2

and the moment of the couple of buoyancy due to the two

wedges is double this, so that the equation of rotation about G
is, as in the previous question

WK* d^9
-

9
=Vw.HG sin 6- va*w sin (2 + tan

2

6},
g dt

1424.* P
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If the equilibrium is neutral, Vw = %TTa*w, and we have

which shows that the motion is always oscillatory.

The same result holds for an elliptic cylinder, a* being

replaced by abs or a?b according as the displacement is made
round the axis a or the axis b.

We have assumed that Hf

, Fig. 8, lies in the plane of

displacement, and we can easily see that this will not be the

case unless the axis, x'x, of displacement is a principal axis

of the section, AxBx', of flotation. For, if we seek the

co-ordinates of H' (which is the centre of volume of the new

volume A'CB') we may regard, as before, the volume A'CIB'

as ' resolved
'

into the original volume ACB, the positive

wedge B'xBx', and the negative wedge A'xx'A. Hence if

x is the distance of the point P from the line OB and the

distance of H' from the vertical plane containing OB, we

h^e v. = OfxydS,

since the volume of the prism PQ is 0ydS, and its volume-

moment about OB is QxydS, the integration extending all

over the area Ax Bx'.

This shows that = o only when Ox and OB are prin-

cipal axes at 0. In the case of a square or circular section

of flotation, every axis through is a principal axis, and

hence H' always lies in the plane of displacement.

In general, therefore, a small angular displacement round

a diameter of the section of flotation produces a moment
of the forces not only round this axis but also round the

perpendicular axis in the plane of flotation, the effect of

which would be to produce small oscillations of the body
about this axis.

The question of stability, however, is not affected by this

consideration, since any small angular displacement, 0,
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round an axis x'x could be resolved into two separate small

angular displacements

cos a and sin a

round the two principal axes at 0, where a is the angle
made by x'x with one of these principal axes ; and if the

equilibrium were stable for small displacements round the

most dangerous of the principal axes, it would be so for

the given displacement round x'x.

Let us investigate the lines of action of the force of

buoyancy when the displacements are made round various

diameters of the sec-

tion of flotation. In .-

the position ofthe body acC""
previous to displace- \
ment the line OB (Fig. \

8) was horizontal. At \ |

draw a downward N
Nx !

axis perpendicular to

Ox and OS, and let
G-

'

t

this be the line O/ in f \

Fig. 12, in which Oy H' IH

represents OB' and Oy'
r\ -D jr 3' Fig- !*

represents Oi, the dis-

placement being round Ox, and 0, the angular displacement

being yOy' or zOz''.

Let G and HQ be the original positions of G and H, in

the same vertical line, and let G and H be their positions

after displacement, the new centre of buoyancy, as in Fig. 8

being H'. The lineH G cuts the original plane of flotation

in K.

With reference to Ox, Oy, Oz let the co-ordinates of GQ be

#o> y< *o> and let tnose of HQ be o> 'fo* Co-

= x and
?;
= y .

D 2
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Now the direction-cosines of the new axes, Oaf, 0/, Oz'

with reference to Ox, Oy, Oz are represented in the diagram
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of the volume ACB with reference to the plane yY is,

of course, V
Q or Vx. Hence

With reference to the plane z'x' the mass-moment of

the wedges is Ak*
;
and the moment of ACB is F-qQ ;

therefore _

With reference to the plane #'/, the wedge-moment is

of the order 2
,
and the moment ofACB is F

; therefore

jr=rf -

Hence we have

and if ^, rj, ^ are the co-ordinates of R' with reference to

,

T?
=

^o + P
^-

-
CoJ

Hence the equations of the vertical line through H' with

reference to Ox, Oy, Oz are

o +''
... (3)

and if this intersects the line given by (i), we must have

CT = o, that is, the product of inertia of the area of flotation

about Ox', Oy
f
must be zero, as shown before

;
and then



38 Hydrostatics VOL. TI

for the point of intersection. Now C * ig HM in Fig. 8,

and this equation gives the result

"*

Consider displacements round all diameters, such as Ox, of

the section of flotation. Let Ox make the angle < with

one of the principal axes of this section at
;
let /

:
be the

radius of gyration of the section about this principal axis,

and let k.2 be the other principal radius of gyration.

Then

OT = ^(/{r12_^2) sin2 <
/>
...... (3)

P = ^i2 + ^2)+*(-^22
)cos24> . . (4)

Observe that in the above equations , >/ ,
or <r

, ^ ,
are the

co-ordinates of G referred to the original positions of the

axes Ox', Oy
f
in the plane of flotation, the contemplated

displacement, 0, taking place about the axis Ox', which we

now vary. Hence we must express a-
, yQ in terms of a, /3,

the co-ordinates of G , or K, with reference to the principal

axes of the area of flotation at 0.

Thus we must put

= a cos < + )3 sin $ ; rjQ
=

ft cos <
- a sin

<f> ;

also the equations of the vertical line through H' with

reference to Ox', Oy', 0/ are obtained by putting

x -x', y-y'-Qz'

in (a), so that we obtain
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Let this line cut the plane afy' in a point whose co-ordinates

are X'
t 7', o

;

-rr/ A 55"
. V' _ f

I Q

Expressing X'
t
7' in terms of X, Y, the co-ordinates

of the point of intersection with reference to the principal

axes at 0, we have
a A

(X
-

a) cos
</> + (

7-
/3)

sin
<f>
= ^=(^

2_
k*) sin 2 0,

6A

which give

showing that the points in

which the plane of flotation

is intersected by the lines of
Fig. 13.

action of the forces of buoyancy
lie on a small ellipse having the point a, ft for centre, its

Ak 2 Ak 2

semi-axes being proportional to ^ and ^ ,

which are the distances from the plane of flotation of the

metacentres corresponding to small displacements round

the principal axes of the section of flotation.

The point, Q, in which the section of flotation is inter-

sected by the line of action of the force of buoyancy when

the displacement is made round a diameter is thus found :

let
/fcj

> k
z ; through the point K of Fig. 13 draw axes
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KA, KB, Fig. 13, parallel to the principal axes at of

the area of flotation; about K describe the ellipse whose

/Ak 2 Ak 2

semi-axes KA, KB are 6
( rf Co)

an^
( ^ ) ;

describe the circle about K with radius KB
; let Kx be

parallel to the diameter Ox (Fig. 12) of displacement;
draw KP perpendicular to Kx, meeting the circle in P ;

then a perpendicular from P to KB meets the ellipse in Q.

56. Constrained Displacements. Suppose now that

the displacement takes place about an axis which is not

a diameter of the area of flotation at its centre of gravity.

Then the volume of the displaced liquid is not constant.

Fig. 14.

Suppose the body to receive a small angular displacement

about an axis LM (Fig. 14) in the section of flotation but

not passing through its centre of gravity, 0. Now the

second position of the body can be produced by combining
two motions : (a) a rotation 6 about a diameter Ox parallel

to LM, and
(b) a motion of translation of the whole body

perpendicular to the plane of the two parallel axes, this

motion being of the amount p . 6, where p is the per-

pendicular distance between LM and Ox. This motion is a

vertical one. The actual effect of buoyancy is obtained by

superposing the buoyancy forces due to these two displace-

ments. But, by what has gone before, the displacement (a)

gives a force of buoyancy equal to Vw acting at H' (Fig. 8
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or Fig. 12), where Fis the original volume of the immersed

part of the body ;
and if the axis I/M is not fixed in bhe body,

but released when the displacement has taken place, we
must consider the moments of this force about horizontal

axes drawn at G parallel and perpendicular to Ox i. e.,

parallel to Ox and Oy in Fig. 12. These moments are

Vw
(r) y) and Vw

( ar),

where y and x are the co-ordinates of G given on p. 36 ;

that is
TJ -n 0? r fy 7

/o
oz

o>
m Co-

Hence these moments are

Afcl
6 Vw (-p

-- + 2
)
and Ow Am.

If, as supposed in Fig. 8, there is a metacentre, i. e.,

if Ox is a principal axis of the area of flotation, the

second moment vanishes and the first is

as n p. 24.

Now the motion (b) results simply in adding the volume

A . p . Q to .the volume of displaced liquid ; and this gives a

force of buoyancy equal to

Q Apw

acting upwards through 0, and its moments about the axes

at G parallel to Ox and Oy are, neglecting
2

,

These must be added to the previous moments.

Thus the total moment tending to diminish is

and the stability depends on the sign of this moment. If

the moment is positive, oscillates between small limits.
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Suppose now that the axis, LM, of displacement (Fig. 15)
has any horizontal position ; through 0, the centroid of the

area of flotation, draw Ox parallel to LM
;

let p be the

perpendicular distance between the axes, and e the angle
which the plane of the axes makes with the section of

flotation. As before, resolve the rotation about LM into

about Ox and a motion of translation p6 perpendicular to

the plane of LM and Ox. Then the buoyancy due to the

rotation about Ox is given in the previous discussion, and

that due to the translation can be found by resolving

the displacement p
into a vertical motion

p cos e

anda horizontal motion

p sin e.

We assume,, for the

present, that, as in the

Fig. 15. last case, the axis LM
is not rigidly attached

to the body, and that the body is left free after the rotation

about LM has been produced. Then, in considering the

restoring moment about G, we may neglect the horizontal

displacement p sin e which does not alter the volume of

the displaced liquid.

The result is then the same as that just found, p cos e

replacing p 0.

If, however, in this and in the previous case LM is

a fixed axis about which the body is constrained to con-

tinue turning, we must take the restoring moment about

LM instead of about G.

In the previous case (Fig. 14) the forces acting on the

body in the displaced position, other than the reaction of the

fixed axis LM, are the weight, W, of the body acting down-
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wards at G, the buoyancy Vw acting upwards at H' (Fig. 12),

and the buoyancy Ap w acting upwards through 0. Thus
the total restoring moment about LM is

tJJ.2*o + *(
-

or

since the term independent of 6 vanishes, and the original

co-ordinates, X
Q, y , of G are not necessarily the same as

, TJO ,
the points G and H (Fig. 1 2) not necessarily lying

on the same vertical line.

When Z/J/has the position shown in Fig. 15, we super-

pose the following displacements : a rotation 6 about Ox, a

vertical downward translation p cos e of the body, and

a horizontal translation 0;;sine of the body towards the

left. The first gives the positions of G and H' shown

in Fig. 12, at which act the force W downwards and the

force Vw upwards ; the second gives the additional force of

buoyancy d Awp cos e acting upwards at
;
and the last

brings the points of action of application of these forces

nearer, horizontally, to LM by the amount 6 p sin e.

Hence the total moment round LM against the displace-

ment is

t/Ak
z

"I

1o + 0(-j
--

Co) +2 cose Op sine I

~~
*^o +JP cos fljun + w/j cos e.

Now, on account of equilibrium when 6 was zero, the term

in this independent of vanishes, so that the restoring

moment is

Akz

-7F- P sin e
) + A-WP~ cos- e (a)
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EXAMPLES.

1. A homogeneous solid circular cylinder whose height is

6 feet and radius 2 feet is movable round a fixed horizontal

diameter of one of its bases, the other base and a certain length
of the cylinder being immersed in water. If the specific gravity
of the cylinder is

,
find the greatest length that can be

immersed consistently with stability for small displacements
round the axis.

Result. 2 feet.

2. If in the last case the height of the cylinder is h, the

radius r, the specific weight w', and the specific weight of the

liquid is w, find the condition of stability.

Result. The length unimmersed must be not less than

// wf

\ ,,
r2

A / (
I

)
hV V IV ' 2

3. A homogeneous right circular cone freely movable round
a fixed horizontal axis coinciding with a diameter of its base

rests with a certain length of its axis immersed in water
;
find

the greatest length immersed consistently with stability.

Result. If h and r are the height and radius of base, w' and
w the specific weights of the solid and liquid, the length, x, of

axis under the water is not greater than the value given by the

equation /

3 (r
2+AV4-4A3

o;
s+- A = o.

4. If in the last the cone is movable round its vertex which

is fixed above the liquid, find the least length of the axis

uniromersed.

Result. The length x is given by the equation

w'
3 (A'+ r2

)^
4

4h
sx+3h9 = o.

5. A homogeneous isosceles triangular prism, whose section

perpendicular to its edge is a triangle whose height is h and

base 20, is movable round a horizontal axis parallel to its edge
and passing through the middle point of the base is partially
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immersed in a liquid ;
find the greatest depth of immersion of

its vertex consistently with stability.

Result. The greatest depth, x, of the vertex is given by the

equation /

2 (c
a+ A2

)
a,-
3-

3 A'o:2 + h* = o,w
where w, w' are the specific weights of the liquid and solid.

6. A solid homogeneous isosceles prism whose section perpen-
dicular to its edge is the triangle ABC is placed with its edge
downwards in a liquid and allowed to assume its free equilibrium

position, AB being horizontal. An axis parallel to the edge is

then fixed through A ; find the condition for stability.

w
Result, If >

= w2
,
where w, w' are the specific weights of

the liquid and solid, and h, zb are the height and base AB of

the triangle A BC,
b2 n i_ ^ 2
h? 3

2+ i

Compare this with the result in example 4, p. 28, and we
see that for stability in the perfectly free condition of floating
the ratio b : h is greater than that required when the body is

constrained as is evident a priori.

7. A homogeneous solid circular cylinder is placed with its

axis vertical in a liquid and allowed to take the free equilibrium

position. If it is unstable in this position, can it be rendered

stable, (a) by fixing a diameter of its upper base, (6) by fixing
a horizontal tangent of the rim of its upper base ?

7*^ 2 7^ ~ I

Result, (a), no
; (6), yes, if p > ,

where r is the
Iv Q ii

W
radius, h the height, and 7

= n.
w

8. A solid homogeneous right circular cone has its vertex

fixed beneath the surface of a fluid
;
find the least depth of the

vertex so that the equilibrium shall be stable.

Result. If h = height, r = radius, w' = specific weight of

cone, w = specific weight of fluid, x = depth of vertex,

4

' t

>
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9. If in the last the cone is replaced by a cylinder the

submerged extremity of the axis of which is fixed, find the least

depth.
w r

Result. aj
3 > A3

.

w 2

(The student may verify that the results of this and the

previous example can be deduced from the general expression

(a) by putting c = -- and p = aj.)
2

10. If the half-cylinder of Example 1 1, p. 29, having assumed

its position of equilibrium, is movable round an axis coinciding

with the intersection of its vertical plane face with the surface

of the liquid, find the condition for stability.

r1 w' / w'\
Result. r.> 2 (i

--
) .

n, w ^ w '

67. Surfaces of Revolution. When the figure of the

floating
1

body is that of a surface of revolution, take the

origin, 0, of co-ordinates at its lowest point, the axis of

x being vertically upwards and that ofy horizontal. Then

if
(x, y) are the co-ordinates which determine the surface of

flotation in the erect position, and (a?', y') those belonging

to any other parallel section, we have

hence gjf=
4 yw
Jo

Also, by mass-moments,

OHx TT (

X

y'*dx' = TT rV/W
Jo Jo

therefore

OM= - -- ; (2)

4 y'*dx
Jo
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Thus, to determine the figure of the floating- body when
HM is of constant length whatever be the depth of immer-

sion, let HM = m in(i),

* = m\
*

y'
2 dx

f
.

Jo

Differentiate both sides with respect to x
;
then (see

Williamson's Integral Calculus, Chap. VI)

which shows that the generating curve is a parabola ; hence

when a paraboloid of revolution floats in a liquid the height
of the metacentre above the centre of buoyancy is constant

for all depths of immersion.

EXAMPLE.

Find the nature of the generating curve so that for the surface

of revolution and for all depths of immersion the height of the

metacentre above the lowest point shall be any assigned function

of the height of the section of flotation.

Let OM =
(as) in (2) ; then, writing </>

instead of
</> (a;)

for shortness,

Differentiating with respect to x, and putting p for -

,

0W

pif + xy*=y*<l>+
(

^ f

Dividing out and again differentiating,

dx

dx

_. .
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This is the differential equation of the required generating
curve.

If, for instance, the metacentre is at a constant height, a,

above the lowest point, we know that the curve is a circle,

and this appears at once from (2), since $ = a,

(x a)dx = o, .'. (x af-^y
1 = a2

.

58. Metacentric Evolute. Suppose a body of given
mass to float in a liquid ; then if we consider all possible

displacements round a principal axis of the area of flotation

and not merely small displacements in which the volume

of the displaced

liquid is constant,

the lines of action

of the forces of

buoyancy will en-

velop a certain sur-

face fixed in the

body. This surface

is called the mefa-

centric evolute for

the given displaced

volume.

As a particular

Fig- 1 6. case, consider the

displacements of a

square board, ACD, Fig. 16, floating in a liquid of double

its own specific weight. The displacement is always half

the volume of the board
;
and when the board floats with

AS horizontal, the centre of buoyancy is H, the metacentre

being J/, such that HM = %a, where 2 a = AB. In this

position the equilibrium is unstable. The curve of buoyancy
for positions intermediate to those in which the surfaces of

flotation are DB and CA is the portion J'HJ of a parabola

whose parameter is 0. The lines of action of the forces of
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buoyancy are always normals to this parabola, and their

envelope is the evolute, QMQ', of the parabola. The posi-

tions in which DB and GA are in the surface of the fluid are

positions of stable equilibrium, the metacentric heights GQ
</Z

and GQ' being each a

In general, for the displacements of any body in one

plane the volume of the displaced liquid being constant

the metacentric evolute is the evolute of the curve of buoy-

ancy in the plane.

59. Stability in two Fluids. Let DAOB, Fig. 17, re-

present a body floating partly in a homogeneous fluid of

specific weight w' and partly in one

of specific weight w, the latter being
the lower, and suppose the position

of equilibrium to be found. We
may evidently imagine the volume,

DAB, of the upper fluid completed

by adding the portion A OB, and all

the forces in play will be those due

to an immersion of the whole

volume in a fluid of specific weight
w' and an immersion of the portion
AOB in one of specific weight w w'.

Let G be the centre of gravity of the body; G' its centre

of volume, i. e. the centre of gravity of the whole volume

supposed to be homogeneously filled
;
If the centre of

volume of the portion in the lower fluid before displace-

ment
;
M the metacentre corresponding to this lower fluid

(of specific weight w w'} ;
V the volume of the lower and

V that of the upper fluid displaced. The position of M is

A&
given by the equation HJI = -~-

Fig. 17.
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For simplicity we have assumed G, G' and H in the

original position to lie on the same vertical line
;
but the

method of investigating any case in which they are not

thus simply situated will be readily understood from the

simple case supposed.
The points G', G, M, H may in any individual case have

relative positions different from those represented in the

figure.

We suppose the displacement to be made round a principal

diameter of the section AB through its centroid, in which

case the wedge forces of buoyancy at the section are equiva-
lent to a couple, whose moment in the present instance is

Akl

(w w'),

The equilibrium will be stable if the sum of the moments
of the forces acting on the body in its position of displace-

ment round an axis perpendicular to the plane of displace-

ment, drawn through G or through any other convenient

point, is in a sense opposed to that of the displacement.

Now, if W = weight of body, the forces in action are W
acting down through G, together with V (w w') acting up

through M, and (V+ V'}w' up through G'. The sum of

their moments about H in the sense opposed to the angular

displacement is

and if the expression in brackets is positive, the equilibrium

is stable.

It is sometimes more convenient to take the restoring

moment about the lowest point, 0, of the axis of the body.

In the'above expression we may put

W Vw+V'w' -,

and it is evident that if the centre of gravity, G, of the

body coincides with its centre of volume, G', the condition

becomes simply HM>HG as is evident a priori.
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EXAMPLES.

1. A circular cone the length of whose axis is 20 inches is

formed of two substances whose specific gravities are 3 and 8,

the denser forming a cone whose axis is 1 2 inches long and the

other forming the frustum which completes the whole cone
;

it

is immersed, vertex downwards, in a liquid whose specific

gravity is 14, on top of which rests a liquid whose specific

gravity is i, the whole cone being immersed; show that for

stable equilibrium the radius of the base must be less than

11-64 inches.

2. A solid homogeneous prism whose section perpendicular
to its edge is an isosceles triangle of height h and base 2 a rests,

vertex downwards, in two liquids, the first of thickness c and

specific weight w t ,
the second heavier and of specific weight wt ,

that of the prism being w ;
find the condition for stability.

h5

Result. w
1 (c + x)

3+ (wz w>j) x
3>w ^ ,

x being given by the equation

w
1 (c+ xY + (w2 w

1)x^ = wh1
.

It is assumed that part of the prism stands above the first

liquid and that part projects into the second. If the value of x

given by the equation is inconsistent with these assumptions
the physical conditions of the problem are altered. See an

analogous case at p. 77, vol. i.

60. Floating Vessel containing Liquid. Suppose a

vessel, represented in Fig-. 18,

to contain a given volume of

liquid of specific weight w' and to

float in a liquid of specific weight
w. If the vessel receives a small

angular displacement, there will

be a force of buoyancy due to

the external fluid acting upwards

through its metacentre M ;
the

line of action of the weight of
Fig lg

the contained fluid acts through
E 2
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its new centre of gravity and it intersects the line GM in m,

the metacentre of this contained fluid. This force acts

downwards, and IF, the weight of the vessel acting through
its centre of gravity, G, also acts downwards. The weight
of the internal fluid may assist either in promoting stability

or in promoting instability according to the position of m.

If, as in the figure, m is below G, this force promotes stability.

If V as volume of displaced external fluid, V = volume of

internal fluid, the restoring moment is

Q(wV. GM + w'F' .Gm).

EXAMPLES.

1 . Find the least height to which a uniform heavy cylindrical
vessel of negligible thickness can be filled with water so that

when it is placed with its axis vertical in water the equilibrium

may be stable.

Result. Let h be the distance of the centre of gravity of the

vessel from the base, TFthe weight of the vessel, and A the area

of the base
;
then the least height to which it can be filled is

w
h-

2 Aw

2. If the cylinder contains a liquid of specific weight w' and
floats in a liquid of specific weight w, with its axis vertical, find

the condition of stability.

Result. Let w'n.w, W=Acw, and x = the height to

which the cylinder is filled
; then, for stability, the expression

2n(n i)or + ^ncx+ 2cf
(n i)r

2
^ch

must be positive.

3. If a uniform hollow cone of negligible thickness contains
a liquid of specific weight w' and floats in a liquid of specific

weight w with its axis vertical and vertex downwards, find the

condition of stability.

Result. If x is the length of the axis occupied by the internal

fluid, y the length occupied by the external fluid, h the whole
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length of the axis, / the distance of the centre of gravity of the

cone from the vertex, r = radius of base, wf = nw, W = weight
and V = volume of cone, and if W = m . Vw, we have

y
3 naj

3 = mhs
,

and for stability the expression

3(1 + ^) (y*-nx*)-4mh
3
l

must be positive.

4. A thin vessel in the form of a surface of revolution contains

a given quantity of homogeneous liquid and rests with its vertex

at the highest point of a rough curved surface : find the condition

of stability for small lateral displacements.

Result. Let JFbe the weight of thevessel(without the liquid),
h the distance of its centre of gravity from the vertex, V the

volume of the liquid, w its specific weight, z the distance of its

centre of gravity from the vertex, A the area of the free surface

of the liquid, k the radius of gyration of this area about its dia-

meter of displacement, p and // the radii of curvature of the

vessel and the fixed surface in the plane of displacement ;
then

the restoring moment is proportional to

(Vw+ W)p~i + -, (Vwz+APw+ Wh),

and if this expression is positive, the equilibrium is stable. The

restoring moment is equal to this expression multiplied by
p'Q

-, where 6 is the small angular displacement of the vessel.

(See Statics, vol. ii, Art. 279, 4th ed.)

5. In the last example find the position of the metacentre.

Ans. If H is the centre of gravity of the contained fluid,

Ak* W f . pp" >.

HM=-=-+=-(h- -,).Vw V p -h p'

6. If the vessel is a paraboloid of revolution resting on a hori-

zontal plane, the weight of the liquid being P and the latus

rectum of the parabola 4 a, the condition for stability is

W(2a-h) >%v ' 3
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7. A thin hollow conical vessel has its vertex fixed at a depth
x helow the surface of water, and mercury is poured into the

vessel
;

find the volume of the mercury when the equilibrium
becomes unstable.

Result. Let IT be the weight of the vessel and / the distance

of its centre of gravity from the vertex
;

r = radius of base

and h = height of vessel, w and <r the specific weights of the

water and mercury, y = height of cone of mercury ;
then the

equilibrium will be stable so long as

w .

-x* -

8. If instead of pouring a liquid into the vessel a solid cone

of specific gravity <r. just fitting the hollow cone, is dropped
into it, find the greatest height of this cone consistent with

stability.

w, r\ t 4 Wh*l
Result. y*< -(i + vrj-r

4 - --3
(T V h?/ TTT'O-

9. A thin hollow vessel in the form of any surface of revolution

has its vertex fixed at a depth x below the surface of water, and

mercury is poured into the vessel ; find the volume of the mercury
when the equilibrium becomes unstable.

Result. Let be the vertex of the vessel, A the area of the

section of flotation, G and // the centres of gravity of the vessel

and of buoyancy, A
f
the area of the surface of the mercury, k' its

radius of gyration about its diameter, H' the centre of gravity of

the mercury ; then

w(At? + V.OH)- a(A'V*+ Vr
. OH')- W. OG

must be positive, V and V being the volumes of displaced water

and of mercury.
"When the equation of the generating curve is given, V, V,

A, A', &c., will be known.

10. A cylindrical vessel of radius r is movable round a

smooth horizontal axis through its centre of gravity G which

is at a height h above the base. Water is gradually poured into

the vessel, the height of the water being x at any instant.

Prove that the height, y, of the metacentre above G is given

by the equation x ^
y = - + h.

2 4X
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Taking two rectangular axes, Ox, Oy, construct the hyperbola

represented by this equation, and show that there is for some
time a state of instability, succeeded by one of stability, and

finally a state of instability.

(Produce yO to H so that OH = h
;
then H is the centre of

the hyperbola ;
take K on Ox so that OK = 2 h

;
then the

asymptotes are Hy and HK. Let the hyperbola cut Ox in A
and B, OA being< OB; the equilibrium is unstable from x = o
to x = OA ;

stable from x = OA to x = OB ; unstable after-

wards.)

11. If the cylinder is replaced by a prismatic trough, show
that the equilibrium is stable for values of

x< h cos2 a

and unstable for greater, a being the semivertical angle.

61. Stability in Heterogeneous Fluid. We shall now

suppose that a body floats in a fluid of variable density

which is subject to the

action of gravity. The

level surfaces of the

external force being-

horizontal planes, these

planes will also be sur-

faces of constant den-

sity. Hence if w is

the specific weight of

the fluid at any point

whose depth below the

free surface, LN, Fig.

19, of the fluid is

have

we

Suppose the dotted

curve to represent the

original position of the floating body, and that the full

curve ACS represents its position when it has received



56 Hydrostatics VOL. n

a slight angular displacement, 6, round any assigned hori-

zontal line Ox which we suppose to be perpendicular to

the plane of the paper.

Take the vertical plane through the original line joining
G and H, the centres of gravity of the body and of buoy-

ancy, which is perpendicular to Ox as plane of yz, the

point, 0, in which this plane cuts Ox being taken as

origin, the vertical Oz as axis of z
t
and the horizontal line,

Oy, perpendicular to Ox as axis of y. Thus the displace-

ments of all points of the body take place in planes parallel

to the plane of yz.

The section of flotation of the body in the displaced

position is represented by A!Bf
. Suppose AB to be the

section of the body made by the plane LN in the original

position ;
and in this position let b be the distance between

the line GH and the axis Oz. Let h be the height of

above LN.

The equation of the plane A' B' is z h o, and this was

the equation of AS in the original position ;
but by rotation

in the sense indicated in the figure the equation of AB in

its displaced position becomes z Qy h o, and therefore

the old and new positions of the plane AB and of every

plane horizontal section of the body intersect on the

axis Oz.

Suppose P
f
to be any point in the body whose original

position was P (the latter point being supposed to be

marked in fixed space and not in the body) ;
and let x,y, z be

the co-ordinates of P with reference to the fixed axes at 0.

Then the co-ordinates of Pf
are (x$Qz, z + By), so that

the density of the fluid which would exist at P' if the body
were removed would be, by (i),

, . . (2)

since the depth of Pf
below the surface LN is z + Qy h.
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Hence when the element of volume ilxdydz at P is carried

to P', it will experience a force of buoyancy

(3)

and since the points P are all those included within the

original volume, BCA, immersed, the corresponding forces

of buoyancy will omit the wedge B'rB and include the

wedge ArA' the latter not, in reality, contributing any
force of buoyancy at all in the displaced position, while the

former does. We must therefore specially include the

wedge B'rB and exclude ArA'.

Let WQ be the specific weight of the fluid at the surface

LN
;

let dS be the area of any element of the surface AB
(such as that represented at P in Fig. 8) ;

then if yQ
is

the distance of this element from the line through r parallel

to Ox, the volume of the small cylinder standing on dS, as

in Fig. 8, is 6yQ dS. Also let X
Q be the x co-ordinate of

the element dS, and let c be the original depth of G below

the horizontal plane ocOy. Then we have, in their new

positions,

the co-ordinates of P ...... x, y Qz, z + Qy,

G ...... o, 6-6c,

Now we shall calculate the sum, L, of the moments of

the forces of buoyancy round the horizontal axis through G

parallel to Ox in the sense opposite to that of the displace-

ment. i. e. counterclockwise as we view the figure. If a

force having components X, Y. Z acts at the point (%,y, z),

its moments round axes through the point (a, /3, y] parallel

to the axes are Z(y /3) Y (z y), and two similar ex-

pressions (Statics, vol. ii, Art. 202).

In the present case only the ^-component of force exists,
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and this at P' is the expression (3) with a negative sign,

while at the new position of the surface element (18 it is

-Ow? y dS. ..... . (4)
Hence we have

{y-b-e(z-c}} dxdydz

)<*& - (5)

Now observe that we neglect 62
;
also if ^Tis the weight

of the volume ACB of fluid originally displaced,

fffwydxdydz = W.t>,

since the y of H was originally b. Hence the term inde-

pendent of 6 in (5) disappears, as it must, of course
;
and

we have

-c) dxdydz

Observe also that w is a function of z alone, so that the

first triple integral can be written in the form

I[ff(f

and if A denotes the area of any section for which z is

constant (i.
e. any section of the body parallel to AB), k

the radius of gyration of this section round the line in its

plane parallel to Ox, at the point where Oz cuts the section,

and y the distance of the '
centre of gravity

'

of the area

from this same line, the double integral in the brackets in

(7) A(P-by), (8)

so that the first integral in (6) is

by)-j-dz (9)
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The second integral in (6) is 6W. HG, and the last is

Qw
Q
AQ(k* by^, where kQ is the radius of gyration of the

section, AJB, of flotation (whose area is J
)
round the line

through r parallel to Ox, and yQ is the distance of the
'

centre of gravity
'

of the section from this line. Hence

(6) becomes

. (10)

For stability this must be a positive moment ; and in

the particular case in which w is constant and the displace-

ment is made round a diameter of the section AS, it is

obvious that we get the same condition as in Art. 54.

But the forces of buoyancy will also, in general, produce
a moment round the horizontal axis through G parallel

to Oy, i.e. a moment tending to turn the body across

the plane of displacement. If M is this moment, we

have

M = \(w + Qy -^) xdxdydz + 6w xQyQdS. . (i i)
*) \J \J \J

Let P denote the product of inertia, ffxydxdy, of any
section round axes in its plane parallel to Ox and Oy at the

point where the section is cut by Oz
;
then

M dw

This moment will not exist if P is zero for all sections,

or if the fluid is homogeneous and P is zero for the surface

of flotation.

Let us now calculate the work done in the displacement
of the body round Ox.

The work which would be done on a material system by
force the components of whose intensity at (#,y, 2) are
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X,Y,Zfor any small displacement whose typical components
are 8a?, by, 82 is

I (13)

and if the displacement is produced by small rotations, 80,,

802 , 803,
round the axes of co-ordinates, we have bx = y0l

#802 ,
with similar values of by and 8z. Hence, if

L, M,N are the typical moments of the force intensity

about the axes, the work is

..... (14)

In the present case the only rotation is that about Ox,

.' . 8 2
= 803 = o. Consider the moment L as that of the

forces of buoyancy in the displaced position ACB, and

calculate the element of woi'k done by these forces in any

further small displacement by which the angle is increased

by d0. Then the infinitesimal element of work done in

this further displacement is

Lde........ (15)

But (taking the forces of buoyancy alone),

(17)

= -fTl,-K0, suppose; .......... (18)

and the integral of this expression from = o to =
expresses the work done by the forces of buoyancy in the

displacement from the initial position of the body (re-

presented by the dotted contour) to that represented by
ACB. Hence the work is

(19)
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The work done by the weight of the body is simply

Wbz, in which bz must be accurate as far as 2
; i.e.

bz = bd ^cQ*. Hence the work done by all the forces is

.' . (20)

and this, with reversed sign, is the work which must be

done agaimt the forces to produce the displacement.

EXAMPLES.

1. If a solid homogeneous cone float, vertex down, in a fluid

in which the density is directly proportional to the depth, find

the condition of stability.

Result. If hf
is the length of the axis immersed and h

is the height of the cone, the equilibrium will be stable if

cos* a < T
, where a is the semivertical angle of the cone.

5"

2. Determine the condition of stability of a solid homogeneous
cylinder in the same circumstances.

Remit. If r is the radius, h the height of the cylinder, and
hf the length of the axis immersed, the condition of stability is

,*>*'(*-*')

3. If a spherical balloon of weight B is held at a given height

by a rope made fast to the ground, find the work done in dis-

placing it about the ground end of the rope through a small

angle.

Result. If h is the height of the centre of the balloon and
W the weight of the displaced air, the work is



CHAPTER III

GENERAL EQUATIONS OF PRESSURE

62. Equation of Equilibrium of a Fluid under Gravity.

If in the case of a fluid acted upon solely by gravity
we imagine the density not to be the same at all points,

the expression (a), Art. 10, for the intensity of pressure will

no longer hold. For in Fig. 12, Art. 10,

the weight of the cylindrical column

PN will not be wzs, since w varies

from point to point of its depth.
But if w is the specific weight at

any depth z, the weight of this cy-
linder is sf^odz, the limits of z being

o and NP
; and, as before, this weight must be equal to the

upward pressure on the base at P, viz. p . s. Hence

p =fwdz

dp _
'

dz

R 20

(I)

If, for example, the density varies directly as the depth,

we have w = kz, and (i) gives

Equation (L) could have been obtained by considering
the equilibrium of a very small rectangular parallelepiped,

PQ, Fig. 20, described with vertical and horizontal sides at

P. For, if s = area of each horizontal face, and if Q is

a point vertically below P so that PQ = dz, the weight of
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the element is w . gdz, where w is the weight per unit

volume of the fluid at P. Also the downward pressure on

the horizontal face at P is p . s, where p is the pressure

intensity at P
;
and since the pressure intensity at Q is

wft)

p +
j- dz, the upward pressure on the horizontal face at Q is

(p + y dz)
s. Considering the separate equilibrium of

this elementary parallelepiped, and resolving forces ver-

tically, we have

(p + dz] s = .s + w. sdz.v dz '

dp
.-. -j-=tff )

dz

as before.

If we are measuring force in pounds' weight and length
in inches, p will be in pounds' weight per square inch,

z being the depth of the point in inches, and w the weight

per cubic inch of the liquid at P in pounds' weight
in other words, w is the number of pounds mass of the

liquid per cubic inch at P.

If force is measured in poundals, the weight per cubic

inch of the liquid at P is about 32-2 w, where w is still

the number of pounds mass per cubic inch at P.

It is usual to denote the number of units of mass

per unit volume by p. If then force is measured as a

multiple of the weight of the unit mass, the equation
for p is

dp

T,
= f W

But if force is measured in absolute units, the number

of these in the weight of a unit mass being g (i.
e. 32-2

poundals or 981 dynes, according as the ; British Absolute
'
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or the C. G. S. system is used), w in (i) is pg, and the

equation for p is

With this form of the equation, and the C. G. S. system
of units, the student must ohserve that

p is in dynes per square centimetre,

z linear centimetres,

p grammes per cubic centimetre,

g centimetres per second per second (about 981).

If the fluid is of constant density, (i) gives p wz, the

result which in the previous chapters we have employed
in the case of water.

In the case of a gas p, or w, is proportional to p : and,

as in Art. 33,

p = 3926-9 -p, ...... (4)
o

where p is the intensity of pressure in grammes' weight

per square centimetre, T is the absolute temperature of the

gas on the Centigrade scale, s is the specific gravity of the

gas referred to air, and p is the mass of the gas in grammes

per cubic centimetre.

T
Using equation (2), and denoting 2926-9 by k, we have

p
~

k '

z being measured vertically downwards. If z is measured

vertically upwards, we have

- ........
p k

Integrate this, assuming T constant throughout the
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gas, and suppose that when z = o the value of p is p ;

then

p=p e-l........ (7)

This gives the intensity of pressure at a height of z

centimetres in the atmosphere, on the assumption of con-

stant temperature, * being unity, andjtf being the intensity

of pressure at the ground.

Suppose any gas contained in a pipe, vertical or not,

closed at the upper end. Let be the point at which

2=0 and p is p ;
let P be any point above

;
let the

pipe at be open to the air, so that pQ is produced by the

atmosphere in contact with the gas at 0. At the point P
in the pipe the intensity of pressure of the enclosed gas is

given by (7), and at P just outside the pipe the intensity
of the pressure, plt

of the air is given by the equation

where k^
= 2936-9 T, the gas and the air being assumed to

be at the same temperature.
Now if the gas is lighter than air suppose hydrogen or

coal gas k is > klt and therefore

P >Pv
i. e. the gas would escape into the surrounding air if an

aperture were opened in the pipe at P. At the gas does

not rush out of the pipe, although a communication is

established with the air
; the gas at would diffuse into

the air, but we may suppose that the pipe at contains a

piston which restrains the gas and on the top of which the

atmosphere presses.

The higher the point P in the pipe, the greater the

ratio ofp to plt and therefore the more rapid the escape of

the gas when a communication is opened. Hence the gas

lights at the top of a house are, if the taps are opened
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to the same extent, brighter than those at the bottom of

the house ; and, in consequence of this, it is commonly
said that ' the pressure of the gas at the top of the house is

greater than that at the bottom
'

a thing which could not

possibly be true, since gravitation must diminish the

pressure as the height increases. It is not the pressure of

the gas that is greater at the top but the velocity of its

escape.

When a balloon ascends, the neck is, for safety, left open
to the air, so that the intensity of pressure of the gas at the

neck is that of the atmosphere at this point ;
the gas

does not rush out at the neck
;
but if a valve is opened at

the top of the balloon, the gas will escape for the reason

already given viz. that the intensity of pressure of the

enclosed gas at this point is greater than that of the

adjacent air.

If the gas in the pipes were heavier than air, p would be

<
jtjj ,

and the reverse of the above would be true.

When density is measured in pounds per cubic foot,

intensity of pressure in pounds' weight per square foot,

and T is 460 + 1, the absolute temperature on the Fahren-

heit scale,

T
P = 53'3

~
P' (9)

s

and at a height of & feet in the column of gas we have (7),

in which k has the value given in (9).

Since T will usually be a large number, if z does not

-- z
exceed one or two hundred feet, we may take e k = i -, >

K

and we have

for the excess of gas pressure in the pipes over that of the
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outside air at a height of z feet
;
and in this equation the

pressures may be estimated in any units whatever.

EXAMPLES.

1. Find the pressure ou a plane vertical area placed in a

slightly compressible fluid.

Adopting the units of the C. GK S. system,

dp

at a point P whose depth is z cm. Also, if k is the resilience of

volume, or modulus of cubical compressibility,

7
dP k j ik = p , .-. - dp = dp,
dp p

k dp'

where p is the density at the surface, and T, is neglected.
fC

Substituting this in (i), we have

t=ffP*(* + **). (3)

Let A be the magnitude of the given area, and z the depth of

its centre of area.

If dS is the element of area at P, the whole pressure is fpdS ;

and if fz^dS, which is the moment of inertia of the area about

the line AB (Fig. 5) in which its plane intersects the surface,

is denoted by A Aa
, while fzdS = Az, the resultant pressure is

in dynes. Dividing this expression by gt we have the pressure
in grammes' weight.

F 2
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2. Find the position of the centre of pressure on any vertical

area which is symmetrical with respect to its principal axes at

its centre of area, when immersed in a slightly compressible
fluid.

With the notation of p. 10, and denoting the radius of gyra-
tion of the area about the line AB (Fig. 5) by A, we have

3. Assuming the resilience of volume of sea-water to be, in

C.G.S. units, 2-33 X io19
,
and that i mile = 160933 centimetres,

find the fractional increase in density at a depth of I mile in the

ocean.

From the equations

dp
p- = 2-33 X io10

we have , n dp
2-33 X io10

-f =

Po 2-33 x io10
-98i/v<

where p is the density at the surface. Taking p = 1-026, we
find at the depth of a mile

, nearly.'

Po 148-

4. Assuming the resilience of volume of sea-water to be con-

stant at all depths, find what the depth of the ocean should be

at a point where the density of the water is double the surface

density.

Result. Nearly 71-92 miles.

5. Represent graphically the densities of sea-water at points
on a vertical line drawn downwards from the surface.
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Let be the point on the surface, OA the vertical line drawn
downwards to the point, A, at which the density would be

doubled
; produce OA to C so that A = AC

;
draw a hori-

zontal line, CH, through C. Then if the densities at various

points on OC are represented by ordinates drawn at these points

perpendicularly to OC, their extremities trace out a hyperbola
whose centre is C and asymptotes CO and CH.

6. If the density of a fluid varies as any given function of the

depth, find the depth of the centre of pressure on a plane
vertical area.

Ans. If p =f(z), the depth of P is

J f(z) dh

63. Q-eneral Equations of Equilibrium. If the forces

acting on the fluid are any assigned system, let the force

per unit mass at P have for components parallel to any
three rectangular axes the values X, Y,

Z, so that on an element of mass dm
these forces will be Xdm, &c. At P

, ,

draw a small rectangular parallelepiped,

with edges Pa, Pb, PC, or dx, dy, dz,

parallel to the co-ordinate axes. Then,
if p is the density of the fluid at P,
the mass contained in this parallelepiped is pdxdydz.

Consider the separate equilibrium of this fluid. If p is

the pressure-intensity at P, the pressure on the face bPc is

p . dy dz, and since the pressure-intensity on the opposite
dv)

face is p + -f-
. dx, the pressure on the face is

doc

(p + -j-
dx\ dy dz.

For the equilibrium of the element, equate to zero the

component of force acting on it parallel to the axis of x,

and we have
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Xdm + p . dydz (/;
+ ~- dx\ dy dz o,

Tx =f)X
' W

Similarly dpJ - = pY, (2)
dy

dz

by resolving forces parallel to the other axes.

Since the direction of the axis of x is any direction, the

AjH

equation -j-
= pX asserts that the differential coefficient of

(lOG

p in any direction is equal to the product of the density
and the force-intensity in that direction; so that if S is the

force-intensity along- any line denoted by s at the point P,

Thns, if the position ofP is expressed in polar co-ordinates,

where R is the force per unit mass at P along the radius

vector.

This may also be seen in the follow-

ing manner.

Let PQ, Fig. 22, be an element, ds,

of length of any curve through P
;

round this as an axis describe a cylinder

of small uniform cross-section, a-
;
con-

Fi 3 ,
sider the separate equilibrium of the

fluid contained within this cylindrical

element of volume. IfFis the external force per unit mass

exerted on the fluid in the neighbourhood of P, the force on
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the enclosed fluid is F. pa-ds ;
ifp is the pressure-intensity

at Pandjo' (which is^ + -j-ch),
the pressure-intensity at

Q, the forces on the ends of the cylinder at P and Q are^o-

and joV. In addition to these there are side pressures which

are all at right angles to the axis PQ.
Resolving forces along PQ, we have

jj a- p'a + F. pa- (Is . cos = O,

where is the angle between Pand PQ ;
and this is the

same as

|= P Pcos0 (4)

We have already pointed out (Art. 4) the essential difference

between the pressure-intensity, p, at a point P in a perfect

fluid and the stress at a point in a strained solid namely,
that p has no reference to any direction at the point, but is

the same in magnitude for every element-plane at the

point. Hence jo is a function of the co-ordinates, x, y} z, of

P, i.e., p =f(x, y, z), or, in other words,

dp is a perfect differential of a function of co-ordinates ;

and the quantities pX, pY, pZ are the differential coefficients

of/ (#, y> z] ;
that is,

dp = pXdx + pY dy + pZdz ; (y)

and since | (^)
=

Tx Cf>
z

'
7

'
z must satisfy the

conditions

which give, by eliminating p, the condition

dT (1Z ,dZ dX ,dX dY,
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and this means simply that the expression

Xdx+Ydy + Zdz ...... ()

either is a perfect differential of a function of x, y, z, or is

capable of being made so by multiplication by a factor. In

fact, since, as we have seen, dp is a perfect differential of a

function of co-ordinates, the density p is such an integrating

factor of (e). Unless, then, the force components satisfy

the condition (8), no fluid can be in equilibrium under the

action of forces of the type X, Y, Z.

In particular, a fluid can always be in equilibrium under

the action of forces directed towards fixed centres and

proportional to any powers of the distances of a point from

these centres. If the fluid is a liquid of constant density

throughout, we must have -j
= -r-> &<"> that is, the

dy dx

expression (e) is itself a perfect differential ;
and this means

that the space occupied by the liquid can be mapped out

by a series of surfaces such that at each point of any one

surface the resultant force is normal to the surface; or,

again, that forces have a potential that is, that the work

done by the forces in moving a particle from any point P
to any other point Q is the same by whatever path the

particle is allowed to travel from P to Q.
If the fluid is a gas,p = kp, and (y) becomes

. . . . (fl

where k involves the temperature of the gas at P
;
and if

the temperature is the same throughout, (e) must be a

perfect differential, as for a liquid of constant density.

If the applied forces have a potential, 7, the expression

(c)
is dF, and (y) gives
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and of course the condition (8) is satisfied, even though the

density varies from point to point.

In all cases in which the external forces have a potential,

their level surfaces, or equipotential surfaces (Statics,

vol. ii, Art. 327), are also surfaces of equal pressure of the

fluid
;

for
(TJ) shows that in passing- from a point P to

another close point such that dV = o, we have dp o. If

the density of the fluid is variable, it will be constant

all over a level surface of the external forces
; for, since

in
(TJ) the left side is a perfect differential of a function

of x, y, z, the right side must be so, and this requires that

p is some function of F, i. e.

...... (5)

so that at all points for which V is constant p is also

constant.

For a slightly compressible fluid, whose resilience of

volume is k, equation (?j) becomes for forces having a

potential

t%=*r,
...... (6)

and for a gas

"-l^.dV. ...... (7)
p K

If the temperature of the gas varies, p = cp(i + at),

where c is a constant, t is the temperature at any point in

the gas, and a is a constant. Hence, in general,

dp Xdx + Ydy + Zdz

p c(i+at)

and if the applied forces have a potential, F,

dp _ dV

(8)
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so that, since the left-hand side is a perfect differential and

the right side must also be one, it is necessary that t should

be some function of V
\
in other words, t is constant along

each equipotential surface of the external forces. Hence

for a gas subject to any conservative system of forces

(i.e. forces having a potential) each level surface of the

forces is at once a surface of constant pressure-intensity and

a surface of constant temperature.

64. Non-conservative Forces. If Xdx + Ydy + Zdz is

not a perfect differential (but of course satisfying the con-

dition (8), p. 71), and if at any point, P, in the fluid we
describe the surface of constant pressure, whose equation is

p = const., . (i)

this surface will not coincide with the surface drawn

through P along which the density is constant, i. e. the

surface whose equation is

p = const (2)

These two surfaces will intersect in some curve, which is

called the curve of constant pressure and constant density
at the point P.

We propose to find the direction of this curve at P.

Let /, m, n be the direction-cosines of the tangent to the

curve at P; then if (Is is the indefinitely small element

of its length between P and a neighbouring point Q ;

and ifp f (x, y, z) at P, the value ofp at Q, is

f(x + Ms, y + mds, z + nds},

/dp dp dp\ .

i.e. p + (1-4- + m T- +T-W#.v ax ay dz'

Hence, since there is no change in the value ofp,

jdp dp dp



CH. TIT General Equations of Pressure

or, by the general equations of equilibrium,

75

(4)

so that PQ is at right angles to the direction of the

resultant force at P.

Similarly, since there is no change in p from P to Q,

we have

.dp dp dp _ . .

dx
4

Ty
+ n

dz~ '
' ' '

'5'

and therefore from (4) and (5) we have

dp dp dp Ydp dp dp
(, : m : n = I . & -7- : /> -7 A -7 : A. -= / -7- . I o )

dz dy dx dz ay ax

Now, denoting by A, /*, v the components of the curl of

the force (p. 92), i. e.

^
dZ AY

A = -j 7- :

dy dz

_dX_(JZ
dz dx

!

dY dX
V = j -r s

dx ay

(a)

the equations of p. 71 give

,dp

x _ z
dz dx

= o,

vdp vdp
i-j- X-j- + pv = o. .

dx dy

These last show that (6) become

I : m : n = X : p. : v, . .

and the differential equations of the curve are

dx _ dy _ dz

A i v

(7)

(8)

(9)

(10)
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from which, by integration, the equations of these curves are

found.

Hence the direction of any such curve at any point

coincides with the direction of the curl of the external

force.

If the fluid is a gas whose temperature varies from point
to point, we havep = cp (i + a

rf),
where t is the temperature

at P, and c and a are constants. Now the previous result

is absolutely general, whatever be the connexion between

p and p ;
and ifp and p are both constant along any curve,

t must also be constant along the curve.

When in any case the components of the external force

per unit mass are assigned of course satisfying the

necessary condition, p. 71 there will be several laws

of density which permit the fluid to be in equilibrium. In

fact, p may be any of the integrating factors of the ex-

pression Xdx + Ydy + Zdz. We shall illustrate this in some

of the following examples.

EXAMPLES.

1. A mass of homogeneous liquid of density p attracting itself

according to the law of nature surrounds a homogeneous sphere
of density a and radius r, also attracting the liquid ; find the

pressure-intensity at each point.

Let P be a point in the liquid at a distance r from the centre,

0, of the sphere, and let forces be measured in absolute units.

Then the resultant force per unit mass at P is

where y is the constant of gravitation.

Hence dp
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Let b be the external radius of the bounding surface of the

liquid, and suppose that p = o at this surface; then

2. If a plane at a distance c from the centre, c>a, is drawn
in the liquid, find the whole amount of pressure on one side of

this plane.
Let the foot of the perpendicular from the centre on the plane

be A; describe a circle of radius x about A
;
then 2-nxdx is

a ring at each point of which p has the value above
;
and the

whole pressure on the plane is 2 -nfpxdx. Now r2 = c
2 + x\

rdr = xdx; therefore the pressure is

ri

2 TT / prdr, or
J c

3. A gas contained in a vessel is acted upon by gravity
and also by a force emanating from a fixed vertical axis and

proportional to the distance from that axis
;
find the surfaces of

equal pressure.
Let force be measured in absolute units

;
then the action of

gravity is pg per unit volume. Let the axial force at a distance

f from the axis be p.a
-

p per unit volume. Here c is a constant
C

length, a is an acceleration, and
p.

is a number.
Let z be the distance of any point P in the gas measured

downwards from some fixed horizontal plane. Then the equations
of pressure in the directions of and z are

dp _ dp _

or, since p = kp,

dlogp p.a .. dlogp g

Integrating the first,

pa
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where f(z) is some function of z and the second gives

where (7 is a constant.

Hence the complete value ofp is given by the equation

'

where C depends on the position of the plane from which z is

measured. Let the free surface of the gas be everywhere subject
to the pressure-intensity p ,

which may be that of the atmosphere,
let be the point in which this surface is met by the axis from

which is measured, and let z be measured from the horizontal

plane at 0. Then when = o and z = o, p = p , . . C = log p ,

and

Hence when p is constant we have

2C(J
C
2= --- z+ const.,

pa
which shows that the surfaces of constant pressure are para-
boloids of revolution round the axis of , the latus rectum

, *ffc
being*

pa
The case imagined here is the same as if a gas which does not

mix with the air is contained in a vessel which revolves round
a vertical axis. After a while, however, the gas would no longer
continue to be unmixed, since diffusion would take place. We
must remember that a gas is not a body which is, in the strictest

sense, at rest
;

its molecules are in a state of perpetual (and
even violent) motion, so that diffusion into any other gas in

contact with it must take place. To a much smaller extent the

same is true for two liquids in contact.

4. Determine the conditions under which force having com-

ponents per unit mass represented by

can keep a fluid at rest. *
(This is a purely academic question, to which nothing real
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corresponds, and it is given merely as an illustration of mathe-

matical method which might be applied in various cases of fluids

of variable density.)
The equation of pressure is

dp = up [(y' + yz+ z*}dx + (z* + zx+ x*}dy + (x
z + y

2+ ') dz\ (
i
)

The expression in brackets satisfies the condition (8), p. 71 ;

that is, it is capable of being made a perfect differential by
being multiplied by a factor, or various factors

;
and these

factors will represent laws of density for which equilibrium is

possible.
The process of treatment is as follows. Let us seek the

integral of the equation

that is, some function of x, y, z which when differentiated will

give, not precisely the left-hand side of (2), but this expression

multiplied by some factor. First suppose z constant, and

integrate (2), which becomes

dx dy

(-+D+1.
1

_. 2X + Z
. . tan * + tan '

Ol

2xyzxzy
where C is a constant. Now replace C by <$>(z), where < is

some unknown function, and determine so as to satisfy (2).

Differentiating the equation

x + y + z _ ,,,

z'
1

2xy 2zx 2zy

and, for simplicity, denoting the denominator of the left side

by A
"-)'dy

yz ) . ,

-dz =
(t>'(z)dz. . . (5)
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With the aid of
( 2) this becomes

where k is an arbitrary constant. Hence the integral (4) is

x+ y + z i

zt 2xyzxzy~z + k'

)
= k(x+y + z),

or

x+y+z 2

Now differentiating the left-hand side of (6) we have

xy + i/z+ zx iy ^ J T
>

(x+y+zf
+ (z*

We see then that (i) becomes

and if the right-hand side is a perfect differential, we must have

C

where / is any function and C is a constant. This expresses
all possible laws of density. In particular, we can have

C
P

i. e., the density at any point is inversely as the square of the

perpendicular from the point on the plane x + y + z = o. Also
j fj

we can have f(u) =
, so that p = -.
- . gives also

w2

(xy + yz + zx)*
a possible law of density.
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The surfaces of constant pressure are hyperboloids given by
the equation xy+ yz+ zx = C(x+y+ z),

and those points at which both density and pressure are constant

are the curves of intersection of these hyperboloids and planes

5. Find laws of density for which the equilibrium of a fluid

under the action of force components proportional to

(y + a)\cz, c(y + a)
will be possible.

Result. The equation of pressure is

Hence, generally,

and the surfaces of constant pressure are hyperbolic para-
boloids

;
the curves of constant density and pressure, if we take

C C
p = ,
-r-9 ?

are right lines. The value p -.

is also possible, &c.

6. Find the same things for force components

cybz, azcx, bxay.
Result, The surfaces of constant pressure are planes passing

/j nj ig.

through the line- = - = -. Curves of constant p and p are
a o c

lines parallel to this.

7. Find the same things for components

Result, dp =

8. In a spherical mass of liquid of constant density attracting
itself according to the law of nature find the pressure-intensity
at any point.

Result. In Ex. i, p. 76, let a = o, or let <r = p, and we
have p = f 7ryp

2

(6
2 r2

).

1424-2 G
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9, A homogeneous liquid is acted upon by gravity and also by
a force emanating from a fixed vertical axis and varying as the

distance from that axis ;
find the surfaces of constant pressure.

Result, Paraboloids of revolution.

10. A spherical mass of liquid attracting itself according to

the law of nature being supposed to arrange itself in spherical

layers of constant density in such a way that the change of

pressure from layer to layer is

proportional to the change in

the square of the density, it is

required to find the density at

any distance from the centre.

Let P, Fig. 23, be any point
distant x from the centre, ;

let

a thin spherical layer with radius

OQ, or r, be taken
;
and let p be

the density of this layer. If R is

the resultant force per unit mass
at P, the equation of pressure is

dp pRdx.
Now we are given that dp = Ac?(/o

2

)
= 2 \pdp, where A. is

constant. The attraction of the shell Q at P is equal to

so that

Fig. 23.

p_wr* = -jr /x Jo
8 ,

-jr Pr*dr,

since the shells outside P contribute nothing to the attraction.

Hence at P we have

i dp 4iry F s ,

~~J~
--r / pr dr.

pdx x* Jo
r

or dp _ 47ry f
dx a;

2
Jo

pr*dr.

Denoting by k*, and differentiating this with regard to x,

/a dp\
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where p is the density at P. This equation gives

which is a form of Bessel's equation, and the value of p is

j=. J\ kx). Without resorting to the theory of Bessel
Vkx *

functions, we see, however, that (a) can be satisfied by assum-

ing p =- . Substituting this in (a), we have ft
= k,

x
sin&B . sin kx

.'. p = -
> or = A- ,

x x

where A is constant. If the density at the centre is p ,

sinfcc

The fact that k is the reciprocal of a length may be verified

from the nature of y and of \.

The assumption that the change in pressure is proportional
to the change in the square of the density is made by Laplace
in discussing the figure of the Earth.

It is interesting to see how the constants p and k in the

expression (/3) can be calculated from two observed facts with

regard to the Earth viz., that the density at the surface is

about 2-75 (that of water being i),
and that the mean density of

the globe is 5-5.

The whole mass of the globe is 477 / px*dx, where a is the
Jo

radius of the surface ; and this becomes from
(/3)

7jp(sin ka kacoska) ; ..... (y)

and if
p.

is the mean density, this mass = TJ a3
//, ;

j
o n

.-. p. ^-|(sin^a kacoska) .... (8)
A/ a

Denote ka by Q ;
then we have the data

sin0
2-75

~ PO- ....... ( )

0cos0 ,

i
--

'
..... (0
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therefore by eliminating p we have, to find 0, the equation

and an indication of the value of is obtained by taking axes
of x and y, and laying off values of 6 along Ox. "We thus

construct two curves,

3 2C*
y =- and y = cot cc,

305

whose intersection gives the value sought.
When the curves are drawn we see that they intersect at a

point between x = 2-4 and x = 2-5 ;
and after a few trials

we arrive at the result x _ 2.460^

that is, , _ 2-4605

~^T'
and substituting 6 = 2-4605 in

(c),
we have

Po
= J -746,

so that Laplace's law of density becomes

sin (2-4605-)
, a'

p = 10-746
-

2-4605 ^

This law is found to agree very well with observations relative

to the figure of the Earth. (See Thomson and Tait's Nat. Phil,
Part II, pp. 403, &c.) The density at the centre is therefore

a little less than double the mean density.
The intensity of pressure at any point can now be calculated.

We have p = Ap
2+ C, where C is a constant. If j\ and pl

are

the pressure and density at the surface,

P-Pi = M^'-Pi
2

)-

Now A = -~-, k =
,
and a may be taken as 637 x io 8

AT a
centimetres. The mean density of the Earth being taken as 5-5,

we find y =---
. , which is the number of dynes with

1496 x io4
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which two gram spheres whose centres are i cm. apart attract

each other. Also p in the above equations is measured in

dynes per square cm. At the centre let p be pQ ,
and p 10-746.

Using these numbers, we have the value of p pl ,
and since

the pressure-intensity of i atmosphere is ioi4Xio8

dynes

per sq. cm., the value of p p measured in atmospheres is,

approximately, 2,951,400 atmospheres, which, since pl
is only I,

may be taken as the value of the pressure-intensity at the centre

of a fluid sphere having the dimensions, mean density, and
surface pressure of the Earth. This shows how enormous is the

pressure-intensity nearly 3 millions of atmospheres at the

centre of the Earth.

11. Inside a homogeneous sphere of density v there is a

spherical cavity containing liquid of density p, which does not

fill the cavity completely ; find the form of the free surface of

the liquid under the attraction of the sphere.

Result. A plane perpendicular to the line joining the

centres of the sphere and cavity.

[The liquid is in equilibrium under two forces, f irycrr and

f Tryo-/, the first directed towards the centre of the sphere and
the second directed away from the centre of the cavity ;

hence

-dp = TTVO- ( rdr + r'dr').]
P 3

12. A mass of homogeneous liquid surrounds a sphere and is

acted upon by the attraction of the sphere, for the inverse

square law, and also by a force directed from a fixed diameter

of the sphere and proportional to the distance from this axis
;

find the surfaces of constant pressure.
The equation of pressure is

The surfaces of constant pressure are generated by the

revolution round the given axis of curves of the form

TS f
-. sin

2 -- = k,
a8

c

where a, c, k are constants.
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13. A mass of fluid is acted upon by forces directed to fixed

centres and varying inversely as the squares of distances from
these centres

;
find the surfaces of constant pressure.

They are given by the equation

14. Find the form of the free surface of a liquid contained
within a spherical cavity inside a homogeneous sphere if, in

addition to the attraction of the sphere, the liquid is acted upon
by a force emanating from the line of centres and proportional
to the distance from this line.

A paraboloid of revolution.

[Equation of pressure :

15. At any point P inside a mass of liquid which is in

equilibrium under its own attraction, according to the inverse

square, is described a sphere of any radius r; prove that the

mean value of the pressure in this sphere is less than the pressure
at its centre by -f Trp

2
y
5

.

16. A mass, m, of homogeneous liquid is in equilibrium under
the action of its own attraction, according to the law of inverse

square ; prove that the force with which one hemisphere attracts

the other is equal to that with which two spheres each of mass
m would attract each other if their centres were placed at

a distance apart, where a is the radius of the mass m.
V3

17. For a fluid in motion prove the following construction

for the direction of the surface of constant pressure at any
point P : let f be in magnitude and direction the acceleration of

a particle at P due to the external forces acting on the particle ;

let a be in magnitude and direction the actual acceleration of

the particle ;
reverse a in sense, and find the resultant of the

vectors/, a; then this resultant is the normal to the surface

of constant pressure at P. [See equation (4), p. 71.]

18. A liquid is contained in a perfectly smooth hollow sphere
which is caused to rotate with angular velocity <o about a fixed
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smooth horizontal axis
; prove that at any instant the surfaces

of constant pressure are a system of parallel planes.
The result follows from the geometrical construction in the

last example, or thus : let C be the centre of the sphere ; then,
all the external forces (gravity and pressures of the sphere)

passing through C, the particles have no rotation relatively to

C
;
that is, if P is any point of the liquid, the line CP remains

always in the same direction. Hence if OC = a, and 6 is at

any instant the angle made by OC with the vertical, and we
take the axis of revolution as that of z, and those of x and y
horizontal and vertical, the co-ordinates of P at any instant are

given by the equations

x = a sin + m, y = a cos + n, z = k,

where m, n, k are constants. Hence if ax> a
v ,

a3 are the

accelerations of P parallel to the axes, and =
co,

(ft

ax = aco
2 sin 9, a

v
= aco

2
cos 0, a, = o

;

therefore

dp aco2 . , dp aco
3

dp
f-=w smtf; -f w cos0; -f = w:
dx g ay g dz

p aa>
2

1~ g ~]
.'. - = a; sin + y cos + 52 + const.

w g L w J

19. A spherical shell is filled with liquid and caused to rotate

about a vertical diameter whose highest point is A
; prove that

the total vertical component of pressure on a spherical cap whose

angular radius measured from A is 6 is

cos 6 o>
2a .

, X

+ (i+cos0)
2

'

3

where a is the radius of the sphere.
Determine the cap such that this vertical component vanishes.

Result. If = 1

9

If co = o, or the liquid is at rest, the angular radius of the

cap is 120; and when co is not zero, the angular radius is

> 120. If co increases towards oo, 6 tends to TT.
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65. Green's Equation. Let ABC, Fig. 24, be any
closed surface

; let V and V be any functions of x, y, z
t

the co-ordinates of any point P at which

an element of volume dl is taken; and

let V 2 stand for the operation

dx* dy
z dz*

'

Fig 34
^en if we take the integral

/ C/V2 VdQ,

throughout the volume enclosed by ABC, the result can be

expressed in terms of another volume-integral taken through
the same space and of a surface-integral taken over the

bounding surface ABC. Thus, let Q be any point on the

surface at which an element of area dS is taken, and let dn

be an element of the normal at Q drawn outwards into the

surrounding space (in the sense of the arrow). Then we
have (see Statics, vol. ii, chap, xvii, Section iv)

-iu^.ts

dy dy dz dz)

In exactly the same way, if
</>

is any other function of

x, y, z, we have

L &L HL &
1IL (L ( \d

dx dx dy dy dz dz''

d^-f (
dU(K dV_dV dUdF\

dn J \ dx dx dy dy dz dz)'

The first of these is known as Green's equation ;
the

second is a modification made by Lord Kelvin.

By assigning to U various values (such as a constant

value, the value V, &c.) we obtain (as shown in Statics
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above) various remarkable theorems with physical appli-

cations.

A most remarkable consequence of (2) is this. If $ and

V are any two functions satisfying the equation

A (W d dV d AV
j-'Q-j- + -7- -</>-T- + -r </>-!- = (3)dx dx dy

^
dy dz r dz

at all points within a closed surface, ABC, and if the value

of V is assigned at every point, Q, on the surface itself, its

value at each internal point, P, is determinate.

For, if possible, let there be two different functions, viz.,

V =/(#, y, *),

each satisfying (3) and such that V V at each point, Q,
on the surface, while V

is, of course, not equal to V at each

internal point P. Denote V 7' by ; then f satisfies (3).

Now employ (2) for the volume and surface of ABC, and,

moreover, choose for U the value f. Then

dz

But each term under the integral on the left-hand side

vanishes, and the surface-value of which enters into each

term of the first integral on the right also vanishes ; there-

fore the second integral on the right vanishes
;
but since

each term of this integral is a square, we must have each

term equal to zero, i. e.,

_
~i O, ~r~ O, ~7~ O,
dx dy dz
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must hold for all points inside ABC
;
and this requires that

is constant for all internal points, and therefore zero, since

it is zero at the surface points.

Hence there cannot be two functions, 7, 7', satisfying

(3), agreeing at each surface point, while differing at

internal points. If, therefore, any one function,/ (x, y, z), of

the co-ordinates is known to satisfy (3) and to have at each

point on the surface an assigned particular value, it is the

only one applicable to the points enclosed by the surface.

The application of this result to the case of fluid pressure
is obvious. If at each point of any fluid-mass the external

forces satisfy the equation

dX dY dZ

equations (i), (a), (3), p. 70, give

d i dp d i dp d i dp _ .

dx p dx dy pdy dz pdz~

Hence if ABC is the surface of a foreign body immersed

in the fluid, the distribution of the fluid which could, under

the influence of the given external forces, statically replace

the body is determinate since the value of the pressure-

intensity is assigned at each surface point, Q. At each

internal point, P, the pressure-intensity is determinate, and

if p is, for the given fluid, a given function of p say f(p)

the value of p at P is given by the equation

where 7 is the potential function of the external forces,

involving the co-ordinates of P. This is the result referred

to in p. 69, vol. i.
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EXAMPLE.

If in the midst of a mass of fluid which is not self-attracting
there is a solid body which attracts its own particles and those

of the fluid according to the law of inverse square of distance,

and if the surface, A, of this body is one of constant potential,

prove that the intensity of pressure p, of the fluid at any point,

P, is less than the intensity of pressure, pQ ,
at any point on A

by an amount given by the equation

f

where y is the constant of gravitation (Statics, vol. ii, Art. 3 1 5),

M is the mass of the solid body, p is the density of the fluid at

any point at which the attraction per unit mass due to the body
is R, dl is an element of volume, and the integration extends

over the space included between the surface A and the equi-

potential surface, S, described through P.
In Green's equation (i) for U choose p p and let Fbe the

potential at any point due to the solid body. Then we have

in which the surface-integral on the right is taken over the

surface A and over the surface S, and the element of normal dn
is drawn into the space outside the volume enclosed by A and S;
this space is therefore the interior of the solid body and the ex-

terior of S, so that dn in the integration over A is measured
towards the interior of M.
Now we know that (Statics, vol. it, Art. 329) V 2 V= 4vyp',

where p' is the density of the attracting matter (to which V is

due) at the point to which V applies ; and as there is none of

this attracting matter at any of the points within the volume

(that included between A and S) included in the integration,
V 2F= o. Again, at every point on the surface of A we have

p p = o, therefore the part of the surface-integral on the right
which relates to the surface A is zero. Further, at every point
on Sp is constant

;
hence the surface-integral is simply
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and is confined to the surface S. Moreover, at every point in

dp dV
the fluid -T- = pX, &c., and X =

;
hence (i) becomes

Now (Statics, ibid.)

"dV

so that the required result follows at once from (2) and (3).

66. Line-Integrals and Surface-Integrals. If any
directed magnitude, or vector, has for components u, v, w

along three fixed rectangular axes, the magnitude which

has for components A, JM, v along these axes where

dw dv _
Ty~~dz

= X
> (I)

du dw
(2)dz dx

dv du

has been called the '

curl
'

of the given vector by Clerk

Maxwell. (In the theory of Stress and Strain, and in the

motion of a fluid, it is convenient to define the curl as

having the halves of the above components.)

Any vector and its curl possess the following fundamental

relation : the line-integral of the tangential component of any
vector along any closed curve is equal to the surface-integral

of the normal component of its curl taken over any curved

surface having the given curve for a bounding edge. (See

Statics, vol. ii, Art. 316, a.)

If I, my
n are the direction-cosines of the normal at any

point of such a surface, and clS the area of a superficial
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element at that point, while ds denotes an element of

length of the bounding edge of the surface, the theorem is

expressed by the equation

//"/ d dy dz\ ,

(l\ + mp. + n V)dS=J(u-+vfg +tVj-)d*. . (4)

Now we are often given the components of curl, A, /z, v,

and from these we require to determine the vector from

which they arise. In view of such a problem, the following
fact is useful. If we can find, by any means, some par-

ticular values, n
,
v

,
WM of the components of the required

vector which will satisfy the equations (i), (a), (3), the

general values of n, v, w are simply

= *+ ,
...... (6)

where
<j>

is any function whatever of #, yt
z. This is

evident, because if we substitute U
Q ,

v
,
W

Q for n, v, w in

(i), (2), (3), we have, by subtraction,

d(w-w ) _d(v-vQ)

dy dz

and two analogous equations ;
and these signify that the

expression

(u w
)
dx + (v v

) dy + (w WQ]
dz

is a perfect differential of some function of x, y, z. If this

function is denoted by <f>,
we have the results (5), (6), (7).

Of course it is a necessity from (i), (2), (3) that any

possible components of curl of a vector should satisfy the

identity ^ A d dv
-T- +- + ^-=0...... (8)dx dy dz
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Thus, it is not possible to determine a vector the com-

ponents of whose curl are x, y, z; but it is possible to

determine one whose components of curl are x, y, iz.

The values u = fyz, v = ^ zx, WQ
= xy will give these

latter components of curl
;

so will the values u^
= yz,

#!
= zx, w^ = o. But it is obvious that if

<f>
denotes the

function % xyz, these two sets of components are related thus

d(f) fid) .

In the line-integral along the closed curve the vector

whose components are -7^-, -^-,
-~ may be rejected, if

is a single-valued function.

Stokes's method of determining values of u, v, w from the

given values of A, p, v will be found in Lamb's Hydrodynamics,

3rd ed., p. 199.

EXAMPLES.

1 . Given any unclosed curved surface in a heavy homogeneous

liquid, is it possible to express the total component of pressure,
on one side of the surface, parallel to

(a) a horizontal line,

(6) a vertical line,

by an integral taken along the bounding edge of the surface ?

Ans. The first is possible, but not the second. If a hori-

zontal line is drawn at the surface of the liquid, which is taken

as the plane of x, y, the component in the first case is flzdS,

and this = i / 2
2

-=- ds. This result is evident from elemen-2
J ds

tary principles ; because, if through the edge of the surface we
describe a horizontal cylinder whose generators are parallel to

the axis of x, and take a section of this cylinder perpendicular
to its axis, the horizontal component of the pressure on the

curved surface is equal to the pressure on this plane section,

and is therefore independent of the shape and size of the given
surface.
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2. Given any unclosed curved surface in a heavy homogeneous

liquid, is it possible to express the sum of the moments of the

pressures, on one side of the surface, about

(a) a horizontal line,

(6) a vertical line,

by an integral taken along the bounding edge of the surface 1

Ans. The second is possible, but not the first; for,

/ (mzxlyz) dS = /
2

(x + y~r\ ds;

and the result also follows from elementary principles, by closing
the surface with a fixed cap described on the bounding edge, and
then imagining the given surface to vary in size and shape, while

retaining its bounding edge.

67. Equations of Equilibrium in Polar and Cylin-

drical Co-ordinates. Let P, Fig-. 25, be any point in a

fluid, at which the components of

force acting on the fluid, per unit

mass, are X, Y, Z parallel to the

rectangular axes, Ox, Oy, Oz; and

let the position of P be defined

by the usual polar co-ordinates, viz.

the radius vector OP
(
=

r), the

colatitude, POz
(
=

0),
and the

longitude, xOn (= <f>),
this last

-pig. 25.

being the angle between the plane
xz and the plane containing P and the axis of z. The arcs

in the figure are those determined on a sphere whose centre

is and radius OP by the axes and the line OP.

Sometimes it is convenient to consider the resultant

force per unit mass at P as resolved into three rectangular

components corresponding to radius vector, latitude, and

longitude, i. e. components along OP, along the line at P
perpendicular to OP in the plane POz, and along the

tangent at P to the parallel of latitude.
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Producing the great circle zPn to T so that nT = zP = d,

the second of these directions is parallel to 07'; and since

the third is at right angles to the plane POz at P, if

we produce the arc xy to Q so that yQ = xn = <, the

line OQ is parallel to the tangent at P to the parallel of

latitude.

Let It be the component of the force-intensity (i.
e.

force per unit mass) at P in the direction OP ;
let be its

component in the second and 4> its component in the third

of these directions.

Now, the axis of x being in any direction, we have

proved the equation

so that if ds is the element of length of a curve drawn in

any direction at P, and S the force-intensity along the

tangent to this curve at P in the sense in which ds is

measured, it follows that

Ts
= p '

Taking ds along OP, we have ds = dr; taking ds along

the meridian zP at P, we have ds rdQ\ and taking

ds along the parallel of latitude at P in the sense OQ,
we have ds = r sin 6 d $, since the radius of the parallel

of latitude is r sin 0. Hence the equations of equilibrium

are ^
Tr

= p '*>

dP r\

Te
~ pt ' "'

j- p r sin 6 . 4>.

Equations of equilibrium in Cylindrical Co-ordinates. By
the cylindrical co-ordinates of P are meant the distance, z,
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of P from the plane xy, the perpendicular distance, of P
from the axis of z, and the longitude, $, i.e. the angle
between the plane xz and the meridian plane zOP. Hence
if Z

t
Z

l}
4> denote the components of force-intensity at P

parallel to Oz, perpendicular to Oz, and along the tangent
to the parallel of latitude,

dp

71 = Pf*^

68. Homogeneous Kevolving Spheroid. The compo-
nents of attraction of a homogeneous ellipsoid of revolution,

of mass M,
or y

z z 2
. .

TE+^1+3 -
1 ...... v

1
)

a'
2 a 4 c8

exerted per unit (gramme) mass at a point (x, y, z) on

its surface, and measured in dynes, are (see Statics, vol. ii,

pp. 324-8)

(4)

where e
2 = and y is the constant of gravitation, or

c
.. i

force in dynes exerted between two spherical gramme masses

1424.2 H
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with a distance of I cm. between their centres. This

constant y is approximately

i

(5)
1496 x io4 '

assuming the Earth's mean density to be 5-5.

Denoting the terms in brackets in (2) and (4) by
A and C, we have

Now assume that this ellipsoid is fluid, or was at any time

fluid, and revolving with angular velocity <o round its least

axis, c. Take a particle at P on the surface at a distance r

from the axis of revolution. This particle has an acceleration

orr directed towards the axis, and the force per unit mass at

P directed towards the axis is

T
x vy _u

I (fyA 1 H j--
r r p dr

Hence if the particle at P has unit mass,

2
X

yT/
I dp

r r p dr
'

I dp _ 37-^"

pdr~ 2c3e
3

Similarly, since there is no acceleration in the direction of z,

_
.

p dz c3e
3

Now jo is a function of r and z only, therefore

dp 7 dp 7

dja
= dr+--dzi

dr dz

p , ^ 2+o>2
)
--

'-^-V^
-- + const. . (9)' 33 V7/

p ^ 2c <?
' 2 c*e* 2
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On the surface of the ellipsoid p o or a constant, while

(i) gives rz zz

while (9) gives for all points on the surface

Hence equating the ratio of the co-efficients of r2 and z2

in (n) to the same ratio in (10) and putting M = itpa?c,

we have
(3 + e

2
) tan"

1*- ^ o>
2

--- o- =-r .... (12)* -

Denote the right-hand side of this equation by k
; then

for a given value of o> that is for a given value of the

time of rotation, ,
of the spheroid there are two values

(0

of e, i. e., two different spheroids, or none, as can be seen by

solving (12) graphically.

The equation which we have to solve (replacing e by x]

is this :

/
l\\ 1

(z+^taHff-jZsAB
..... (13)

Taking two rectangular axes *
Ox, Oy (Fig. 26), construct

the curve, OQPR, whose equation is

Owing to the exceeding smallness of the values of y for

small values of x (such as -05, -I, -2, .,.) it is desirable to

represent unity along Oy by a much greater length than

that which represents unity along Ox. In Fig. 26 the

unit representative along Oy is four times that along Ox.

1 This geometrical representation was brought before the Oxford Mathe-

matical and Physical Society on December 2, 1911.

H 2
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The value ofy when x oo is -, so that the curve approaches

asymptotically a line parallel to Ox which is above y in the

figure at a distance from Ox a little more than f Oy,

Fig. 26.

Now the values of x in (13) are given by the intersection

of the curve (14) with the right liney = kx (15). Hence
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the figure shows that there are either two solutions or none,

according to the value of k. For, if from we draw a

tangent OP to the curve OQPR (touching at P, the abscissa

of which is very nearly 2-5293), and if the line y = lex lies

above OP, as OA does, there is no real point of intersection.

If the line is OB, there are two points of intersection, viz.,

m and a distant point in which OB produced meets the

branch PR produced. For the value of k which belongs to

OB there is thus a small value of x and also a very large

one
; that is, there are two figures of equilibrium, one

approaching the spherical form, and the other extremely
flat. If the line does not cut the curve, the ellipsoidal form

is not possible, but the body assumes, of course, some

other figure.

Forming the equation of the tangent from to the curve

OQPR, we find that the co-ordinates
(of, y'} of the point of

contact satisfy the equation

or that x' is given by the equation

p
/2
+i) (a/

2 + 9)'

which gives x' = 2-5293, nearly.

Thus we get the value of
-j-

at P equal to -22467, and

this is the greatest value of k for which equilibrium is

possible with an ellipsoid of revolution. Let us calculate

the time of revolution, or the value of to, which corresponds
to this, assuming the density of the body to be equal to the

Earth's mean density, 5-5. We have

O>
2

27T= -22467; .-. if T = ,

2 Try/a
co

T = 8722 seconds,
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which is a little more than one-tenth of the Earth's present

day. The value of k which corresponds to the Earth's

present rotation is obtained by putting co = =-=--
;
and

this gives k = -002289.

The line OS (Fig. 26) which corresponds to this value

of k is very close to Ox, and it will cut the curve at a

point having a very small as and of course another very
distant point having a veiy large x. For the small value we

/^3 /jj5
.

can put tan"1 * = x---
1 in (13), and thus get k = xz

.35 I 5o

Now
2
= i+e2 =i+x2 =i + ; therefore

4

a is-= i +
-jj-

X -002289 = 1-004292.
C- O

But the ratio of the axes for the Earth is found to be

i -003333, so that the interior ofthe Earth cannot be regarded
as a homogeneous fluid impressing the ellipsoidal form on

the thin solid crust.

When the line OB coincides with Ox, one value of e is

zero and the other is 00 . The corresponding co is zero for

each case, and the two figures are a quiescent sphere and a

quiescent infinitely extended thin plate.

69. Jacobi's Ellipsoids. An ellipsoid with three unequal
axes is a possible figure of equilibrium of a revolving self-

attracting liquid. For a homogeneous ellipsoid

if We put a2_ 6,2 2_ C
2_ 0A _ -^ //2S

C2 C2
>

the components of attraction on a particle of unit mass

at the surface are given by the expressions
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C l uzdu
/ ;

-
o .> 3 ,

-
... ov i

= Ax, suppose,
Jo (r+e

2 2

)t(i+/
2 2

)2

r l

Jo

The revolving unit particle has component accelerations

o>
2# and u,

2
y in the inward directions of the axes of x and y,

and the forces in these directions are - -r- + Ax and

i dp
'

--jj-
+ By, hence the equations of pressure

i dp 2
r- + Ax = o>

2
#,

p ax

i dp-

=

If the surface of the ellipsoid is one of constant pressure,

its equation must be the same as that obtained by equating

p to a constant ;
hence

therefore eliminating o>
2
,

or, rejecting the factor e
z

e'
2

,
the vanishing of which

belongs to the previous case,

^(i-it'Hi-aW), ,
v

i-~
| du = o . . . . (a)/2
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This equation gives the relation between the two (so-

called) excentricities e, e', of the principal meridians of the

sought ellipsoid. All ellipsoids satisfying this equation are

called Jacobi's ellipsoids, because Jacobi first pointed out

the fact that a rotating liquid could assume such forms.

When e is assigned, e' must be found by trial from this

equation; and the process may be assisted by a graphic

method. Thus, using x instead of u, and taking rectangular

axes Ox, Oy, construct the curve whose equation is

This can easily be done by assigning for x values

o, -i, -2, -3, ...-9, i.

Now if we denote the other factor under the integral

sign by Z, i. e., if

. -
=

we must have

o, ..... (5)f
Jo

so that as the curve
(/3) is, within the limits o and i of x,

entirely above the axis of #, the curve whose ordinate is YZ
must be partly above and partly below the axis, i. e., #must
be negative after a certain value of x is reached.

For example, if e = -56 and we trace the curve (/3), the

shape suggests that Z should become negative somewhere

in the neighbourhood of x = -5 ;
and this would give

i -|ee'
= o, .'. e' = 3-57. By tracing the curve (8) on

a conveniently large scale, we find with a planimeter that

for e' = 3-57 the positive part of the area is slightly in

excess
;
while if we try e' = 4, the negative part prevails.

Trial gives e' = 3-72, nearly.
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Since the value of Z must change sign for some value of

x between o and I, the expression I ee'x must vanish

between these limits
;
hence ee must be > I

j
and if e = o,

e' must be co .

If the whole volume of the liquid is equal to that of a

sphere of radius a, we must have abc = a3
,
so that

a = a a

c =
(i+)* (i

Now when e = o, e
r = co

,
so that a = c = o and # = co

;

thus the ellipsoid becomes an infinitely thin circular wire of

infinite length ;
and the corresponding value of o> is zero.

The following corresponding values of e and <?' and the

values of x at which the curve (y) crosses the axis of x are

calculated from results given by Sir George Darwin for

Jacobi's ellipsoids in a paper published in the Proceedings
of the Royal Society (Nov. 25, 1886):

e
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being then one of revolution, at which point the ellipsoids

might pursue either Maclatirin figures (of revolution) or

Jacobi figures. In the latter case the values of e and e'

would simply be interchanged; that is, the series of

ellipsoids would be the same with the axes a and I inter-

changing values.

It is not evident that when e' = co the crossing point
of the curve (y) comes in to the origin ;

but it can be

proved that if in (a) we write p for e^e'
2 and m for e'

2
,
the

equation
r
/Jo

7
"* =

o

when m is infinitely large, requires p to be an infinitely

great number of the order log m ; so that, though p = co

(and therefore the x of the crossing point is zero), the ratio

p : m (which = e2
) is zero. If we retain the product e*e 2 in

the denominator of (a), the result will bs the same viz., that,

when m is infinitely large, no finite value ofp can satisfy

the equation

/Jo = O.

(i

In order to show, however, that an ellipsoid is a possible

figure of the fluid, we must prove that the corresponding
value of co

2
is positive ;

and this is the case when revolu-

tion is assumed to take place round the least of the principal

axes, but not when it is assumed to take place round any
of the others. Thus, when revolution takes place round

the axis c, we have

<? ^yM y
1

n*(i-u*)
<*> = A C -, T -

I ,di(,
a* c3 (i + 6*)Jo (i + *V)i (

i +^)i
which is essentially positive.

But if we assume rotation about the axis 5, the com-
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ponents of acceleration of a particle will be o>
2
#, o, &>

2
2, and

the dynamical equations will be

i dp _ i dp _
--f- + Ax = o>

2
#, --T- + By = o,

-
-7- + Cz = co

2
*,

pay pdz

which lead to

2 A fi
6* C K b*

0) A _D = C -B~a'

Now

which is negative, .*. o> is impossible.
In the same way, rotation about the axis a is impossible.

EXAMPLES.

1. Show from equation (a) that a circular cylinder is a possible
form of equilibrium.

2. Show that an elliptic cylinder rotating about its axis is

a possible figure of equilibrium.

(See Statics, vol. ii, Art. 330. At a surface point

X= - 7= -

The proof then proceeds as above.)

3. Prove that an ellipsoidal figure of a rotating self-attracting

liquid is not possible unless the axis of rotation coincides with

one of the principal axes.

(If the direction-cosines of the axis are I, m, n, and is the

perpendicular from a point x, y, z on the axis, the direction-

cosines of this perpendicular being A, jx, v, we have
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If co is th

. AC;

' ---

If co is the angular velocity, the acceleration parallel to x is

. AC;

3 Imy lnz\,

- T- = By+ u>
z
{ lmx+ (n?+ P)y mnz};

:--~- =
p y P $%
- - = z :--~- &c.

Then- dp =

and as the equation of the free surface is obtained by putting
x2

y
z z2

dp = o, and the free surface is + -^ + -5
i =o, there must

CL C

be no terms xy, yz, zx; that is, two of the quantities I, m, n
must vanish.)



CHAPTER IV

MOLECULAR FORCES AND CAPILLARITY

70. Molecular Forces. Common observations on the

resistance which solid bodies oppose to any effort to elongate

or twist them have compelled physicists to assume the

existence of forces between the molecules of such bodies

other than the ordinary action of Newtonian gravitation.

Thus, let us fix our attention on any one molecule, m,

inside a body. It is surrounded by a group of molecules,

and if we take all those molecules which lie within a sphere

of extremely small radius whose centre is m, there is

a special action exerted on m by each molecule within this

sphere, those molecules nearest to m exerting a more

powerful action than those near the surface of the sphere.

This holds, whatever be the sizes, the shapes, or the

distances between the molecules.

Beyond a certain distance, e, from m these special actions

are assumed to be insensible
;
this length e is the radius of

the aforesaiS sphere, called the sphere of molecular activity.

Now if dm and dm' are two elements of mass, the linear

dimensions of each being infinitely smaller than the length of

any linefrom the surface of the one to that of the other, it is

assumed that these elements exert on each other a force

whose magnitude is
f(r).dmdm't (i)

where r is the distance between the elements i.e., the

length of a line drawn from any point on one to any point

on the other and this force acts in the line joining them.
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If the elements dm and dm' were homogeneous spheres,

such a law of force as (i) could be assumed to hold, though
their dimensions were even large compared with the

distance between their centres, which distance would be

the value of r in (i) ; but if they are not spherical, such

a law could not be admitted (because it would be utterly
devoid of meaning) if the elements are so close together
that their linear dimensions are of the same order of mag-
nitude as lines drawn from points on the surface of one

to points on the surface of the other.

Now there are several suppositions that may be made

with regard to the arrangement of matter in a body, such

as the following :

j. The matter is absolutely continuous within the

volume of the body, there being no vacant spaces, however

small.

2, The matter consists of molecules (in the chemical

sense) which are packed very closely together, their linear

dimensions being great compared with the distances be-

tween their surfaces.

3. The matter consists of molecules (in the chemical

sense) which are very distant from each other, so that the

space surrounding any molecule is comparatively void of

matter.

If the third supposition is made, it is clear that the

application ofmathematical calculation becomes exceedingly

difficult, if not impossible. It is true that Lame in his

lasticite des Corps Solides objects strongly to the method

applied by Navier and others in the theory of Elasticity,

because, in applying the Integral Calculus to the deter-

mination of the action produced on a molecule of a body by
the neighbouring molecules, they thus assume the con-

tinuity of matter, an assumption which Lame describes as

a c

hypothe'se absurde et completement inadmissible '. His
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own method is a molecular one in which the existence

of vacant spaces between the molecules is admitted ;
and

the process of integration round a molecule is replaced by a

process of mere algebraic summation which, no doubt, is

a much safer process, and should be adopted if it could be

legitimately applied. It is not, however, satisfactorily

applied by Lame, since he has no hesitation in assuming a

molecule to be wherever he wants one, and this assumption
is not essentially different from integration.

If the second of the above suppositions is adopted, the

matter surrounding a molecule, although not continuously

filling space with mathematical strictness, may be assumed

to be practically continuous, and the method of integration

round a point becomes permissible as a very close approxi-
mation to the truth. The shapes of the molecules may
possibly be such as to allow of their filling space much
more effectively than if they were spheres.

But in adopting this supposition when calculating the

forces produced on any molecule, m, by those within the

range, e, of molecular force, it will be necessary to imagine
m and any very close neighbour, m', as both divided into

infinitely smaller elements, of which dm is the type for the

first and dm' that for the second, each of these elements

being now infinitely smaller than the distance between

them, and then assuming the force between them to be

given by the expression (i). Thus for a pair of molecules

so close that it is logically impossible to define anything
that could be called the ' distance between them

'

we

must imagine a special process of integration performed
before we proceed to calculate the action of the more

distant molecules within the sphere of molecular activity.

Such a process it is, of course, quite impossible to follow

in detail because the form of f(r) and the shapes of mole-

cules are unknown
; nevertheless, on account of the
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symmetry of arrangement of molecules round all points in

a homogeneous body, it is possible to represent the result of

such a process by a mathematical expression and to base

further calculation thereon.

Various forms for f(r) have been suggested, such as

jp
A and e~ ar

: these are, of course, merely conjectural ;

but it is conceivable that the observation of certain pheno-
mena measurable in the total might afford a clue to, if not

a necessary demonstration of, the law of this assumed

molecular force.

If, then, we admit the second supposition, with the

above notions, the first of our three suppositions becomes

unnecessary, and Lame's objection to the integration

method loses its force.

In the study of the forms assumed by the surfaces of

liquids in contact with each other and with solid bodies, it

is with these molecular forces that we have chiefly to deal.

Indeed, the curious forms of such surfaces become explicable

on no other hypothesis than that of the existence of very
intense molecular forces having an extremely small range
of action.

Supposing that the force between two elements of matter

is given by the expression (i), its component along any
fixed line (axis of a?)

is

"""

f(r) d^ dm\

if the co-ordinates of dm and dm' are x and a?', so that the

total component force acting on dm has for expression

dm f(r] dm',

if the integration is performed with reference to r, the

limits of r being o and e. Now, since the forces are zero
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beyond the distance e, no error is introduced by assuming
1

r to extend to oo
,
so that such an expression is often

written in the form
rtf-x

i

Jo r
'-f(r}dm'.

Some notion of the magnitude of e may be obtained

from experiments such as the following. Quincke covered

surfaces of glass with extremely thin layel's of different

bodies, and on these layers then deposited drops of mercury
and other liquids. Now it will be seen presently that

there is a definite angle between the tangent plane to the

free surface of a liquid and the tangent plane to a solid

with which it is in contact ;
this angle is constant all

round the curve in which the two surfaces intersect
;
and it

matters not whether the solid is a millimetre or TOO milli-

metres thick, the value of the angle does not alter. But if

the solid is, say, the millionth of a millimetre thick, the

angle alters. Covering the surface of glass with a layer of

sulphide of silver, Quincke found that there was no change
in the angle between the surface of the drop of mercury and

the plate until the thickness of the silver layer was reduced

to mm. ; and when the fflass was coated with a layer
io6

of iodide of silver, no change wTas observed until the

thickness of the layer was reduced to^ mm., or, say, one-
io6

tenth of the wave length of yellow light. These thick-

nesses, then, indicate the order of magnitude of the

distances at which molecular atti'actions are sensible.

Granting the existence of these molecular forces, it

follows very obviously that within a layer of a fluid just at

the surface, and of the extremely small thickness e, there is

a special intensity of pressure which increases in magnitude
as we travel from any point P (Fig. 27) along the normal
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Pb to the surface, AS, of the fluid, towards the interior of

the fluid.

For, consider a molecule of the fluid at P
;

round P
as centre describe the sphere of molecular activity ;

of this

only a hemisphere, ale, exists within the fluid, so that

the molecular forces acting on the particle P come from

the molecules of this hemisphere. Now it is obvious that

the symmetrical grouping- of these molecules about the line

Pb results in their producing- a resultant force on P inwards

along- Pb.

Describe a surface, A'B', parallel to AB at the distance

e, or, Pb, from AB.
Consider now the mole-

cular actions on a mole-

cule Q, anywhere within

B
- this layer. Describe round

Q the sphere, ambnc, of

Fig. 27. molecular activity. Of
this sphere the portion

ape does not contain any molecules of the fluid L, so that

the action at Q is due to the portion ambnc, and the result-

ant force will obviously be directed along the normal Qb
and will be less than the force at P, since there is some

component of force in the sense Qjo. Finally, consider

a molecule at any point R on the inner surface A'B\ and

we see that since this molecule is completely surrounded by

attracting molecules, there is no resultant force whatever.

Now ifF is the force exerted at Q per unit mass, and (In

denotes an element of length of the normal Qb at Q
measured towards 6, while or denotes the pressure intensity
at Q due to the forces under consideration, we have

w being the density of the fluid.
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Since as we travel along- the normal Pb from P towards

b, or from Q towards 6, the force F constantly preserves the

sense Pb, although with diminishing value, we see that

dm
\s constantly positive, that is, OT continuously increases

an

inwards until the surface A'B' is reached, when F vanishes

(I Iff

and
-y-

== o, i.e.,
w becomes constant when we pass inwards

through A'B'.

Hence the intensity of pressure due to molecular forces

is constant throughout the interior of the fluid below A'B',

but it varies within the layer between AB and A'B'.

It is a matter of doubt with physicists whether we are or

are not entitled to assume in the case of a liquid that the

density within the layer contained between the surfaces AB
and A'B' is constant and equal to the density within the

main body of the liquid. M. Mathieu, following Poisson,

denies this constancy (Theorie de la Capillarite), but

arrives, by the method of Virtual Work, at results of the

same form as those obtained on the supposition of constant

density.

Whatever may be the nature of the molecular forces,

at any point close to the surface of separation of a liquid

from another medium, we can represent the magnitude of

the resultant molecular force of the liquid on a molecule

m by the expression m t j&Y^)

where co is the area of that part of the surface of the sphere

of molecular activity which exists round m within the

liquid ; and this force vanishes when to = 4 Tie
2

. Or we

might represent this resultant force (along the normal

to the surface) by m.F(z)

where z is the distance of the molecule m from the surface
;

I 2
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and the force = o when z = e. Of course the form of the

function F is unknown, but it is the same at all points

which are at the same normal distance from the surface,

and this fact is sufficient for the purpose of calcula-

tion.

71. Calculation of Molecular Pressure. Let AB (Fig-.

28) be the bounding surface of a liquid, P any point on the

surface, TM the tangent plane at P, A'J? the surface

parallel to AB within the liquid at the depth e
;
take an

infinitely small element, o-, of area at P, and on the con-

tour of this area describe a right cylinder, PR, extend-

ing indefinitely into the

liquid. Consider now
the action of molecular

forces only on the liquid

contained within this

cylinder PR.
If or is the intensity

of molecular pressure at

R, and the cylinder is

terminated at R by a normal section, w <r is the pressure

exerted on this section ; then, for the equilibrium of the

fluid in the cylinder we see that raa- must be equal to

the integral of the molecular attraction exerted by the

whole mass of the fluid on the portion of fluid contained in

this slender canal. Now below the point P
f

there is no

change in the molecular pressure, and there is no molecular

force exerted on the elements of liquid ;
hence we might

have taken the slender canal as reaching- only to P'.

Let Q be any point in the canal between P and P'

and let dm be an element of mass at Q. We shall calculate

the attraction produced by the whole body of liquid below

AB in the direction QR, which we know to be the direction

of the resultant molecular attraction.
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Now the total action on the canal PPt

(or PR) can be

calculated on the supposition that the liquid extends up to

the tangent plane TM, and then deducting the attraction,

in the sense QR, which is due to the meniscus, ABMT,
of liquid thus added. The attraction of this added meniscus

is obviously in the sense QP, so that this must be added to

the attraction of the liquid terminated by TM. Let the

attraction of this fictitiously completed liquid on the canal

PP' be denoted by Kv where K is obviously the same at

all points on the bounding surface AB.

Let the plane of the figure be a normal section of the

surface AB making the angle with the principal section

at P whose radius of curvature is Rv and let the radius of

curvature of the other principal section at P be R
2

.

Let any point, N, be taken on the tangent TM let

NP = x, and on the element of area xdxdO at ^construct

the small cylinder NL terminated by AB.
If w is the mass per unit volume of the liquid, the mass

of this cylinder is NL . wxdxdd
;

and if its distance, NQ,
from Q is r, the molecular force which it produces on

dm at, Q is
wdmxdxdOf(r).NL (i)

Now if p is the radius of curvature of the section AB,
we have

x2

NL =
, nearly ;

2p

and if PQ =
z, the component of the force (i) along QP is

obtained by multiplying it by
-

; hence this component is

7
zaPdasdd

,
>

,wdm~ f(f). . . (2)
* / p

Integrate this with respect to 0, keeping x and r con-

stant.
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Now (Salmon's Geometry of Three Dimensions, chap, xi)

we know that I COS2 Q gjn2 Q~ =
' z? '

P MI -K
z

and the integration in 6 from o to ZTT makes (2) become

... (3)

But since r2 = #2 + 22
,
#d# = rdr, and (3) becomes

^ (4)

(5)

then since f (/*) rapidly diminishes with an increase of r,

$ (r) is a positive quantity.

The resultant action of the meniscus on dm is obtained

by integrating (4) from r z to r = e, or to r oo .

Hence the resultant is

z

. . . (6)

Now $ (
oo

)
= o, and

f-i*d<t>(r)=-r
z

<l> (;) + 2 /V
(r) rfr,

.. . r-r2
d<j>(r)= z2 <t>(z)+ if r<b(r)dr,

therefore (6) becomes

/I i \ /*

irw(-p- +^-)zdm r$(r)dr. ... (7)
""l -"2 J 2

Again, let r $ (r)dr = -d^(r), ..... (8)

where ^ (r) is obviously positive ; therefore, since -fy (
oo

)

is evidently zero, (7) becomes

TTW-- +-z^(z) .dm..... (9)
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Now put dm at Q equal to w<rdz, and (9) becomes

. . . . (10)

and the integral of this from z o to z PP', or = oo
,

is the total action of the meniscus on the canal PR.
/<00

Denoting byH the integral /
z ty (z) dz, this action is

Jo

and hence equating vr a- to the sum of (u) and the force

Ka, we have

which is the form obtained by Laplace for the molecular

pressure-intensity at all points in the liquid below P
r
. (See

the Mecanigue Celeste, Supplement to Book X.)
We have supposed the surface of the liquid at P to

be concave towards the liquid. If it is convex,

+ ..... (13)

Hence we have the following obvious consequences.

1. If a liquid is acted upon by molecular forces only

(no external forces) the quantity -=- + -=- must be constant
! -"-2

at all points of its bounding surface ; for, otherwise we

should obtain conflicting values for the intensity of mole-

cular pressure at one and the same point in the body of the

liquid.

2. The molecular pressure at a point strictly on its

bounding surface is zero
;

for on the portion of liquid

contained within the canal PP' and included between P



120 Hydrostatics VOL. n

and a point infinitely close to P the resultant force exerted

by the fluid is infinitely small (since the mass contained is

infinitely small).

3. The value of the intensity of molecular pressure at

a point within the body of a liquid is not a constant

related solely to its substance
;

it depends on the cur-

vature of its bounding- surface. If this surface is plane, the

intensity is K.

4. If (owing-, as we shall see, to the action of external

forces) it happens that some parts of the bounding surface

are plane, others are curved and have their concave sides

turned towards the liquid, and others again have their

convex sides towards the liquid, the intensity of molecular

pressure just below the second kind of points is greater and

below the third less than it is at the plane portions.

(We shall presently see how this is verified in the rise or

fall of liquid in capillary tubes when gravity is the ex-

ternal force.)

The constant K can be easily expressed in terms of the

function \f/
thus : let CD, Fig. 39, represent the plane

surface of a liquid, the liquid

p lying below CD
; at any point

A on the surface take an in-

finitely small element of area,

<T, and describe on it a normal

Fig. 39. cylinder or canal, AMR, ex-

tending into the liquid inde-

finitely ;
then K<r is equal to the whole force produced on

the liquid within this canal by the whole body of liquid
below CD.

Take any point Q on CD; let AQ = x, and take the

circular strip itixdx round A\ along this strip describe

normal canals (represented by QP) extending indefinitely
into the liquid ; take any point, P, in one of these canals

;
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let PQ=y\ take any point, M, in the canal at A, and let

AM = z. Then if s = area of normal section of the canal

QP, the element of mass at P is swdy, and its action on a

mass m at 3/is mswdyf(r\ where r = MP the component
I/

~

of this along- MR is m$wdyf(r}.- ,
or mswf(r)dr',

therefore taking the points P at a constant distance y
from CD all round the strip zirxdo;, we see that their

action on m is
1-nwmxdx ,f(r)dr.

Integrating- this from r = MQ to r = oo
,
we have

(putting- MQ = )\)

l-nwmxdsc .
</> (T-J).

Now we must integrate with respect to x from o to oo
,

and observe that xdx = r
l
dr

lt
so that the limits of r

l
are

MA (or z) and oc . Thus we get

a TT w m
r
I r

t (f) (rx) drvJ z

i.e., 2TTwm\l/ (z),

which is therefore the action of the whole mass of liquid on

the particle at M.

Also m wvdz
;
therefore the action on the canal AR is

K = 2,-niv
2

r
I ^ (z) dz.
J o

This constant K is called by Lord Rayleigh the intrinsic

pressure of the liquid, Philosophical Magazine, October,

1890.

72. Pressure on Immersed Area. Suppose a vessel to

contain a heavy homogeneous liquid of specific weight w,

and let P be a point in the liquid at a depth z below
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the plane portion of the free surface. Then, as has been

shown in the earlier portion of this work, the intensity
of pressure at P due to gravitation is wz

; and, as has just
been proved, the intensity of pressure at P due to molecular

forces is
,
the intrinsic pressure. Hence the total inten-

sity of pressure is .

Now it is known that K is enormously great : Young
estimated its value for water at 23000 atmospheres, while

Lord Rayleigh (Phil. May., Dec., 1890) mentions, with

approval, a hypothesis of Dupre which leads to the value

25000 atmospheres for water. The hypothesis is that the

value of K is deducible from the dynamical equivalent
of the latent heat of water ; that evaporation may be

regarded as a process in which the cohesive forces of the

liquid are overcome. Now the heat rendered latent in the

evaporation of one gramme of water = 600 gramme-degrees

(about), or 6oox42Xio6
ergs, and i atmosphere = io6

dynes per square centimetre
;
hence K = 25000 atmo-

spheres (about).

If this is so, the question must naturally present itself

to the student : what becomes of our ordinary expressions

for the liquid pressure exerted on one side of an immersed

plane area? Instead of being merely Azw, must it not be

very vastly greater in fact A (zw + K)? And moreover

it should always act practically at the centre of gravity
of the area.

We shall see, however, by considering closely the nature

of molecular forces, that this large pressure does not

influence in any way the value of the pressure exerted

by a liquid on the surface of an immersed body. Let

us revert to Fig. 28 and consider the result arrived at

in Art. 71. This result may be stated thus : at all points

on the surface which terminates a liquid whether this be
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a free surface or a surface of contact with any foreign body
there is a resultant force intensity due to molecular

actions
;
this diminishes rapidly as we travel inwards along

the normal to the surface, and vanishes after a certain

depth has been reached.

If we consider a slender normal canal of any length, PR
(Fig. 28) at the boundary of a liquid, this canal will

experience from the surrounding liquid itself'a resultant force

acting inwards along its axis PR
;
this force is due to

molecular actions and the imperfect surrounding of points

near the liquid boundary (as explained in Art. 71), and its

effects are felt along only a very small length PP
f

(or e) of

the canal. If the boundary of the liquid at / is plane, and

the canal has a cross-section o-, this resultant inward mole-

cular force on the canal is Kir.

Now let Fig. 30 represent a vertical plane, AB, immersed

in a liquid having a portion, at

least, of its surface, LM, horizontal,

and let us consider the pressure

exerted per unit area on this plane ?

AB at P at the left-hand side. At o IP
pn

P take an infinitesimal element of
j^

area, <r, and on it describe a hori-
Fig. 30.

zontal canal of any length PQ,
closed by a vertical area at Q. Consider the equilibrium
of the liquid in this canal.

Now since AB is a foreign body, there is a termination

to the liquid along the surface AB, and hence there will be

resultant molecular force exerted by the liquid at points on

and very near AB. Hence if along the canal PQ we take

the length PP'= e, the liquid in PQ experiences a result-

ant molecular force from the surrounding liquid, of magni-
tude K . a-, this force acting from P towards Q and being
confined to the length PP'. In addition, the solid plane
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AB exerts a certain attraction, a . <r, on the liquid in the

canal, together with a certain pressure, q . <r, on it. Finally,

at Q, the canal experiences the pressure (wz + K] <r from the

liquid. Hence we have

(wz + K) (r = K<r + (q a) <r,

.-. q a = wz,

which shows that K disappears. Now the action of the

canal on the plane at P is exactly (q a) cr in the sense

QP, and this action is that which is described in ordinary

language as the pressure on the plane at P.

If the immersed plane is inclined, as at CD, the resultant

action of the liquid on the plane at P on the element of

surface o- is seen in the same way to be wzv, by considering
the equilibrium of a canal PQ normal to the plane, PQ
being equal to e, the radius of molecular activity.

Laplace is somewhat obscure on the subject of the action

between a liquid and an immersed plane (see Supplement
to Book X, Mecanique Celeste, p. 41). Thus he says: the

action experienced by the liquid in the canal PQ is equal, i, to

the action of the fluid on this canal, and this action is equal to

K; 2, to the action of the plane on the canal
; 'but this action

is destroyed by the attraction of the fluid on the plane, and
there cannot result from it in the plane any tendency to move

;

for, in considering only reciprocal attractions, the fluid and the

plane would be at rest, action being equal and opposite to

reaction
;
these attractions can produce only an adherence of the

plane to the fluid, and we can here make abstraction of them.'

He is considering the action experienced by the canal at tlie

extremity P where it touches the plane. But, in considering
the forces exerted on the fluid by the plane, it does not seem
allowable to balance any force exerted by the plane on the canal

by an opposite force produced on the plane by the fluid.

According to the view which we have taken, the action which

is commonly called the fluid pressure on the plane is, in reality,

a difference action the difference between a pressure proper
and a molecular attraction between the fluid and the plane.
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73. Liquid in contact with a Solid. Admitting the

existence of molecular forces operative within infinitesimal

distances, the surface of a liquid near its place of contact

with a solid body must, in general, be curved, even

when gravity is the only external force acting throughout
the mass of the liquid.

For, let PAS, Fig. 31, represent the surface of a liquid
in contact at P with the surface PQ of a solid body.

Consider the forces acting on a molecule at P. We have

gravity in the vertical direction Pw
;
also the molecular

forces exerted by the solid evidently produce a resultant

along Pn, the normal to the solid at P
;
and the molecular

forces of the fluid molecules ad-

jacent to P produce a resultant,

Pf, acting somewhere between

the tangent plane to the liquid

surface at P and the surface of

the solid.

Now in all cases the resultant

force, due to all causes, exerted

on a molecule of a perfect fluid

at its free surface must be normal

to the surface. Hence the resultant of the forces Pn, Pw,
and Pf will determine the normal to the fluid surface

at P; and, in general, this resultant will not act along

Pw, so that the surface of the fluid at P is not, in general,

horizontal.

The form of the surface remote from the solid body is, of

course, that of a horizontal plane ; because at such points as

A and B there are only two forces acting, viz., gravity and

the molecular attraction, the latter of which is normal to

the surface, and if the resultant of it and gravity is also

normal, the force of gravity must act in the normal, i. e.,

the surface must be horizontal.
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74. Application of Virtual Work. When, under the

action of any forces whatever, a system of particles assumes

a configuration of equilibrium, this configuration is sig-

nalized by the fact that if it receives, or is imagined to

receive, any small disturbance whatever, the total amount

of work done by all the forces acting on the various

particles is zero.

We shall now apply this principle to the equilibrium

of a liquid contained within an envelope ACB (Fig. 32), the

surface of the liquid being

APB, and the forces acting

being
i. molecular forces be-

tween particle and particle

of the liquid,

2. molecular forces be-

tween the envelope and

the liquid,

3. Any assigned system
of external force.

Fig. 32.
Let m, m' denote inde-

finitely small elements of

mass of the liquid at a distance r, and assume the force

between them to be

mm'f(r)........ (i)

Let p. denote an element of mass of the envelope, and m
any element of mass of the liquid very close to p., and
assume the force between m and to be

(2)

The value of r in (i) must be < e, otherwise the force

between the elements of mass would be zero
;
and r in (2)

must be < e', the radius of molecular activity for the solid

and the fluid.
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The virtual work of the force (i) is mmff(r) dr. Now
if, as in Art. 69, we put

/

/.'

the total work done by the molecular forces for any system
of small displacements is

82tfm'0(r)+S2w/Ax/>(r), . ... (3)

the summations extending to all pairs of elements between

which the molecular force is exerted, and one-half of the

result of the summation relating- to pairs of liquid elements

being taken, because this summation will bring in each

term twice.

If F is the potential, per unit mass, at any point of the

liquid where the element of mass dm is taken, the virtual

work of the external forces is

f

I 7dm........ (4)

Hence the equation of virtual work for any system of

displacements of the liquid elements is

8
[/ 7dm + 12 mm' $ (r) + 2m^ (r)]

= o. . . (5)

It will be necessary, therefore, to calculate the functions

^mmf $ (r) and Sm^ty (/).

Since if we take any one element m of the liquid and

perform the summation 2 m'
(r) round it, the process

is confined within the sphere of radius e having m for

centre, we may obviously put

2 m'4>(r) = L, ...... (6)

L being a constant throughout the whole of the fluid

contained in the vessel and bounded not by the surface
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APB but by the parallel surface A'B' (see Fig. 28) which

is at the constant distance e below APB, and also by
a surface inside the fluid parallel to that of the vessel

at a distance e from the surface of the vessel ; for each

element m within this space is completely surrounded by a

liquid sphere of radius e, while the liquid elements between

the surfaces AB and A'B', and between the vessel and the

second surface named are not completely surrounded. Or,

if we please, we may imagine the summation L to extend

up to the bounding surface AB and to that of the vessel,

and subtract a summation relating to a fictitious layer,

A"B", above AB of constant thickness e, included between

AB and A"B" (Fig. 33), and a fictitious layer outside the

surface of contact with the vessel, also of thickness e.

Hence if M is the whole mass of the liquid, the summa-
tion can be expressed in the form

M . L vmm'<$>(r\ (7)

in which <r denotes a summation confined within the super-

ficial layer, which is everywhere of the constant thickness

e, and which embraces the free surface and the surface of

contact of the liquid with the vessel.

As regards the summation ^,m^(r), it is obviously

confined between two surfaces each of which is parallel

to the surface, ACB, one inside the -liquid and the other

inside the solid envelope, the distance between these

surfaces being 2 e'.

Hence equation (5) becomes

b[f Vdm -\<t mm' <^(r) + 'S.m^ (r)]
= o. . (8)

Now we can easily see that the summation o- is propor-

tional to the sum of the areas of the surface AB and that

of contact with the vessel
; for, if we draw any surface,

XY, Fig. 33, parallel to AB and A"B" within the fictitious

surface layer above indicated, and at any point Q on XY
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take the element dm of mass, describing round Q a sphere
of radius e, the summation dm . a- mf $ (r) will extend to the

volume of the sphere included between AB and A"B"
;
and

if z is the normal distance, Qp, of Q from AB, the summa-
tion or mf

<f> (r) can obviously be written w IT
(z) ;

also if (IS

is a small element of

area of XY at Q, we
can take

dm = wdSdz,

where w is the mass w a ,

i />

per unit volume of the

fluid
; hence we have for this element of the fluid the term

io*dS . n (z) dz.

Now we can make a summation from p to q along a

cylinder whose cross-section is everywhere dS if the radii

of curvature of the surfaces AB, XY, A"B" are infinitely

greater than e. The result of this summation is

\

e

U
Jo

the definite integral being the same at all points,/?, of AB.

If the definite integral is denoted by A, and we then sum
the results all over AB, we have Aw S, where S is the area

of AB ; and similarly for the part of <r which extends over

the surface of the vessel.

In the same way it is obvious that the term Sm^ (r) is

proportional to the product of the densities of the envelope
and the liquid and to the area, SI, of their surface of contact.

We may therefore write (5) in the form

(9)

where k and A are constants which depend on the densities
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of the liquid and solid and on the laws of intermolecular

action.

A result of the same form will obviously hold if the

density of the liquid varies both at the surface AB and at

the surface of contact with the envelope, provided that

the thickness of the stratum of variable density near AB
is everywhere the same, and the same at all points along
each surface, XY, parallel to AB

;
and similarly for the

stratum near the envelope.

Hence, then, the work done by the molecular forces for

any imagined displacement is entirely superficial, and its

two parts are proportional to the small increments of the

area of the surface AB of -the liquid and the surface of

contact with the envelope.

We shall now calculate 8 S and 8 12.

In Fig. 32 the new surface, A'L'l'B'N', of the fluid

(resulting from the imagined small disturbance of the fluid)

can be considered as consisting of two parts : firstly, the

portion bounded by the curve cibr ... which is formed

by the feet of the normals to this new surface or to the old

one (since they differ infinitely little in position) drawn at

all the points A, !/,!,, ... of the contour, ALIBN
;
and

secondly, the small strip included between the contour

A'L'B'N' and the curve cibr ... ; so that bS is the area of

this strip plus the excess of the first of these portions over

the area of the old surface of the fluid. Also 8 1 is repre-

sented in the figure by the surface BILRI'B'N'SB minus

the surface ARL'A'SNA, each of these lying on the interior

of the vessel.

A simple geometrical investigation of the first part

of bS is as follows: at any point P (Fig. 32) on the old

surface of the fluid draw the two principal normal sections,

PQ, PJ (Fig. 34) of the surface, and the normal, PCl C2) to

the surface at P
;
take the element of area, PQFJ, deter-
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mined by the elements PJ= ds
l
and PQ = ds

2 ;
this is an

infinitesimal rectangle since ds
l
and ds

2 are at right angles.
Let C

1
and C2 be the centres of curvature

of the principal sections, and

PCj = flv PC2
= R

2 ,

the radii of curvature of these sections.

Produce the normals to the surface at the

points PQFJ to meet the new surface of

the fluid in P'Q'F'J', and denote PPf

by 8 .

Then we determine the small rectangular
area P'Q'F'J' on the new surface, and the

excess of this above PQFJ when integrated

over the whole of the old surface is the first

part of bS. The figure assumes that the

concave side of the surface is turned towards

the liquid.

Now

Fig. 34-

therefore tfdS - area, PQFJ, and dS+bdS = area P'Q'F'J',

we have

Hence the first part of bS is

To find the second part of bS, i.e., the sum of all such

elements as il'B'b, let d(o be the element of area II'B'B of

the interior of the vessel, and let be the angle between

the tangent plane to the surface* of the liquid at B
and the tangent plane to the surface of the vessel at B,

K a
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i. e., the angle between the plane il'B'b and the plane

II'&B ; then

area il'B'b cos 6 . dca..... (n)

Hence the second part of 8S is

fcosO . do> ...... (ia)

taken all round the curve of contact of the fluid and the

vessel.

Then, we have

8=
(Jr + ^)5d+ cos0do>;. . (13)

and (9) becomes

+ - {(zXkk cos 6)du) = o, (14)

since 8 -Q is obviously the integral of all such elements as

ITKB, i.e.,/^6).

Now observe, however, that (14) is the equation of

Virtual Work irrespective of the condition that the volume

of the fluid remains the same after displacement as before.

The excess of the new volume over the old is obviously the

sum of such prismatic elements of volume as that contained

between the areas PQFJ and P'Q'F'J' (Fig. 34) whose

expression is bndS, added to the sum all round the curve

ARLIBNA of such wedge elements as libB'BF. The volume

of this wedge is ^ 8 n . cos 6 d a>, if 8 n denotes li, the normal

distance between the new and the old surface of the fluid at

any contour point, / ;
and hence the sum of the wedges

will add nothing to the contour integral

/(iX kk cosd)d<t>

in (14), since each element of this sum is an infinitesimal

compared with do>.
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Hence, the whole volume of fluid being constant,

o....... (15)

We know from the principles of the Lagrangian method

(Statics, vol. ii, chap, xv) that the condition of unchanged
volume combined with the principle of Virtual Work
is expressed by multiplying the left-hand side of (15) by an

arbitrary constant, h, and adding it to the left-hand side of

(14). Hence, then, the complete equation is

+ -
(3\ k &co$6)da> = o. (16)

We may finally simplify the iermbfFdm, It means

simply the variation of the potential of the external forces

due to changed configuration of the liquid ; and this varia-

tion is due merely to the two wedges BILRI'B'N'SB and

ARL'A'SNA, being positive for one and negative for the

other. The type of the variation is the variation for the

element of mass contained in the small prism PP', Fig. 32,

that is w 5 ndS
;

so that if V is the potential of the external

forces (per unit mass) at any point P on the surface of the

liquid, the work of these forces for any small change of

configuration is wfVlndS, ...... (17)

and therefore (16) finally becomes

f

+ -
(2 A k /frcos 6) flta = o. (18)

The first integral is one extended over the surface of the
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liquid, and the second is one relating- only to its contour,

i. e., its bounding- curve ALIB8NA.

Now, owing to the perfectly arbitrary displacement
of every point on the surface, each element of the first

integral must vanish, and hence at every point of the

surface we have

which is the equation of the surface.

Every element, also, of the contour integral must vanish,

and hence at all points of contact of the surface of the

liquid with the vessel

2 A. k
COS 6 = 7 , (20)

which shows that the liquid surface is inclined, at the same

angle to the surface of the vessel all round. The angle 6

is called the angle of contact of the liquid and the solid,

which we shall definitely suppose to be the angle contained

between the normal to the liquid surface drawn into the

substance of the liquid and the normal to the solid drawn

into the substance of the solid.

If \>/, the angle of contact is imaginary, and equili-

brium of the liquid in the vessel is impossible.

If the convex side of the surface is turned towards

the liquid, we shall have
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and (19) is replaced by

If the density of the liquid is not constant (owing to the

variable molecular pressure) in the layers near the surface,

it will be the same at all points on a surface parallel to AB
(Fig. 33) at a distance < e from AB

;
and hence it is

obvious that the virtual work of the molecular forces

for any small displacement will still be proportional to the

variation, bS, of area of the surface, but the value of

the constant, k, will not be the same as on the supposition

of constant density. The equation of Virtual Work will,

then, be still of the form (9), and the results (19) and (20)

will still hold.

If above the surface AB there is another fluid, virtual

work of its external and molecular forces will give terms of

the same form as before, as will be shown in a subsequent
article.

If at each point of the free surface of a liquid there is an

external pressure whose intensity at a typical point on the

surface is p ,
the virtual work of this pressure must be

brought into equation (9) or (16). This virtual work

is obviously fpQ ndS, so that the equation (19) of the

free surface becomes

From (20) we see that the angle of contact of a liquid

TT k
with a solid will be < - if A > -

,
i. e., the surface of the

2 2

liquid will be convex towards the liquid at the place of

contact. If the law of attraction between the liquid

elements themselves is the same as that of attraction
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between a liquid element and an element of the solid

in contact with it, </>
and ^ in (5) differ only by constant

multipliers ; and we can state the last result thus : if the

attraction of the solid on the fluid is greater than half the

attraction of the fluid on itself, the surface of the fluid will

at the curve of contact be convex towards the fluid
;
and if

A < -
, will be > -

,
i. e., the surface of the fluid will be

concave towards the fluid. We shall subsequently see that

in the case in which a capillary tube dips into a liquid

which is under the action of gravity, the liquid must rise

in the tube in the first case, and fall in the second. These

results were first enunciated by Clairaut.

The experimental determination of the angle of contact

of a liquid and a solid

has been made by
means of the measure-

ment of a large drop,

OCyD, Fig. 35, of the

liquid placed on a

Fig- 35- horizontal plane, AB,
made of the solid. If

the drop is a very large one, it is virtually a plane surface at its

highest point 0. Suppose the figure to represent a vertical

section. Then at any point P the two principal sections

are the meridian curve PO and the section made by a plane

perpendicular to the plane of the paper through the normal

to the curve at P. The curvature of this section may be

neglected in the case of a large drop ; and if p is the radius

of curvature of the meridian at P, we have from (i 2) of

Art. 71 the intensity of molecular pressure at P equal to

T
K-{ where T is a constant. At the intensity of

P

molecular pressure is A", and if the depth, Pm, of P below
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the tangent Ox is y, the intensity of pressure at P is also

K+ wy} by transmission from 0. Hence

T
wy = -........ (23)

If the arc OP = s and d is the angle made by the tangent

at P with Ox, - = ,
and sin 6 = -j- ;

hence (23) becomes
P ds ds

wydy T'sin d 0,

.-. wf = zT(i-cosd)..... (24)

Let the angle of contact at Q be i, let Oy = a
;
then

wa? = 2 T(i + cos i)..... (25)

Let CD be the equatorial section of the drop ;
then

at C we have d = -
,
and if the depth, 6, of C below

2

is measured, we have

wb2 = zT. ...... (26)

This last gives T, which is called (see Art. 73) the surface

tension of the liquid in contact with air
;
and then (25)

gives
^2

-i, ..... (27)

which determines the angle of contact.

The above arrangement is suitable in the case of a drop
of mercury.
To find the angle of contact between water and any

solid body, a somewhat similar method has been employed.

Imagine Fig. 35 to be inverted, and suppose AB to be the

horizontal surface of a mass of water (which then occupies

the lower part of the figure). Along this surface fix a plane
of the given substance, and under this plane insert a large
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bubble of air, QCOD, the lowest point of the bubble

being 0.

Then, exactly as before, by measuring the thickness, Oy,

of the bubble, and the depth of C below AB, we obtain the

angle of contact at Q between the water surface and that

of the solid (the water surface being bounded by air).

If a = Oy, and b = the vertical height of G above 0,

we have as before

%wa? = T(i +cos),
* being the angle of contact CQA.

It is very difficult, if not impossible, to find a definite

value of the angle of contact between a given liquid and

a given solid, because any contamination or alteration of

either surface during the experiment will affect the result.

Thus, the angle of contact between water and glass is often

said to be zero, while some experimenters quote it at 26.

Again, it is known that in the case of mercury and glass

the angle varies with the time during which they are

in contact : at the beginning of an experiment the angle
was found to be 143 and some hours afterwards 129.

75. Analytical investigation of general case. The

expression (13) of Art. 74 can be analytically deduced from

the general theory of the displacements of points on any
unclosed surface. Thus if, as in Statics, vol. ii, Art. 291,

we denote the components of displacement of any point

(x, y, z) by n
t v, w, and if at any point, P, Fig. 32, on the

surface we put =p, =
q, e = \/i +p* + q

2
,
we know

that the change, bdS, of the infinitesimal area dS at P is

given by the equation
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Also (Statics, Art. 283)

dw du dv , .

dw du dv . .

bq=-j p-j q-j- (3)
dy

f
dy

*
dy

Hence

*'
das

*

dy V/# dy'

die dw

Now, by the method of integration by parts, we have

the double integral equal to

-
{ (i + q

2

) iidypqiidx + (i +p2
) vdxpqvdy

\-pwdy-\-qwdx\

ff( f d i+q2 d pq\ f d I +pz d pq^IN* (-3 -7 ) + v \-1 1 J

JJ | Vfe e dy e '
\ly e dx e '

in which, of course, the single integral is one carried along
the bounding curve, ALBN(lt?ig. 32) of the surface, while

the double integral is one carried over the surface itself.

Dealing with the double integral in (5) first, we easily

find that the coefficient of u is

dp dq dp
where r = -~

,
t =. -~, s = --

ax dy dy
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But (Salmon's Geometry of Three Dimensions, chap, xi)

the multiplier of p in (6) is
-^-

+ =- Similarly the
1 2

coefficient of v in the double integral is #(4- + 4~)>
-

that of w is
-j

+ -w ;
so ^at the double integral in (5) is

2

(7)

But, , v, r being the components of displacement of

the point P, and -J-^- the direction-cosines of the

normal to the surface at P, the projection of the displace-
ment of P along the normal, which we have called bn,
is given by

pu + qvbn = ---

Hence (7) is

as before found.

Dealing now with the single integral in (5),
and carrying

it continuously round the bounding curve, we see that the

sign of every term in dx must be changed, as is fully

explained in Statics, Art. 3160.
Of course this integral is one which we may consider as

carried round the projection on the plane xy of the bounding
curve. Hence the correct form of the single integral is

~
?
2
) u fy +P2n dx (i +jp

z

)
vdx j)q v fly

+pw ily qwdx], (8)
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in which u, v, w are components of displacement of the

points on the surface, 12, of the solid body where it is

intersected by the surface of the liquid ;
so that if -

'

,

are the direction-cosines of the normal to 12 at any point, /,

we have now / /w = p u + q v.

Also, the projection of the element da> of area of the

surface of the vessel at /on the plane of xy is tidy vdx,

so that
d<* = e'(udy-vdx).

And since fix, dy, dz are proportional to the direction-

cosines of the element IB of the bounding- curve which is

at right angles both to the normal to the liquid and to

the normal to the solid, we have pdx + qdydz o and

2)'dx-\-q'dy dz = o, from which

(f -/) dx + (q
-

q'} dy = o.

Hence the terms multiplying
- in (8) are equivalent to

i) (udy vdx), i.e., to e cos 6 da
;
so that (8) is

simply
/cos0r/a>,

as was found in (12), Art. 74-

(The alteration of signs in the terms of the single

integral in (5) which is rendered necessary by the carrying

of the integral by continuous motion in the same sense

round the bounding curve ALBN, or its projection on the

plane xy, is a circumstance which, perhaps, the student

would be very likely to overlook.)

76. Liquid under the action of Gravity. In the

particular case in which gravity is the only external force

acting on a liquid which has air or any other gas above its

surface, if z is the height of any point on the surface above
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a fixed horizontal plane, V =. z, and as w' is negligible

compared with w, the equation (19) of the surface of

the liquid is

/C / A J. \ f** . . / v

wz-\ (-=- + -p-J
= Constant, . . . (i)

from which it follows that if there are any points on the

surface at which the concavity is turned towards the liquid,

i. e., -=- +
jr-

is positive, those points must be at a lower
1 '2

level than the points at which the surface is plane ;

and points where the surface is convex towards the liquid

must be at a higher level than the plane portions.

Thus, supposing that two cylindrical capillary tubes,

BC, FE, immersed vertically

in a given liquid, and of

such different materials that

the surface of the liquid in

one is concave, and in the

other convex, towards the

liquid, if L is the plane from

L which z is measured and if

Fig. 36. R) R' are the radii of curva-

ture of the surfaces of the

liquid within the tubes at C and F, and C' the heights of

these points above L, we must have

. . It ./ k

where z is the height of the plane portion, AB, DE, GH, of

the liquid above L.

A simple experiment with water serves to illustrate the

result that if in a continuous body of this liquid there

is a part of the surface plane and another convex towards the

liquid, this latter must be at a higher level than the former.
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Fig. 37-
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Let a large glass vessel be connected with a capillary tube,

f, Fig. 37, and let water be poured continuously into the

large branch. A stage will be reached at which the water

in t will just reach the top of this tube, and then the

surface of the water is acb. If the glass is quite clean, this

surface will have its tangent planes vertical round the rim

ab
;
and the level of the water in

the large branch will be at C, which

is lower than ab. As water con-

tinues to be poured in, the surface

in t will become quite horizontal

and represented by the right line

ab, and the surface in the other

branch will be AB, which is at

the same level as ab. By continuing
to pour in water, the surface at the

top of t will become concave downwards, as represented by

adb, and then the level in the other branch is at D, which

is higher than d.

A side-figure at T shows how the surface of the liquid

can be adb. The horizontal edges at the top of t are of

appreciable breadth, and when the water rises above the

line ab, the surface of the glass is the horizontal rim of the

tube I (and the angle of contact being o) the surface of the

water at the rim lies horizontally.

77. Rise or fall of Liquids in Capillary Tubes. It is

a well-known fact that if a tube of very small diameter is

plunged into a mass of liquid contained in a vessel, the

level of the liquid in the vessel will not, in general, be the

same as its level in the narrow tube. What is the cause of

this ? To say that it is
'

capillary attraction
'

is to use an

expression which is at once inaccurate and vague. To say

that it is molecular attraction is to use an expression which

is true but vague. This was evidently in the mind of
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Laplace when he said (Supplement to Book X, p. 5) that

the attraction of capillary tubes has no influence on the

elevation or depression of the fluids which they contain,

except in determining the inclination of the surface

of the fluid to the surface of the tube along the curve

of intersection of the free surface with the tube, and

thereby determining the curvature of the free surface.

That the angle of contact does determine the curvature

of the surface when this surface is inside a very narrow

tube is obvious.

For, suppose that the angle of contact for glass and

a certain liquid is 45, and that the liquid is contained in a

vertical glass tube one-tenth of a millimetre in diameter
;

then it is evident that the free surface of the liquid within

the tube must be very much curved, because its tangent

planes where it meets the tube must all be inclined at 45
to the vertical, while its tangent plane at its vertex must

be horizontal; and in order that such a great amount

of change in the direction of the tangent plane should

be possible, the surface must be veiy much curved.

Now, great curvature of surface means great intensity of

molecular pressure, if the surface is concave towards the

liquid, and small intensity if the surface is convex towards

the liquid (Art. 71).

Hence, owing merely to the fact that within a very
narrow tube, the free surface of a liquid is curved and not

to any special action due to the narrowness of the tube

this liquid must rise or fall within the tube below the level

of the plane portions in any vessel into which the narrow

tube dips.

Let FE, Fig. 36, be a capillary tube dipping into a vessel

containing a liquid such that the angle of contact (as

denned in p. 134) for the liquid and the tube is <
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In this case the surface is concave upwards, and therefore

k
the intensity of molecular pressure at F is K -, where

M&

jR is the radius of curvature of the liquid surface at the

lowest point of the surface at F (where the two radii R^
R

2 are evidently equal), and the liquid must rise in the

tube until the intensity of pressure due to the weight of the

column FE added to this molecular intensity produces
the intensity of pressure which exists along DE. If JJQ is

the intensity of atmospheric pressure, and EF = z, the

intensity of pressure inside the tube at the level E is

k
ji-,

and the intensity of pressure along the

plane surface DE isp +K ; hence

k

determines the height to which the liquid rises in the

tube.

Let i be the angle of contact of the liquid with the tube

and r = internal radius of tube ; then R = r sec
', very

nearly; hence cos ;
z =- , ...... (2)wr

and the weight of the liquid raised in the tube above E is

itrk cos i........ (3)

Equation (2) shows that the heights to which the same

liquid rises in capillary tubes of the same substance are

inversely proportional to the diameters of the tubes.

If the tube is such that the angle of contact is > -
, the

2

free surface within the tube is concave towards the liquid,

and therefore the intensity of molecular pressure is greater
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than at the plane surface DE. Hence the liquid must be

depressed in the tube, as represented in C, and the amount

of depression is calculated as above.

78. Surface Tension of a Liquid. The amount of rise

or fall of a liquid, under the action of gravity, in a capillary

tube is usually calculated by means of the introduction

of the notion of surface tension. The free surface of the

liquid is considered to be in a state of tension resembling

that of a stretched surface of indiarubber with, however,

this important difference, that, whereas the tension of the

indiarubber surface increases if the surface is further in-

creased, the tension of the liquid surface remains absolutely

constant whether the surface expands or contracts.

Let ABCD, Fig. 38, represent a part of the bounding
surface of a liquid ; let any
line QPR be traced on it

;
and

along this line draw small

lengths Qq, Pp, Rr into the

liquid and normal to the sur-

Fig. 38. face. Consider now the action

exerted over the area RrpqQP
by the liquid at the right side on that at the left.

One part of this action will consist of molecular attraction,

towards the right ; and if the depth of the line qpr below

QPR is nearly equal to e (p. 109) or greater than e,

another part of the action will consist of pressure, towards

the left, in the lower parts of the area QqrR. If qpr

instead of being at an infinitely small depth is at any finite

depth, the molecular attraction exerted across any of the

lower portions of the area QqrR is exactly balanced by the

molecular pressure on such portions. But if qpr is at

a depth very much less than e, the molecular pressure

(towards the left) on any part of the area QqrR is negligible,

and we may consider the portion of liquid at the right of
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the line QR as simply exerting a pull or tension on the

portion at the left. Observe that on the line QPR itself

the intensity of molecular pressure is zero, and that if qpr

is at a distance infinitely less than e from QPR, although

the intensity of pressure on any portion of the area QqrR
is infinitely small, the force of molecular attraction exerted

across this area may be large. The value of the pressure
-^ J

depends on the force by a differential relation = w F

(see (2) of p. 114), where F is the intensity of molecular

force in the direction of the normal to the surface of the

liquid at any point, P; and we know that at P, where

F is greatest, -or is zero.

Hence at points of the imagined surface QqrR of separa-

tion which are infinitely near to the surface we are to

imagine the stress to be merely tension
;
at points whose

distances from the surface become comparable with e we
are to imagine this molecular pull, or attraction, as accom-

panied by a contrary pressure ;
and at points which are

at and beyond the distance e from the surface, the molecular

pull is balanced by the molecular pressure.

Hence, however far the imagined surface QqrR extends

into the liquid, the whole stress exerted on the liquid

at the left by that at the right is confined to an action

which terminates at a curve, qpr, at the depth e, this

action being a mixed one consisting of molecular attraction

and an opposing molecular pressure, which latter grows
in intensity from zero at the surface to a maximum value

at the depth e.

At any point P on the surface the amount of this stress

(which is, on the whole, a tension) per unit length of the

curve PQ is called the surface tension exerted across the curve

PQ by the liquid at the right on that at the left of PQ.
It is obvious that the amount of the stress per unit

L 3
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length is the same across all curves drawn at P on the

surface, and is normal to these curves. This is another

point of difference between the surface tension of a liquid

and the stress of an elastic membrane in general ; for,

in the latter the stress exerted across any curve PQ at P is

not, in general, normal to PQ, nor is it of constant magni-
tude for all curves drawn in the membrane at P.

Now, although it is obvious that, if we grant the

existence of molecular forces, we must admit the existence

of this mixed surface stress
(i. e., within a layer of thickness

e at the surface) no such stress has explicitly presented
itself in our investigation, by means of Virtual Work,
of the conditions of equilibrium of the liquid. This fact,

however, involves no difficulty or contradiction
; for, in

taking the molecular actions exerted between all possible

pairs of elements of mass, we are sure of having omitted no

forces that act
;
but in this way surface tension (which is

obviously a resultant, and not a simple, action) could not

have specially presented itself.

Knowing now of the existence of this stress, we can see

why the terms in the expression for the Virtual Work
of the molecular forces, (9), p. 129, consist of constants

multiplied by the changes of the areas <S+il, and fl.

For, if a surface of area A is subject to a tension T which

is the same at all points and of constant intensity in

all directions round a point, the work done by the stress in

an increase bA of the area is

-T.bA.

A liquid contained in a vessel, or resting as a drop
on a table, is sometimes spoken of as having a ' skin

'

within which the liquid proper is contained.

A drop of water hanging from the end of a tube and

ready to fall is spoken of as being contained in an '

elastic
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bag.' Of course, if the surface of the liquid is oxidized,

contaminated by foreign particles of any kind, or in any

way rendered different from the liquid below the surface,

we may, if we please, say that the pure liquid is contained

within a surface which is not pure liquid ;
but even such a

contaminated surface is radically different from an elastic

bag, for the magnitude of the tension in a stretched bag
increases with the stretch of the bag, whereas the tension

of the bounding layer of the liquid does not. In no case

either that of a perfectly pure liquid or that of a liquid

with an oxidized or contaminated surface is there any
skin or bag. In the case of a liquid with a pure surface

there is no material thing at the surface which there is not

everywhere else in the liquid ; and we must not imagine

that, because we see a drop of water hanging, a globule of

mercury lying on a table, or a column of water with a con-

cave surface standing in a capillary tube above the level of

the water outside, such conditions require bags for enclosing

the liquids or skins by means of which to catch hold of

them. We can assure ourselves that molecular forces,

with special circumstances near the surface (owing to

incomplete surrounding of molecules, &c.), will amply
account for all such forms of equilibrium.

The height to which a liquid rises in a capillary

tube may be calculated by the introduction of surface

tension.

For, in Fig. 39, let the tube ABB'A' have any form (not

necessarily cylindrical) ; let I be the length of the curve of

contact of the liquid surface at BB' with the surface of the

tube, let T be the surface tension of the liquid, and i

the angle of contact with the tube. Then consider the

equilibrium of the column in the tube above the level, OCx,

of the plane portion outside.

We may suppose the layer of particles round the tube at
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which are in actual contact with the tube as exerting
the tension ^per unit length of the curve I on the particles

just outside them
;
hence these supply an upward vertical

force Tl cos i on the column BOO'B'. If <r is the area of

the cross-section of the tube, and z = height of B above

0, the weight of the liquid is wv z. There is the downward

atmospheric pressure,^ <r, at B, and an upward pressure at

consisting ofpQ
a- and of a molecular part, Ka-, and there

is finally a downward molecular attraction exerted on those

particles in the tube which stand on the area o- at 00' and

are contained within the distance e from <r.

Fig- 39-

Now this downward attraction is precisely equal to Ka-

(Art. 71), so that this force balances the upward pressure

K(T }
and we have for the equilibrium of the contained

column ,,

11 cos i = waz.

If the tube is cylindrical,

I = <r = iir

and we have

as in (a), p. 145.

2 Tcos i

wr



CH. iv Molecular Forces and Capillarity 151

k .

It is obvious that -in the general equation (9), p. 129,3

is T, the surface tension.

By taking- any element of area of the curved surface

VBr

)
the principal radii of curvature of this element being

RI and Rzt and considering the equilibrium of the vertical

cylinder described round the contour of this element, we
at once deduce (i) of p. 142 ; for, if dS is the area of

the element, the component, along its normal, of the surface

tension all round dS is T (-_- + ^} dS, and the vertical
Vff! M^

component of this is T
(-~- + j^\ d<r, if da- is the horizontal
ztj Htf

projection of dS'
} also the weight of the column is wzda;

therefore

Let the capillary tube be replaced by two very close

parallel vertical plates, AB, A'B'.

Then, considering the equilibrium of the column BOC/B'

of unit thickness perpendicular to the plane of the figure,

we have , . 72/cosz = wzd,

where d is the distance 0' between the plates ;
hence

a Tcos i

z =
wcl

which shows that the liquid rises twice as high in a

cylindrical tube as between two parallel plates whose

distance is equal to the diameter of the tube.

The existence of surface tension in a liquid may be shown

experimentally in many ways, of which we select two.

Take a rectangle formed of brass strips or wires, AB, BC,
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b I
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film is proportional to its area, and every material system
which is subject to given conditions assumes as a con-

figuration of stable equilibrium one in which the static

energy of its forces is least.

The following table, taken from Everett's Units and

Physical Constants, gives the values of a few surface tensions

in dynes per linear centimetre at the temperature 20 C. :
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Then, exactly as in Art. 74, the Virtual Work of all

the forces acting will reduce to the sum of terms relating
to the bounding surfaces alone ; and since the whole

bounding surface of the liquid w is <S+A + il, the virtual

work of its own molecular forces will give the term

ap+A~+a);2

and we see that the equation of virtual work is

8 [rdm + 8 f V'dm'- - b (S+ A + ft)-
- b (S' + A + ft')

+ /5A + ju8ft+ //8&' = o, (i)

where the term /5A relates to the molecular forces exerted

at the surface A between particles of

w and particles of w'
;
and //8ft relates

to the forces between the particles of

the liquid w and the solid.

Now, denoting by bn, n' elements

of normals at points on S, S' drawn

outwards from the liquids ;
bv an

element of normal of A drawn out-

wards from the liquid w
;

d &> an

element of ft at the intersection of S
and ft (as in Art. 74), d\}t an element

of ii at the intersection of Jl and A
;

deaf an element of

flf at the intersection of Of and <S', and by 0, X) & the

angles of contact with the solid at S, A, tf, we have, exactly

as shown in Art. 74,

Fig. 42.
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bS = ((. +
) bndS+fcos

6A= (- +
** r 1 r 2

b/7dm=f7bndS+fFbvdA,

bf 7'dm'=fV'bn'dS'-f 7'bvdA,

where p1} p2 are the principal radii of curvature at any

point on A.

To the left-hand side of (i) must be added the terms

which are rendered necessary by the constancy of the

volumes of the liquids in the supposed displacement of

the system.
As before, the coefficients of bn, bv, bn' must each be

zero, as also the coefficients of the terms relating to do>,

do/, and d\fr. Hence, for example, we have the equation

at all points of S, and similar equations at all points of S*

and A
;
and at all points of meeting of S and 12

k .

-(i +COS0) JU,
= O,

2(

which proves the constancy of the angle of contact at such

points ;
a similar result holding for S' and &', while the

terms relating to d^r give

(k &'-2
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which proves the constancy of the angle of contact between

the solid and the common surface of the liquids.

80. Drop of Liquid on another Liquid. Let Fig. 43

represent a drop of one liquid resting on the surface of

another, the area of contact being A, the free surface

of the drop being Sf
and that of the supporting liquid S.

If the sides of the vessel in which this liquid is contained

are very distant from the drop, in considering a small

deformation of the system and applying the equation (i),

Art. 79, of Virtual Work, we may neglect terms relating to

11
; so that the equation is

-b(S'++
2

= o. (i)

Fig- 43-

This equation will, as has already been seen, give equa-
tions satisfied at all points of S, S', A, as well as equations

relating to their common bounding curve. Considering

merely the latter for the present, we may take

o, . (2)

in which the variations of the surfaces are only those

portions at their common boundary curve ; or

tA = o. . . .(3)
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or again

where T, T
f

,
T" are the surface tensions in the surfaces

fl,y,A.
Now when any surface 2 having- for bounding edge

a curve C receives a very small deformation whereby it

becomes a surface 2' having for bounding edge a curve C',

the Calculus of Variations leads (see Arts. 74 and 75) to the

result that the variation 2' 2 is obtained by drawing
normals to 2 all round the contour C, these normals being
terminated by 2' and enclosing a surface 11 on 2', and then

adding to 12 2 a linear integral taken all along the curve

C, the elements of this linear integral involving the dis-

placements of points on C to their new positions on (?'.

The term 11-2 is

f(i+iJ V^! ^
while the term given by the line-integral along C is (8)

of Art. 75.

Now take the case in which the figure of the drop
and that of its submerged part are surfaces of revolution

round the axis of z, and suppose Fig. 43 to represent the

section of it made by the plane xz. Also let the displace-

ment of the point P be confined to the plane xz, and let its

components be ,
w. Hence in (8) of Art. 75 we are to

put q = o, v = o, and the terms of the linear integral which

relate to the displacement of P are

where dy relates to P and a point on the curve (a circle)

which is the common bounding edge of the surfaces S, S', A,

this circle being represented in projection on the plane
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of the figure by the right line OP. We may, then,

omit dy ;
and the terms in (4) given by the three surface

tensions are

,T T' T'\ ,Tp T'p' T"p'\
(- + + -n) u + M + f- + -) w.
v e c e ' ^ e f /

Now and w are quite arbitrary and independent,

and the coefficient of every independent displacement
for each point involved in the line-integral must be zero.

Hence
T T' T"

TP TY rp
"

T" ~7~
~

But if the tangent line to S in the plane of the figure

makes the angle with the axis of #, we have

i t)= sin 6 and - = cos 6 ;

e

similarly for the tangent lines to ff and A ; so that these

become
T sin + T' sin 0' + T" sin 0" = o,

Tcose + r cos 6'+ T" cos B"= o,

which plainly assert that three forces, T, T*, T ', supposed

acting along the tangents in the senses represented have no

resultant; in other words, if a plane triangle is formed

by three lines proportional to the surface tensions, the

directions of the distinct surfaces of the two liquids and

that of their common surface of contact are parallel to the

sides of this triangle.

Hence equilibrium of the drop is impossible unless each

surface tension is less than the sum of the other two.
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81. Liquid under no external forces. When a mass

of liquid is in equilibrium under its own molecular forces

only, its surface can assume several forms. In this case (19)

of Art. 74 gives as the equation of the surface

i i _
i

R- .Z? a
' (i)

where a is a constant length.
We shall confine our attention to surfaces which are

of revolution, and we shall suppose the axis of revolution to

be taken as axis of a?.

Now if at any point, P, of the revolving curve (Fig. 44)

or meridian, PDE,
which by revolu- R,

3

tion round the axis

AB generates the

surface, p is the

radius ofcurvature

and n isthe length,

Pn, of the normal

terminated by the

axis of revolution, the principal radii of curvature of the

surface generated are p and n
t
so that (i) becomes

Fig. 44.

Now let the tangent at P make the angle with the

axis of x, and let ds be an element of arc measured

along the curve from P towards D
; then p = ,

and
(to

n = y sec
;
hence (a) becomes

<?0 cos 6_ i

~cls y
~

a'
' (3)



160 Hydrostatics VOL. n

de n dd
or, since -p = sin

as ay*

id. i

-.-(,008*) = -, ...... (4)

... y COS *=+*, ..... (5)

where h is a constant.

We may observe that if the constant is zero, (i) gives

as the property of the surface of the fluid that at every

point the two principal radii are equal and opposite ;

the two principal sections have their concavities turned

in opposite directions. If the surface is one of revolution,

this property at once identifies it with the surface generated

by the revolution of a catenary round its directrix, and the

surface is called a catenoid.

Before proceeding to integrate (5), we can show that

all the curves satisfying it are generated by causing conic

sections to roll, without sliding, along the axis A: the

curves satisfying (5) are the loci traced out by the foci of

these rolling conies. For, if Pu = n, (5) gives

/(----) = >*....... (6)9 Ml 2 a'

Now if p is the perpendicular from the focus of an ellipse

on the tangent at any point, and r the distance of this

point from the focus, we have

a and I being the semiaxes. Comparing (7) with (6), we

see that P in Fig. 44 is the focus of an ellipse touching AB
at n, the semiaxes being a and Vi<ah, and this ellipse
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is therefore invariable whatever be the position of P on the

meridian. The locus of P when the rolling- conic is an

ellipse is called the iinduloid, and is the locus PDE actually

represented in the figure.

If the rolling conic is a parabola, the locus of the focus

is a catenary, which gives by revolution the catenoid.

If the rolling conic is a hyperbola, the locus is a curve

having a series of loops, and the surface which it generates
is called a nodoid.

ilfj

Since tan 6 = -f ,
we have from (5)

(LOG

1dx = + J
.dii ..... (8)-

v/4 y-(/+2fl//)
2

f + 10,11= -f
y

. dii . . (9)-

_ + _ = i2ag= (IQ)-

by putting a2 + j3
2 = 4 a2 4^, and a2

/3
2 = 4

2 ^2
;

so that

a and /3 are the greatest and least values of the ordinate.

Equation (10) is best integrated by expressing y, and

therefore a?,
in terms of a variable angle </> ; thus, let

/ = a2 cos2 4> + /3
2 sin2

</>,
..... (11)

.-. y = a Vi /
2 sin2

</>
...... (12)

a'
2

/3
2 -

where A3 =
;
-

. This gives, if A $ = VI kz
sin'

J
^,

..... (13)

When $ = o, y a, and when $ = -
, y =^3 ;

so that if
2

D and E are the points of maximum and minimum ordinate,

1424.2 M
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all points between them on the curve are given by values of

<f>
between o and -

.

In the common notation of elliptic integrals

[**('+*<#> TJo Jo

therefore we have the abscissa and ordinate of every point

on the curve expressed in terms of the variable fy by the

equations ..... (15)

In the unduloid the tangent can never be parallel to the

fl "T*

axis of y, i. e., can never be zero, so that in (10) the sign
dy

+ in the numerator belongs to this curve, and therefore in

(
1 5) the signs + belong, respectively, to the unduloid and

the nodoid.
/2 1

In the unduloid
-=-%

= o when tan < =
( J

2
, or^= Va/3,

j r^

and this gives the point of inflexion on the curve.

If s is the length of the arc between D and any point P t

we have s = (a+/3) 0.

When a = /3, the surface generated becomes a cylinder.

When a is very slightly greater than /3, the generating
curve becomes, approximately, a curve of sines.

The case of a liquid unacted upon by any external forces

was realized by M. Plateau by inserting a drop of olive oil

in a mixture of water and alcohol arranged so as to have

the same specific gravity as the oil. By seizing this drop
between two wires in the shapes of any closed curves, or by

allowing it to form round a solid of any shape held in

the water-alcohol mixture, we can obtain a large number of
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liquid surfaces each satisfying the common equation (i) of

such surfaces.

We shall subsequently see that the same surfaces can be

produced by means of soap-bubbles instead of large masses

of liquids.

A full account of all such experiments will be found in

Plateau's celebrated work, Stalique Expe-rimentale et Theorique

des Liqitides soumis auoo settles Forces Moleculaires.

82. Liquid under action of Gravity. Taking now
the case in which the only external force is gravity,

the equation of its surface is of the form

i
_i_ _ z h

^.
+

~R
Z

"
~^' '

where // and a are constant lengths, and z is the height of

any point on the surface above a fixed horizontal plane ;

T
also a2 =

, where T is the surface tension.
w

We shall begin by investigating the form of the surface

of a liquid in contact with a broad vertical plane, or wall.

Let this plane be supposed normal to the plane of the

paper, and let Fig. 39 represent the section of the plane and

the liquid surface made by the plane of the paper (supposed

also vertical), this section being far removed from the edges

of the immersed vertical plane BAO. Of the two principal

radii of curvature of the liquid surface at any point P one

will be infinite, since one principal section at P is the right

line through P perpendicular to the plane of the paper, and

the other will be p, the radius of curvature of the curve

AFC.

Taking the axis of x horizontal and the axis of y vertical,

we replace z in (i) by y, and the equation becomes

i y h

~-T> (2)
p a*

M 2
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which shows that the curve APC belongs to the class of

elastic curves, i. e., those formed by a thin elastic rod which

when free from strain was straight, but under the action

of terminal pressures is bent. (See Statics, vol. ii, Art.

306.)
Since at a considerable distance from the wall the surface

is plane and p = co
,
we see that if we measure y from the

level of the plane portion, the equation is

py= a ~........ (3)

Let Ox be the plane level, which is now taken as axis

of x.

fliM

Putting p = -f- ,
which in the figure is the tangent of

(iX

the inclination of the tangent at P to the axis of a?, we have

dp

i m **
p (I +^-)3

and a first integral of (3) gives

(4)

where C is a constant. Since p = o when y = o, C = 2,

and then we have

f\ //2 ___ jy2

(5)

Putting y = ia sin
</>,

. . . ... (6)

we have (J_ _ 2 sin0y</) = + --

'

. .

'

: . . (7)^sm<
-

a

Now if the angle of contact is acute (as represented



CH. iv Molecular Forces and Capillarity 165

in the figure), can never vanish, and -~ is continuously
(JL'j

CISC

negative. Hence y is always < a V 2, and the negative

sign in (5) is the one to be used. In this case the integral
of (7) is

m ,i.

= 2 cos <f> + log. tan - ... (8 )
ft 2

This shows that the plane surface of the liquid is in

reality asymptotic to the curve APC, because when
<f> o,

x = oo .

cly
If the angle of contact is zero, we have -^=00 at A,

. . y = a \/2 = OA.

If i is the anglt

have from (4) OA = a ^2(1 -sin*), - .' . (9)

fly
If i is the angle of contact, -=. cot i at ^4, and we

(10)

which determines the height to which the liquid rises

against the plate ; and, if i is known, by measuring this

height the surface tension T can be found.

The equation (3) can be immediately deduced by elemen-

tary principles from the notion of surface tension. For,

let Q be a point on the curve indefinitely near P
;
draw

the ordinates Pm, Qn, and consider the equilibrium of

the prism of liquid PmnQ of unit breadth perpendicular

to the plane of the paper. We may consider this prism as

kept in equilibrium by the surface tensions, each equal

to T, at P and Q, and its weight, the atmospheric pressure

cancelling at the top and bottom. Now the vertical upward

component of T at P is ^sin 0, and the vertical component

at is Z
T

sin^ + ^.-T-7'sin(' ;
hence
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Tds . (sin 0)
= wydx,

(Is

(10 dx
.-. Tco&0-r = wy-r,

as *
(Is

T_
P

(18 (lx
since p = -7- . and cos = This equation is the

(1 (is

same as (3), since - = a2 .

The integration of (3) may be effected in another way
which gives the intrinsic equation of the curve. It can be

written dO _ y
~Ts

=
l?'

-' (n)

dz
i dy i ,

'

-7-2
=

~2 7
= ~

"a sm ^ '
(
I2 )

dsz a2 as a2-

... (^)
2

=(7-icos0.. . (13)v rfa' a'
1

Now = - = o when = o, therefore C = -
,
and

p as a

we have fj e 2 . Q
- = sin- , (14)

ds a 2,

s
,-. loge tan-

- = -- + C?,

^ M

where (7 is a constant. Now at A we have =
y,

therefore
X -

**
j /T ^ \ / \tan-=^ tan(- ) .... (15)

4 v 47

is the intrinsic equation of the curve.
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Pass now to the case in which two large parallel vertical

plates, BO, E'O' (Fig-. 39), are immersed, very close together
in a liquid. Let BVB' be the curve in which the liquid

surface between them is intersected by the plane of the

figure, V being the lowest point, or vertex, of the curve.

One of the principal radii of curvature at every point, p,

of this surface is still oc, and the other is p, the radius

of curvature of the curve BFB' at the point. Hence,

measuring the height of p above the plane surface Ox,

we have still
py = a2

and if is the inclination of the tangent at p to the

horizon and * = Vp,

ds . dy^^ Sln6:=
i>

therefore <PQ

ds a

where C is a constant. Hence

(17)

and if // is the height of V above

It = N/2 V'C^i....... (18)

An approximate value of h has been already found

(p. 151). If the abscissa of^ with reference to V as origin

flor

is x, we have ~r = cos 6
;
therefore

ds

_ (19)
s/3 VC cos
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Substituting for C in terms of k from (18), we have

)

ens 6 dO

The value of x can be expressed in terms of the ordinary

elliptic integrals by putting Q = TI 2
</>.

If then we put

,
so that k is < I, we have

2, a (F 2 d<)>

where, as usual, A (</>)= A/I /-
2 sin

2
(|).

The limits of

Tt

being o and
?',
where is the angle of contact, those of

2

fjf
*r? Q

</>
are - and \- -, The figure supposes the angle of

contact to be acute, as when water rises between two glass

plates ; if it is obtuse, as when mercury is depressed

between two glass plates, the discussion proceeds in the

same manner.

Two plates close together in a liquid move towards each

other, as if by attraction, whether the liquid rises or is

depressed between them as was first explained by Laplace.

In all such cases of approach between bodies floating on

a liquid the result is due to an excess of pressure on their

backs, or remote faces, over the pressure on their adjacent

faces. Thus, on the plate OB above B the intensity

of pressure is the same on both sides, being that of the

atmosphere ;
also below the intensities are the same, and
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again at both sides of OA
;
but between A and B the

intensity of pressure on the left side is that of the atmo-

sphere while on the right it is less. For if on the surface

AB between A and B we take any point R, at a height z

above Ox, the intensity of pressure exerted by the liquid on

the plane is pQ wz
)
where p = atmospheric intensity,

since it has been shown in Art. 73 that the intrinsic

pressure K disappears. Hence the total pressure on the

plane AB from left to right is less than that from right to

left; and similarly for A'B'
; therefore the planes approach.

The same result follows if (as in Fig. 36) the liquid is

depressed between both planes.

But if the liquid rises in contact with one plnne and

is depressed in contact with the other, the two plates

are urged away from each other.

Suppose the liquid to rise in contact with the plate AB
(Fig. 45) and to fall in contact with the plate A'B'

;
then

the level of the liquid

at the left of the first

must be higher than

that at the right ;
and

the depression of the

liquid at the right of

the second plate is

greater than at the left.

Evidently, then, the

portion AB of the first

plate experiences an ex-

cess of pressure towards

the left, while, the pressure at the left of B'A' being

greater than that of the atmosphere, the second plate

experiences an excess of pressure towards the right. Thus

the plates move away from each other.

This can be shown experimentally by placing on the

45-
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surface of water two small pieces of cork, one of which

is clean and the other greased.

Next, taking- the case in which a liquid rises inside

a narrow vertical cylindrical tube, the free surface of

the liquid inside the tube will be one of revolution
;

and if y is measured from the line Ox, which is the

level of the plane surface, the equation of the surface

of the liquid is

where
/>

is the radius of curvature of the meridian at any

point, and n the length of the normal between this point

and the axis of the tube.

If the horizontal line through the lowest point, F,

of the meridian (Fig. 39) is taken as axis of x, the equation

becomes 7 ,

. dO sin i , i ,, . ,

and if we put -p- and- tor - and -
,
this becomes

d x p n

This equation cannot be integrated accurately ;
but

an approximate solution can be obtained by the following

method, which is, in principle, the same as that employed

by Laplace (Supplement to Book X of the Mecanique

Celeste).

Take a circle having its centre on the vertical through V
and having a radius c

;
and let us determine this circle

in such a way that its ordinate (for any abscissa) differs

very little from the ordinate of the point, p, on the curve



CH. iv Molecular Forces and Capillarity 171

of the liquid which has the same abscissa. The ordinate of

the circle is given by the equation

y = I v/c
2

x*,

so that for any point on the curve we have

y = -</c2-#2 + .... (26)

where is a very small quantity. This gives

<ly _ x (1C~ T '

a? a?c

c c'
A dx'

neglecting the square of y- Hence (25) becomes
1 tX

d fa?
2

a?(c
2 #2

)2f/)
dx \c CA dx

/f+ b-</C*-r*= ~ -* (
29)a

by neglecting in the value of y. Integrating between

x = o and a? = x,

I a o\3 3 c. / 7 i\ o / o 9>3
/vji /> ( /i'2 iv>6 \o // / / A I // \ />i^ I /^ /y^ 12 /*
tC 1C lt^ ^~*C 1^ ff L I // p '/ I M/ 1C i*' F" , x

~~ + ~
'~~^~ Tx

=
a*

+
a* *a*

' ^

C3

h
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,ll + l) I C x C

\

> (32)

where C is a constant to be determined.

Now this equation would make =00 when x = c,

which would, of course, be absurd. Hence we must have

Again, y o when a? = o, . . b c + = o at F, and

(32) becomes

V>
~

t" o &e ~ '
* \f/

so that from (26)

; loe-.
c+ * c

3 a

which is the approximate equation of the curve when c is

known. Now we know that at the points , B', of contact

dy
with the tube

-j-
= cot i, and therefore if r is the radius of

the tube,

_ e
(
C

-v^5)? , (36)

which determines c
;
and b is then knowTn from (33).

As a first approximation, (36) gives c = r sec i from

which, more accurately,

?
2 sin2 ^ 1 sins')) , x

j- L-T^ J>. . . (37)
3 a

2 cos4 i )
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Finally, take the case in which liquid is contained

between two vertical plates which make with each other

a very small angle. Let the plates be AyOx, A'yOx'

(Fig. 46), intersecting in the vertical line Oy, and making
with each other the very small angle e, or xOxf

. Let the

curves in which the liquid surface intersects the plates
be yPQx, yP'Q'x'. It is required to find the nature of

these curves.

Take any two indefinitely near points, P, Q, on one

curve
;

let the corresponding points
on the other be P', Q', the lines

PP't QQ' being normal to the plates

and in the liquid surface
;
draw the

ordinates Pm, Qn, &c., and consider

the separate equilibrium of the small

prism PQ'm.
If Pm y, Om x, the weight

of this prism is fwxydx, where j-ig( 4g

mn = dx, and it is balanced by
surface tension round the contour PQQ'P'. Let T be the

surface tension, and the inclination of the tangent to the

curve PQ at P to Ox.

Then the amount of tension on PPf
is T . ex, and its

vertical component is e Tx sin ; therefore the vertical

component of the tension on QQ,' is

m d(ir sin 6) ,tTxsm0 + T -4j
'
dx.

ax

Also the tension on. PQ acts in the tangent plane to

the liquid surface and at right angles to the line PQ. Now
if i is the angle of contact

(i. e., the angle between this

tangent plane and the plate yOx), we easily find that

the direction-cosines of the tangent plane are proportional

to sin 0, cos 0, cot /, while those of the line PQ are cos 6,
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sin 0, o. Hence the direction-cosines of the line of action

of the tension on PQ are sin Ocosi, cos cos i, sin i
;
and

if PQ = ds, the vertical component of the tension is

Tds . cos cos i, or T cos i . dx
;
while the tension on P'Q'

gives the same amount. Hence for the equilibrium of

the prism we have

, Q ,

,
. . . (38)

which shows that the second term on the right-hand side

is of the order e
2

.

Neglecting it in comparison with the first, we have for

the approximate equation of the curve

2 ^Tcos I 2 a2 cos i , .

xii - =- ..... (39)
ftv e

where, as previously, a2 = -

The curve is, then, approximately a rectangular hyperbola

a result which is commonly assumed in virtue of the fact

that the .elevation of a liquid between two parallel close

plates varies inversely as the distance between them.

83. Liquid Films. The forms which can be assumed by
the surface of a liquid which is under the influence of none

but molecular forces can be produced by means of thin

films of liquid, such as soap-bubbles. Imagine a thin film

of liquid in contact with air at both sides of its surface,

the intensity of pressure of the air being, in general,

different on these sides.

Let ABCD, Fig. 47, be a portion of such a film
;

let P
be any point on its surface ; let PQ, PS be elements of the

arcs of the two principal sections of the surface at P
;
at Q

and S draw the two principal sections QR and SR. Thus

we determine a small area PQRS on the surface.
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Let the normals to the surface at P and S intersect

in C
2 , and those at P and Q in Cr Then PC

V
= R^

PC2
= R.2 ,

where R
lt
R

2
are the principal radii of curvature

of the surface at P.

Let PQ = ds
1 ,
PS = ds

2 ,j)
= intensity of air pressure on

the lower or concave side

of the surface at P, and

j0
= intensity of air pressure

on the convex side. Then

(P Po) ds^ds^ is the resul-

tant air pressure on the area

PQRS in the sense C^P ;

and for the equilibrium of

the element this must be

equal to the component of

force in the sense PClt given

by the surface tension exerted

on the contour of the element,

assuming that the film is so thin that the action of gravity

is negligible. Now if T is the tension per unit length along

PS, the whole tension on PS(which acts at its middle point

perpendicularly to PS) is T . ds2 ,
and the component of this

T>r n
alonsr the normal to the surface is Tds

Fig- 47-

sin or

'

2/V
The tension on QR gives a component of the

T ,

same magnitude ;
hence the sum of these is -~-

similarly the sum of the normal components of the tensions

T
acting on the sides PQ and SR

is-j^ ds^ls^; so that the

normal component of the tension acting on the whole

contour PQRS is

r
(- + 0*A (*)
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If the thickness of the film exceeds 2 e, where is the

radius of molecular activity, there will be surface tension

exerted both at the upper and at the under side of the

surface, this action being confined (as explained in Art. 78)
to a layer of thickness e at each of these sides ;

so that

we must replace T in (i) by 2 T, and the equation of

equilibrium is

Hence, since p and pQ are the same at points of the

film, the equation of its surface is

IT + 77
= const -> ..... (3)

71
1

at

and the forms of these films are the same as those of

the surface of a liquid which is not acted upon by any
external force, i. e., the shapes of thin films are the

same as those of drops of oil in the water-alcohol mixture

of Plateau (see p. 162).

The equation (2) can be otherwise deduced without

considering the separate equilibrium of an element of

the film. For, the intensity of pressure at any point

inside the film (beyond the depth e)
due to the convex side

-g- + ^-) ;
and the intensity of pressure at

ffj Of
the same point due to the inner, or concave, side is

Equating these, we have (2).

For a spherical bubble 7^ = R
z
=

(4)
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which shows that for all sizes of the bubbles the product

(p p^r remains constant.

One possible shape of the bubble is that of a cylinder

closed by two spherical ends. If r is the radius of the

cylinder, / that of each end, we have

i?_

4T

/ =

N
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