This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of
to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was nevel
to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domair
are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey fro
publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belon
public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have take
prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the fild&e designed Google Book Search for use by individuals, and we request that you use these fil
personal, non-commercial purposes.

+ Refrain from automated queryirigo not send automated queries of any sort to Google’s system: If you are conducting research on m:
translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encc
use of public domain materials for these purposes and may be able to help.

+ Maintain attributionThe Google “watermark” you see on each file is essential for informing people about this project and helping ther
additional materials through Google Book Search. Please do not remove it.

+ Keep it legalWhatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume |
because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users
countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific
any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in al
anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps
discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on
athttp://books.google.com/ |



http://books.google.com/books?id=LfQ3AAAAMAAJ&ie=ISO-8859-1

“---:vw-« v -~ w e ww

(] ' XXX XXX XXX KKK KKK KK
. —

® s 0a s B A4

ey u

oo W o V00 1104 i M1, i W o M V04 i

QD IOV QD QD ¢
oy 00




9 o8
& 1%






A TREATISE

ON

ELEMENTARY HYDROSTATICS



flondon: C. J. CLAY anxp SONS,
CAMBRIDGE UNIVERSITY PRESS WAREHOUSE, .
AVE MARIA LANE,

Camdrivge: DEIGHTON, BELL AND CO.
Leppig: F. A. BROOKHAUS.
Ao ork: MAOMILLAN AND CO.




A TREATIS |

ON

ELEMENTARY HYDROSTATICS

BY

JOHN GREAVES, M.A,

FELLOW AND LECTURER OF CHRIST'S OOLLEGE, CAMBRIDGE,
AND FORMERLY ASSISTANT MASTER AT BEDFORD GRAMMAR S8CHOOL,

CAMBRIDGE:
AT THE UNIVERSITY PRESS.
1894
[4AU rights reserved.)



Cambridge:
PRINTED BY C. J. CLAY, M.A. AND 80NS,
AT THE UNIVERSITY PRESS.



&)/ B

Raclass S-r7-2¢ ivap

PREFACE.

N this Book it has been my object to treat the
subject as fully as possible without using the
Calculus: as, however, it is intended for the use of
Students preparing for the First Part of the Mathe-
matical Tripos, and the notation of the Calculus is no
longer prohibited in the first four days, alternative
proofs have been given where the Calculus enables us
either to obtain the results more easily or to express
them more concisely.

In Chapter I., after shewing that solids may be
classified according to their behaviour under the action
of forces, I have deduced the definition of a fluid from
the characteristic behaviour of all substances which we
recognise a8 fluids. From this definition the principles
of the subject are deduced.

In Chapter IIIL, in addition to the ordinary propo-
sitions relating to the distribution of pressure in a
homogeneous liquid at rest under gravity, I have given
the corresponding ones for a heterogeneous fluid in equi-
librium under any system of forces, as well as for certain
cases of simple motion. The articles containing the
latter results, with certain others intended for a second
reading, are marked with an asterisk. ‘

G.E. H. b

415914



vi PREFACE.

Chapters VI. and VIII contain descriptions and
diagrams of the most important hydrostatic machines,
as well as of the different apparatus for the determin-
ation of specific gravities.

In Chapter IX. it is shewn that it follows from
certain experiments, that the energy of a material system
depends partly on the extent of the surfaces separating
the different substances. On the assumption of the
existence of this surface-energy, several well-known
capillary phenomena are deduced: in some cases. alter-
native proofs depending on the existence of a surface-
tension are also given. In connection with this part
of the subject I have made considerable use of the
Chapter on Capillarity in Prof. Clerk Maxwell’s text-
book on ‘Heat’, and of the article contributed by him
to the Encyclopedia Britannica.

I take this opportunity of thanking my two friends
Mr W. B. Allcock, M.A,, Fellow and Tutor of Emmanuel
College, and Mr H. C. Robson, M.A., Fellow and Lecturer
of Sidney Sussex College, for their kindness in revising
the proof-sheets, often when very busy with the work
of the term, and for their many very valuable suggestions
and criticisms. My thanks are also due to my friend
Dr Hobson, F.R.S., for his advice on several important
points.

I shall be glad to receive any suggestions or cor-
rections.

JOHN GREAVES.

CHRIST'S COLLEGE,
January, 1894.
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CHAPTER 1L

INTRODUCTORY.

1. IN Mechanics material substances are classified
according to their behaviour under the action of forces.
In Statics and in the Dynamics of a Rigid Body we in-
vestigate the effect of a force on an ideal body, a perfectly
rgid one, i.e. one that moves as a whole only, never under-
going any alteration in either shape or size. We know
however from actual experience that very many bodies
when acted on by force are perceptibly altered in shape,
size, or in both. In some bodies unless the forces are very
large, the alterations may be imperceptible, but it is very
difficult to believe that when different portions of the body
mutually act on one another, the body does not yield in
any way.

Let us consider the mutual actions between the two
portions of a substance lying immediately on either side
of a small plane drawn anywhere within the substance.
The two actions form a stress: they may be resolved at
right angles to the plane and along it. The two forces
perpendicular to the plane will be either pulls or thrusts,
according as they tend to keep the two portions together,
or to keep them apart, and together constitute a normal
stress: the two along the plane form a tangential or

G.E, H. 1



2 INTRODUCTORY.

shearing stress. A normal stress is generally accom-
panied by a compression or an extension according as it
consists of thrusts or pulls. A shearing stress is gener-
ally accompanied by the matter on one side the plane
sliding over the other. These deformations are termed
strains; and the latter is termed a shearing strain or
simply a shear. The deformation produced by a pair of
scissors used in the ordinary way is an illustration of a
shear.

2. The following experiments illustrate the different
ways in which different substances behave when they have
been deformed and the stress producing the deformation
is removed.

(a) Stretch a steel wire by hanging a weight at one
end and fixing the other end: it will be found that if the
weight be not too large, the wire will resume its original
length when the weight is removed.

() Press the two prongs of a tuning-fork towards
one another; when released they will spring back into
their original position.

(c) Push an inverted tumbler containing air below
the surface of some water so as to compress the air; when
the tumbler is removed the air will resume its original
bulk.

(d) Press your finger against a piece of wet clay; when
it is removed a perceptible dent is left on the surface of
the clay.

We notice then a great difference between the be-
haviour of the steel and air in experiments (a), (b) and (c)
and that of the clay in experiment (d). When the par-
ticular stress in question is removed, in the case of the
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steel or air, the corresponding strain disappears, whereas
_ in the case of the clay the deformation is permanent. We
express these facts by saying that for the stresses in ques-
tion steel and air are perfectly elastic, whereas the clay
i8 not, except possibly when the stresses are very small.
On account of this property clay is termed plastic. It
should be noticed that the strains produced in the ex-
periments are different one from another, and that it
does not follow that because a substance is elastic for
one sort of strain it is so for another: thus air, which is
perfectly elastic for a change in bulk, is not so for a
change in shape: we must therefore distinguish between
Elasticity of bulk and Elasticity of shape. Nearly
all substances possess the former property.

3. Let us now make the following experiments. In-
crease the weight suspended from the steel wire in ex-
periment (a) very considerably, and it will be found that
the strain produced in the wire does not disappear when
the weight is taken off, but is permanent. Again, if a
slight blow be given to a glass tumbler, the tumbler
rings for a short time, indicating that it is vibrating and
consequently undergoing a change of shape, and then
resumes its old shape. If however a violent blow be
given to the tumbler, it breaks.

From these experiments we see that a body may be
perfectly elastic within certain limits but not beyond
them. If when the limits of perfect elasticity are ex-
ceeded the body breaks like glass, it is termed brittle.
If on the other hand it bends and remains bent rather
than breaks, like wrought iron, it is termed tough.

In the experiments we have considered so far the

1—2



4 INTRODUCTORY.

strain in each case has been produced practically at once
and has not increased when the stress occasioning it has
acted for a longer time. If on the other hand a lump of
pitch be placed on a table, it is found that the longer the
time it is left the more it flattens itself out. When the
strain produced by a particular stress increases with the
time during which the stress acts, the substance is termed
viscous. The more slowly the strain is produced the
greater is the viscosity.

Plastic bodies sometimes yield more readily to one
change of shape than to another; thus some like copper
are easily drawn out into wire and are termed ductile;
others like gold are easily hammered out into sheets, and
are termed malleable; others again like moist clay or wax
can be easily moulded into any shape and are termed soft.

4 We have seen then that substances are termed
elastic, viscous, &c. according to the different ways in
which they behave under the action of forces, What is
the essential difference between the behaviour of a solid
and that of a fluid? We are all aware that a mass of any
substance which we recognise as a solid if placed on a flat
table quickly settles down into a position of equilibrium.

Let ABC be this mass in its position of equilibrium.

Let DE be a plane inclined to the horizon, dividing
the solid into two portions.
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The weight of the upper portion would cause it to
glide down the plane, if there were no shearing stress to
prevent such motion. We infer then from this that every
solid can resist a shearing stress without giving way to
an indefinite extent. If now a considerable mass of water,
glycerine, pitch -or any substance which we recognise as a
liquid be placed on a flat table, it will spread itself out
continuously, quickly in the case of the water, and very
slowly in the case of the pitch, and will never be found in
equilibrium except with the surface exposed to the air
horizontal. As the above liquids can be supported to any
depth in a vessel, they must be capable of exerting normal
stresses; but as equilibrium is impossible when shearing
stresses however small are required to maintain it, we
infer that the above substances cannot exert shearing
stresses when they are in equilibrium.

We cannot perform an experiment similar to the last
with a gas, but we are aware of the experimental fact that
if a gas be allowed access to any closed vessel, it will fill
every nook of that vessel, even though a small shearing
stress would prevent this. This points to the conclusion
that no shearing stress is exerted in a gas at rest.

We are thus led up to the following definition of a
fluid :—

A Fluid is a substance which will yield to any
continued shearing stress however small: in other
words, when a fluid is in equilibrium, the stress
across any plane in it is entirely normal to that
plane.

It should be observed that a fluid will yield in time to,
the smallest shearing stress. It may however resist a
considerable shearing stress, if applied for only a short
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time: thus, a sudden blow may produce no perceptible
impression on a lump of pitch, which we regard therefore
a8 & hard liquid. A similar blow will, on the other hand,
produce a visible dent in a lump of putty, though the
putty will resist a small shearing stress for an indefinite
period of time. It is therefore a soft solid.

6. If three bottles of the same shape and size be filled
respectively with water, glycerine and treacle, and then
held upside down, it will be found that the water escapes
first and the treacle last. Again, if these three liquids be
each placed in a separate tumbler and set rotating by
means of a spoon, it will be found that the treacle comes
to rest first and the water last. If there were no friction,
or shearing stress, the bottles would empty themselves in
the same time if 4n vacuo, and the liquids in the tumblers
would go on rotating indefinitely. We infer then that when
liquids are #n motion, the stresses exerted are not entirely
normal. The same is true of gases, since when set ro-
tating in a closed vessel they gradually come to rest. It
i8 obvious, however, from the experiments just described
that the shearing stresses in the glycerine are less than
those in the treacle, but greater than those in the water.
This fact is expressed by saying that of the three, treacle
i8 the most viscous, water the least. We are thus led on
to the idea of a fluid in which there is no shearing stress
even when it is in motion, though we have no experience
of such a one. Such an ideal substance is termed a
perfect fluid.

DEr. A perfect fluid is one in which no shearing
stress is exerted, whether the fluid be at rest or
in motion.
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6. We have seen that the term fluid includes both
liquids and gases: how then do we distinguish between
them ? If a quantity of a gas be enclosed in a vessel, and
the vessel be enlarged to any extent, it is found that the
gas will still occupy the whole vessel: this is certainly
not true of a liquid. '

DEr. A Gas is a fluid, a given portion of which
can be made to expand indefinitely by increasing
sufficiently the space to which it has access.

A Liquid is a fluid, the volume of a given portion
of which never exceeds a definite amount, no
matter to how large a space it has access, or how
small the pressure to which it is subjected.

It is an experimental fact that when the volume of a
liquid in a closed vessel is less than that of the vessel, the
liquid evaporates until the part of the vessel not occupied
by the liquid is filled with vapour. It might then be
objected to the above definition of a liquid that its vapour
can expand indefinitely. This is true, but does not affect
the definition, because it is not the liquid as such which
expands, but the vapour into which a portion of it is con-
verted.

It has been proved experimentally that all gases can
be converted into liquids by lowering their temperature
and increasing the pressure on them sufficiently. When
however the temperature of a gas is above a certain point
no increase of pressure alone will bring about a con-
densation, whereas when the temperature is below this
point, a sufficient increase of pressure produces con-
densation. This temperature which varies for different
gases is called the critical temperature. When the tem-
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perature of a gas is below its critical point, the gas is
termed a vapour, and when above, a permanent gas or
simply a gas.

Another property characteristic of a gas is that when
it is in the presence of another gas there is no definite
surface of separation between them ; whereas, when a liquid
is in the presence of a gas or of its own vapour, there is
a definite surface of separation.

Dr Andrews’ experiments on the liquefaction of Carbon
Dioxide have shewn that the properties of a liquid and its
vapour may approach so near to one another that it is
impossible to say in which state the substance is.

7. In Art. 4 we were led up to the characteristic pro-
perty of a fluid by considering the behaviour of liquids
and gases in certain circumstances: now it may have
suggested itself to the student that small quantities of
liquids under similar circumstances behave differently.
Thus a drop of mercury placed on a flat piece of glass does
not spread itself out flat but rolls itself up into a ball : and
similarly drops of dew are small spheres of water collected
on the leaves of plants. We are not justified then in
asserting that in the case of small quantities of liquids at
rest there are no shearing stresses. These phenomena
and others, which are due to Capillarity, point to the
conclusion that small stresses, other than normal thrusts,
act among the particles on the surface of a liquid. When
we are considering small quantities of liquids, either in
the form of drops or in fine tubes, the effect of the surface
forces is very appreciable, but when the quantity of liquid
is large, the effect is so small, that we shall not take into
account the capillary forces.



CHAPTER 11
ProPERTIES OF FLUIDS.

8. WHEN any plane area is acted on by a thrust, the
pressure on the area is the intensity of the thrust, and
may be umiform or varying.

Der. Uniform Pressure. The pressure on a plane
area s uniform when the thrust on any portion of it 18
proportional to the area of that portion, and the pressure
18 measured by the thrust on a unit area.

When the thrust on any portlon is mot proportlonal to
its area, the pressure is varying.

DEr. Mean Pressure. The mean pressure on a plane
area 18 the uniform pressure on it which uill give the same
resultant thrust as the actual one. Hence, if A be the area,
and P be the resultant thrust on t, the mean pressure s
P/A. _

DEF. 'The pressure at any point of an area is
the limit of the mean pressure on an indefinitely
small area enclosing the point.

The idea of a varying pressure may become clearer to the student, if
he observes the analogy it bears to a varying velocity. When we assert
that the velocity of a body at a particular instant is 30 feet per second,

we do not mean that it will of necessity travel 30 feet in the next
second, because its velocity may change in the meantime, but that it will
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travel at that rate for an indefinitely small interval of time containing
the instant in question. If a body travel 30 millionths of a foot in one
millionth of a second, its mean velocity during that portion of a second
is 80 ft. per sec. Similarly if the thrust on 1/1000000 square inches is
8/1000000 1bs., the mean pressure on that small area is 3 Ibs. per 8q. in.
This will approximately be the pressure at any point of the small area,
but we cannot assert that the thrust on a square inch is 8 lbs.

9. If the force on a plane area be normal, but a pull
instead of a thrust, we must substitute tension for pres-
sure in the above, and we shall obtain the meaning of
the tension at any point when uniform and when varying.

If the force be tangential we can define in a similar
way the tangential force per unit area at any point.

It is easily shewn that pressure and the tangential
force per unit area are of one dimension in force and —2
in length, i.e. of 1 dimension in mass, —1 in length, and
—2 in time.

Ex. 1. If the thrust on an area of 4 sq. yards be 1000 lbs.

weight, and the pressure over it be uniform, find its magnitude in
ft. Ib. sec. units.

Ex. 2. A solid rectangular parallelopiped, weight 1 kilo-
gramme, and edges of length 12 cm. 6 cm. and 2 cm. respectively,
rests on a horizontal table. If the pressure on the table be uniform,
find its magnitude when the different faces are respectively in
contact with the table, in ¢.G.s. units.

10. If we consider the normal stresses across different
planes drawn through a point in a solid, we shall find
that generally they are different in magnitude. For in-
stance if we consider a particular brick in a wall, the
thrust per unit area on a horizontal face, due to the
weight above it, is probably different from that on a
vertical one, due perhaps to the thrust of a buttress or an
arch. The pressure then at any point of a substance will



PROPERTIES OF FLUIDS. 11

in general depend on the direction of the plane across
which we are estimating the stress. We shall prove how-
ever that if there is no tangential stress across any plane,
as in the case of a fluid at rest, the pressure at any point
is the same for all planes through the point.

11. PropP. ‘The pressure at any point of a ﬂuld
at rest is the same for all directions.

(2) For a single external force, viz. grawty.

Let O be any point in the fluid. From O draw 0A,
OB, 0C mutually at right angles, and join 4B, BC,
CA.

Let p,, p be the mean pressures across the faces BOC,
ABC, and let p be the density (Art. 16) of the fluid within
the tetrahedron A BCO.

The forces acting on the fluid within the tetrahedron
are

(1) its weight 4gp.0A4.0B.OC in direction making
some angle 6, with OA4,

(2) the thrust on the face OBC, {0B. OC.p, along
04,

(3) the thrust on the face ABC, p . area ABC, at right
angles to A BC,

(4) the thrusts on the faces 40B, AOC.

Since the triangle BOC is the projection of the triangle
ABC on the plane BOC,

ABOC =AABC cos ¢,
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where ¢ is the angle between A BC and BOC, i.e. between
0OA and the perpendicular to 4 BC.

Since the fluid tetrahedron is in equilibrium, resolving
along 04, we have
40B.0C.p,— AABC.pcos ¢

+39p.04.0B.0Ccos0=0,
*30B.0C.p,~30B.0C.p+}gp.0A.0B.0C cos 8 =0;
Sop.—p+3gp.0Ccos0=0.
When 04, OB, OC are taken indefinitely small, this
equation reduces to p, = p, and the mean pressures on the
faces become the pressures at O in the corresponding
directions.

Hence the pressure at O along OA is equal to that
perpendicular to ABC.

In a similar way we can shew that the latter is
equal to the pressure along OB or OC, and by varying
the magnitude of 04, OB and OC, we can shew that
this holds whatever the direction of the plane ABC.

Nore. We have assumed in the above that the
density is uniform; if it is not, we may regard p as the
mean density of the tetrahedron and the proof still holds.

(B) For any system of external forces.

In this case we shall have instead of the average
weight, the average resultant external force, and instead
of the vertical, we shall have the direction of the average
resultant external force. Proceeding as before we obtain
the same result.

It should be observed that the reason the resultant external force in
(B) and the weight in (a) of the indefinitely small tetrahedron disappear
is that as they depend on the volume of the tetrahedron, they are of the
third order of small quantities, whereas the thrusts, depending on the
areas of the faces, are of the second order only.
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12, We have proved the last theorem for a fluid a¢
rest: it can however be extended to the case of a fluid
wn motion, provided the motion is such that there is no
tendency of one portion to slide over another, so that no
friction or tangential stress is exerted. As illustrations of
such motion we may take that of the whole fluid in a
given direction with uniform acceleration, or the rotation
of the whole fluid as if solid about a fixed vertical axis
with uniform angular velocity. For considering an in-
definitely small element of the fluid in the shape of a
tetrahedron as before, we know that the thrusts on the
faces and the resultant external force give the element
its resultant acceleration: therefere by Newton’s Second
Law of Motion, the resolved parts of the thrusts along
an edge of the tetrahedron -+ the resolved part of the
resultant external force =the mass of the element x the
acceleration along the edge.

But the resultant force and the mass both depend on
the volume of the element and are therefore small quan-
tities of the third order, while the thrusts depending on
the areas of the faces are of the second order. Hence it
follows as in Art. 11, that the pressures are the same in
all directions.

It is obvious from the above, that in a perfect fluid,
which can exert no tangential stress whether it is at rest
or in motion, the pressure at a point is always the same
in all directions.

13. Pror. The resultant thrust on an element of flurd
at rest whose linear dimensions are all indefinitely small is
opposite to the resultant external force.

For considering the equilibrium of the element the



14 PROPERTIES OF FLUIDS,

only forces acting on it are the resultant thrust and the
resultant of the external forces—they must therefore be
equal and opposite. Also since the latter is a small
quantity of the third order, the former is one also.

In the case of a perfect fluid in motion, and of any
fluid for the motion described in Art. 12, the resultant
thrust and the resultant external force on an element
have a resultant equal to the mass into the acceleration of
the element, in the direction of the acceleration.

14. Tt is an experimental fact that all fluids are more
or less compressible : for most liquids, however, the altera-
tion in volume produced by any increase in pressure that
is not very great, is so small that it is neglected, and the
liquid is for practical purposes incompressible.

DEF. When the volume of any substance 1s reduced, the
consequent compression s measured by the ratio of the
reduction in volume to the original volume.

DEF. The compressibility of a fluid 1s measured by
the limit of the ratio of the compression produced to the
wncrease of pressure producing i, when this increase ts
indefinitely small. Thus, if p be the original pressure,
p’ the new pressure, v the original volume, and ' the
new volume, the compressibility

=Y p-ppor-1 &
v ’ v dp’ _

DEr. Elasticity. The elasticity of a fluid 18 measured
by the limit of the ratio of an indefinitely small increase in
pressure to the compression produced by +. Thus, if p be
the original pressure, p’ the new pressure, v the original
volume, and ¢’ the new volume, the elasticity

, v—vo dp
=(p—p)/ - or—'v%.
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Ex. 1. If the compression in water produced by an increase of
pressure of 145 1bs. wt. per sq. inch be ‘00005, find what diminution
of volume, a pressure of 1000 lbs. per sq. in. will produce in 100
cubic feet. What is the elasticity of water in ft. Ib. sec. units ?

Ex. 2. A cylinder, axis vertical, and 2 sq. in. in section contains
water to a depth of 10 ft. A close fitting piston weighing 600 Ibs. is
placed on the water so as to be supported by it, find what alteration
in the depth of the water it will produce.

15. Pror. Transmissibility of liquid pressure.
An increase of pressure at any point of an incompressible
liquid at rest in a closed vessel under the action of any
system of external forces 18 transmitted wnthout change to
every other point.

Let A, B be any two points in the liquid.

(a) When the straight line A B lies entirely in the liquid.

Construct an indefinitely thin cylinder having 4B for
axis,

The liquid contained within the cylinder is kept in
equilibrium by

(1) the thrusts on the ends at 4 and B,
(2) the thrusts on the curved surface, which must
be at right angles to 4B,

(8) the resultant external force.
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Resolving along A B, we see that the difference of the
thrusts on the ends at A and B is equal to the resolved
part along A B of the external force, i.e. is constant.

Hence the pressure at B always differs by a constant
amount from the pressure at 4.

(B) When the straight line AB 1s not entirely in the
liquid.

Join A B by a series of straight lines AP, PQ, QR, RS,
SB lying entirely in the liquid.

P Q

Then the pressure at A — that at P = a constant,

.................. Pooeoe Q= oo,
.................. Q=i R e,
.................. ) S T
.................. 8 = vevece B=m e

.. the pressure at A — the pressure at B is constant.

Specific Gravity.

16. DEr. The specific gravity of any substance is the
ratio of the weight of any volume of that substance to the
wetght of an equal volume of some standard substance.
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The substance usually adopted as the standard is pure
distilled water at a temperature of 4° C.

In text-books on Mechanics the density of a substance
has been defined as the mass contained in a unit volume ;
hence it follows that the specific gravity of a substance is
the ratio of ts density to that of the standard substance.

For the ratio between the weights of equal volumes of
the substance and the standard substance is equal to the
ratio between the-corresponding masses, and this again to
the ratio between the densities.

Density iz shewn in works on Mechanics to be of one dimension in
mass, and — 8 in length : the density of a given substance will therefore
vary with the units of mass and length, On the other hand specific

gravity being a ratio merely, depends only on the standard substance
and not on the fundamental units.

In the o. 6. 8. system of units, the unit volume is the cubic centimetre,
and the unit mass is that of a cubic centimetre of water, so that the
density of water is 1, the same as its specific gravity, if water be the
standard substance. In the British system of units, the unit volume is a
oubic foot, and the unit mass the Imperial Pound, so that as the mass of
& oubic foot of water is about 1000/16 1bs., the density of water is 1000/16
nearly.

17. Pror. The weight of a body varies as ts volume and
1ts specific gravity conjointly.

Let V be the volume of the body, W its weight, and S
its specific gravity.

Let w =the weight of a unit volume of the standard
substance.

‘. wS=the weight of a unit volume of the given
body.

‘. wVS = the weight of a volume ¥ of the body;

W=wVS;
W VS,
G. E. H. 2
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If w=1, ie. if the unit weight be the weight of a
unit volume of the standard substance,

W="7V8.

18. Pror. 7o find the specific gravity of a mizture
of substances of given volumes and specific gravities.

Let V,, V,, V;... be the volumes of the different sub-
stances, S, S, S; ... their respective specific gravities.

Let o be the specific gravity of the mixture. Then
if the volume of the mixture is the sum of the volumes of
the components, i.e. V; + V;+ V;+...; its weight must be
o (Vi+ Vo+ Vi+...)w, (Art.17).

But the weight of the mixture = the sum of the weights
of the component parts
= V]Slw + V’S’w + .V.S,w + ... ’
oM+t )w=V8+ V.8 +...)w;

ATAY
T i+ Vet

19. Pror. To find the specific gravity of a mizture of
substances of given weights and specific gravities.

Let W,, W,,... be the weights of the different sub-
stances, S, S,, ... their respective specific gravities.

W W,
. their volumes are o S’ .. (Art. 17).

Then if the volume of the mixture is equal to the
sum of the volumes of the component parts, the volume of

the mixture is
(g5 )w
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. if o be its specific gravity, its weight is
W, W, .
(—‘g—l"i‘ S, + ...) ag,

-(E LA

5 +...)a‘=W,+ Wot...;
W.+ W, +...
o=

1 3
-+ o +---
5 8,

Nore. It has been assumed in this article and the preceding that the
volume of the mixture is the sum of the volumes of the component
parts; the results therefore will not hold for cases where there is an
expansion or shrinkage in volume, as for instance when a salt is dissolved
in water,

EXAMPLES.

1. The specific gravity of sea-water being 1°08, find how much fresh
water must be added to a gallon of it to reduce its specific gravity to 1-01.

2. Three pints of a liqguid whose specific gravity is ‘8 are mixed with
five pints of another liquid whose specific gravity is 1:04. Find the
specific gravity of the mixture if there is a contraction of 5 per cent. on
the joint volume,

8. Two volumes of specific gravities s, &/, and of volume v, v’,
having been mixed, the specific gravity of the mixture is found to be o.
Find the volume of the mixture. [M. T., 1864.]

4. Shew that the specific gravity of a mixture of given substances
is greater when equal volumes are taken than when equal weights are
taken.

5. The specific gravity of a mixture of equal volumes of two sub-
stances is S, and that of a mixture of equal weights of the same sub-
stances is S,, determine the specific gravities of the two substances.

6. A substance whose specific gravity is *7 is dissolved in ten times
its own weight of water, and the specific gravity of the solution is 1:01,
find by how much the total volume is reduced.

2—2
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ILLUSTRATIVE EXAMPLE

If the units of mass, length, and time be respectively a lbs., b ft., and
© secs., compare the standards in the formule W =gpV, and W=8V.

What relation must exist among the fundamental units in order that
the standards may be the same ? [8. John's Coll., 1887.]

Since the three fundamental units are given, the unit of weight is
determined, and the value of g, which is clearly 32¢2/b, if 83 be taken as
its value when a foot and a second are units.

In the formula W=gpV, it is assumed that the standard substanoce is
of unit density, and therefore putting V=1, and p=1, we obtain that the
weight of & unit volume is g or 32¢%/b.

In the formula W=_S8V, it is assumed that the standard substance is
of unit specific gravity, and therefore putting V=1, and S=1, we obtain
that the weight of a unit volume is 1.

Henoce the density of the standard substance in the first formula is g
times that in the second, where g=382c3/b.

The condition that the standard may be the same for each formula is
that g=1, or 82¢3=b.

EXAMPLES. CHAPTER II.

1. If the specific gravity of water be unity, and a grain be
taken as the unit of weight, what must be the unit of volume in
order that it may be always true that the weight of any body is
equal to the product of the volume and the specific gravity ?

[M. T., 1866.]

2. If in the equation W=gpV, the number of seconds in the
unit of time be equal to the number of feet in the unit of length,
the unit of weight be 750 Ibs. and a cubic foot of the standard sub-
stance weigh 13500 oz., find the unit of time, [M. T., 1872.]

3. Taking the pressure of the atmosphere as equal to 144 1bs. wt.
per square inch, find its value in dynes per centimetre, assuming
that a gramme is ‘0022 of a pound, and that a metre is 39 inches.

[Pet. 1888.]

4. Prove that if the elasticity of a fluid is equal to the pressure,
the pressure is inversely proportional to the volume. [M. T., 1875.]
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5. If the unit of pressure be that of the atmosphere, the unit

of angular velocity that of the earth’s rotation, the unit angle a

radian, and the unit of acceleration that of gravity, compare roughly
the density of the standard substance with that of water.

[M. T., 1891.])

6. If the linear dimensions of a fluid medium at rest under
parallel forces uniformly distributed throughout it be varied uni-
formly in the ratio 1 : n, shew that the pressure at any point is
varied in the ratio n2:1; and that, if 4, B, C be three specified
elements of the fluid, the moment of the thrust on the plane 4 BC,
about the line 4 B, is varied in the ratio 1 : %, [M. T., 1878.]

7. Shew that if in a certain substance the stress at every
point across three planes not parallel to the same line be normal
and the same for all three, the substance is a fluid,

[Christ’s Coll., 1891.]

8. If the stress across a series of parallel planes in a substance
at rest be uniform and tangential, prove that at every point there
is another plane across which the stress is also tangential and the
same per unit area. [M. T., 1877.]

9. Prove that if in & certain medium there is no shearing stress
across any plane parallel to either of two given planes, there is none
across one perpendicular to both planes. [Christ’s Coll., 1891.]




CHAPTER III

GENERAL THEOREMS RELATING TO PRESSURE.

20. Pror. If a flurd, homogeneous or heterogeneous,
be at rest under the action of grawity, the pressures at any
two points in a horizontal plane are the same.

(It is assumed that we can join the two points by a
horizontal line, curved or otherwise, lying entirely in the
fluid.)

Let A, B be the two points.
We shall consider two cases:
(«) When the straight line 4B lies entirely in the fluid.

About AB as axis construct a cylinder of indefinitely
small section.

- =

Consider the equilibrium of the fluid contained within
this cylinder.
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The forces acting on this fluid are

(i) its weight, vertical, and therefore perpendicular
to AB,

(ii) the thrusts on the curved surface, everywhere
perpendicular to the surface, and therefore perpendicular
to AB,

(iii) the thrusts on the ends at 4, B, along 4 B.

.". the thrust on the end at 4 = that on the end at B:
and the ends are equal in area.

~. the pressure at 4 = the pressure at B.

(B) When the straight line A B does not lie entirely in
the fluid.

We can in this case join AB by a broken horizontal
line APQRSB, the several parts AP, PQ, QR, RS, SB
being straight and lying entirely in the liquid.

B
s
A
R
3 Q

By (a) the pressure at A = that at P,

= that at @,

= eiieneens B

It should be observed that the above theorem holds for
gases and for fluids of varying density.
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21. Pror. In a homogeneous fluid at rest under the

action of grawity, the difference of pressure at two ponts
varies as the difference of their depths.

Let P, Q be the two points.

‘We shall consider two cases:

(a) When the straight line P@Q is vertical and entirely
in the liquid. )

About PQ as axis construct a cylinder of mdeﬁmtely
small section a.

Let p = the pressure at P, p’ that at Q; let w be the
weight of the unit volume of the fluid.

Consider the equilibrium of the fluid contained within
the cylinder.

The forces acting on it are

(i) the thrusts on the curved surface, everywhere
horizontal,

(i) its weight, vertlcally downwards, PQ . aw,
(iii) the thrust on the end at P, vertically downwards,
m .
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(iv) the thrust on the end at @, vertically upwards, p'a.
.. resolving vertically
pa=pa+ PQ.aw,
P —p=PQ.w= R} —-h)w,
if h, b’ are the depths of P, Q below any given horizontal
plane.

(8) When the straight line PQ is not vertical, and
does not lie entirely in the fluid.

We can join PQ by a series of straight lines PA, 44’,
A’B, BB, BC, CC’, C'Q, each of which is entirely in
the fluid, and either vertical or horizontal.

As we move along the horizontal lines AA4’, BB,
CC, the pressure does not alter; and by case («) as

we move down PA, A’'B, the pressure is increased by
(PA + A'B)w, and as we move up B'C and C'Q, it is
decreased by BC+CQu; .. ..

*. the pressure at  — that at P
—w(PA.-!.- A'B-BC~-C'Q).
=(h'—-h)w=gp(k.—h),.
if p =the density of the liquid. ."
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Cor. Hence in a homogeneous fluid the pressure at
two points at the same level is the same, even when they
cannot be joined by a horizontal line, curved or otherwise,
lying entirely in the fluid. _

Conversely, if the pressures at two points in a homo-
geneous fluid be the same, they must be at the same level.

22. Pror. The densities at two points in a fluid at rest
under gravity and in the same horizontal plane are equal.

(It is assumed that the two points can be joined by a
horizontal line, curved or otherwise, lying entirely in the
liquid.)

Let P, @ be the two points.

P Q
| - ]
P’ 4

Draw PP, QQ' vertically downwards, and of the same
indefinitely small length. Then /, @ are in the same
horizontal plane.

Since PP’ is indefinitely small, the densities at P and
P’ differ by an indefinitely small quantity of the order
PP’ ; hence the fluid between them may be regarded as
homogeneous, and similarly for the fluid between @ and ¢

Hence if p, p’ be the densities at P, @ respectively,
the pressure at P’ —that at P =gp . PP’ (Art. 21).

AlSo..ccvuirarnnnnnn. Q@ —.enenne. Q=g9p".0QQ".
But the pressure at P’ = that at ¢ (Art. 20),
and verriesasirenes e P=r0irienss Q;

s gp. PP =gp'.QQ,
Sp=p.
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Cor. The surface of separation between two fluids
of different densities is a horizontal plane.

For if the surface is not a horizontal plane a horizontal
straight line PQ can be drawn cutting
the surface, so that P is on one side
the surface and @ on the other, i.e. the
density at P is different from that at P / Q
Q, which is impossible by the above
proposition. '

As particular cases of the above, we may take the surface of a liquid
with an atmosphere above it or with merely its own vapour above it. It
is of course assumed that both fluids are at rest; if one, the atmosphere
for instance, were in motion, the surface of separation would not of
necessity be a horizontal plane,

It follows from the above Cor., that if a homogeneous liquid at rest
have a number of isolated surfaces in contact with the same atmosphere
at rest, the surfaces must lie in the same horizontal plane, This fact is
popularly expressed by the saying that ‘water always seeks its own level.’
This is illustrated by the experimental fact that, if water be conveyed by
closed pipes to a town from a reservoir outside, it will always rise to the
level of the surface in the reservoir if free to do so, but no higher.

23. Pror. To determine the pressure at any depth in
a homogeneous liquid in contact with an atmosphere at rest.

By Art. 22, the surface of the liquid is a horizontal
plane; let IT be the pressure of the atmosphere at the
surface, and p that at a point P, at a depth h below the
surface, Let p be the density of the liquid.

By Art. 21, p—TI=gph,

~ p=1II+ gph.
If there is no atmospheric pressure,
p=gph,

i.e. the pressure at any point varies. as the depth below the
surface when there 18 no atmospheric pressure.
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When II is not zero, let us imagine the atmosphere to
be removed, and a stratum of the liquid of thickness
II/gp(=h' say) to be placed above the original liquid.
Then the pressure at a point at a depth i below the
original surface is gp (h +%'), i.e. gph + 11, or the same as
it was before the atmosphere was removed.

The upper surface of the superimposed liquid is termed
the Effective surface, and hence the pressure at any point
of a homogeneous liquid 18 proportional to the depth below
the effective surface.

It is on this account that the pressure at any point
is often said to be due to such a depth of liquid, or to
such a ‘head’ of liquid, meaning that it is at that depth
below the effective surface. Thus we may say that a
certain pressure is that due to a head of 60 feet of water,
meaning that it is the same as the pressure at a point in
water 60 feet below the effective surface.

EXAMPLES,.

1. The pressure in the water-pipe at the basement of a building is
84 1b. wt. to the square inch, whereas at the third floor it is only 18 1b. wt.
to the square inch., Find the height of the third floor.

2. Water being the standard substance, find the units of length and
time that the formul®e p=gpz, p=0c2, may both give the pressure at &
depth z in ounce weights, [M.T., 1865.]

8. Find the pressure in lbs. wt. per 8q. foot at a point of the base of
a oylinder whose section is 5 sq. ft., and which contains mercury (sp.
gr. 13-6) to a depth of 3 inches, water to a depth of 18 inches, and oil
(sp. gr. *65) to a depth of 6 inches, the atmospheric pressure being 15 lbs.
to a 8q. inch, )

4. Prove that if a parallelogram be immersed in any manner in a
heavy homogeneous fluid, the sum of the pressures at the extremities of
one diagonal is equal to the sum of the pressures at the extremity of the
other diagonal. [M. T., 1871.]
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8. The lower ends of two vertical tubes whose cross sections are 1
and 1 square inches respectively are connected by a tube. The tubes
oontain mercury (sp. gr. 13°6). How much water must be poured into
the larger tube to raise the level of the mercury in the smaller tube by
one inch ?

6. A right circular cone whose height is 1 foot, area of base 2 sq. ft.,
contains 18 cu. inches of meyoury, 126 of water, and 342 of oil (v. Ex. 8);
find the pressure at the lowest point, when it is placed with axis vertical,
and the vertex downwards, the atmospheric pressure being 15 lbs. per
8q. inch,

7. Three fluids, whose densities are in A.p., fill a semicircular tube
whose bounding diameter is horizontal. Prove that the depth of one of
the common surfaces is double that of the other. [M.T., 1861.]

8. If mercury be taken as the standard of density and a yard and
minute as the units of space and time, find the depth below the surface
of mercury at which the pressure is unity (a cubic inch of mercury weighs
nearly } 1b.) and express the unit of pressure in lbs. weight per sq. inch.

9. Two uniform vertical tubes are connected by a fine horizontal one,
and mercury is poured in until it occupies the horizontal tube, and a foot
of each vertical tube. Water is now poured into one tube and glycerine
into the other, so as to occupy lengths of 2 ft. and 4 ft. respectively.
Find the point in the other tube where the pressure is the same as at the
mercury-glyoerine surface.

Specific gravity of mercury =136, that of glycerine =125,

10. Two indefinitely long cylinders equal in all respects are placed on
a horizontal plane, their bases being connected by a horizontal pipe of
small section. The cylinders are filled to depths of 2 ft. and 1 ft. by fluids
of densities 3p and 6p respectively. Shew that, if a volume of fluid of
density 4p, which would occupy a length of either cylinder equal to 8 ft.
be poured into the second oylinder, the free surfaces of the fluids in the
cylinders will lie in the same horizontal plane. [Jesus Coll., 1883.]

11. If p, p’ be the densities of two fluids (p < '), and the lengths of
the arms of a U-tube in which they meet be m and n inches respectively :
prove that in order that the tube may be completely filled, the height of
the column of the lighter fluid above the horizontal plane in which they
meet must be p’ (m —n)/(p’ — p) inches. [M.T., 1859.]

12. A small uniform tube is bent into the form of a circle whose
plane is vertical, equal volumes of two fluids whose densities are p, o fill
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half the tube; shew that the radius passing through the common sur-
face makes with the vertical the angle tan™! (p - ¢)/(p + o).
[Jesus Coll., 1886.]

18. A hollow cone, whose axis is vertical and base downwards, is
filled with equal volumes of two liquids, whose densities are in the ratio
of 3 : 1; prove that the pressure at a point in the base is (8 - :/i) times
as great as when the vessel is filled with the lighter fluid. [M. T., 1870.]

14. A uniform tube is bent into the form of a cycloid and held with
its vertex downwards and its axis vertical. It is then partly filled with
mercury (specific gravity 13-5) and chloroform (specific gravity 1-5).
Shew that, if the volume of the chloroform be three times that of the
mercury, their common surface will be at the lowest point of the tube.

[Jesus Coll., 1887.]

18. A closed tube in the form of an equilateral triangle contains equal
volumes of three liquids which do not mix, and is placed with its lowest
side horizontal. Prove that, if the densities of the liquids be in arith-
metical progression, their surfaces of separation will be at points of tri-
section of the sides of the triangle. [M.T., 1874.]

16. In the lower half of a uniform circular tube, one quadrant is
occupied by a liquid of density 2p, and the other quadrant is ocoupied by
two liquids, which do not mix, of densities p and 8p; prove that the
volume of the lower of the two latter liquids is twice that of the upper.

[M.T., 1868.]

17. A thin uniform cycloidal tube contains equal weights of two
fluids : if it be placed with its axis vertical, prove that the heights of
the free surfaces of the fluids above the vertex of the tube are as

(3a+b)% : (8b+a)’,
where a and b are the lengths of the tube which the fluids ocoupy.
[M.T., 1867.]

*24. We shall now prove more general theorems
analogous to those which we have proved in Arts. 20—22
for fluids at rest under gravity.

Der. Surfaces of equal pressure. The surface
passing through all the points of a fluid at which the pres-
sure 18 the same 18 a surface of equal pressure.
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We have seen (Art. 20) that in a fluid at rest under
the action of gravity, a horizontal plane is a surface of
equal pressure, and also one of equal density (Art. 22).

DEr. A line of force 18 a line whose direction at every
pownt cotncides with that of the resultant external force.

When gravity is the only external force, the lines of
force are vertical.

*25. Pror. In a fluid at rest the surfaces of equal
pressure cut the lines of force at right angles.

Let A be any point in the fluid. From A draw
an indefinitely short line AB in the surface of equi-
pressure through A. About AB as axis construct a

(8

A

circular cylinder, whose radius is indefinitely small com-
pared with AB.

(The radius is taken indefinitely small compared with
AB in order that when we take the pressure at P to be
the mean pressure over the end of the cylinder there, the

error, which depends on the radius of the end, may be
small compared with 4B.)

Since the pressure at A = that at B, the thrust on the
end at 4 = that on the end at B.

Therefore the resultant thrust on the cylinder is
perpendicular to AB. But (Art. 13) the resultant thrust
is along the line of force. Therefore the line of force is
perpendicular to 4B.
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Similarly we can shew that the line of force at 4 is
perpendicular to any line through A in the surface of
equi-pressure there.

Hence the surface of equal pressure at A is perpen-
dicular to the line of force there.

The proposition of Art. 20 is clearly a particular case of the above

theorem, in which the surfaces of equal pressure are horizontal planes at
right angles to the vertical lines of force.

EXAMPLES.
1. Prove that in a fluid at rest under the action of a foroe towards a
fixed point, the surfaces of equal pressure are conoentrioc spheres,

2. A uniform liquid rests in equilibrium in a vessel under the
action of gravity and of a force towards a fixed point at the bottom of the
vessel varying as the distance from that point : shew that the free surface
is a portion of a sphere. [M.T., 1886.]

*26. Pror. To shew that the distance between con-
secutive surfaces of equal pressure varies inversely as the
resultant force and the density, conjointly.

Let P be a point on a surface of equal pressure (p).

Draw the normal PP’ to meet the consecutive surface
of equal pressure (p") at P’

About PP’ as axis construct a circular cylinder of radius
indefinitely small compared with PP,

Consider the equilibrium of the fluid contained within
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this cylinder. Let p be the density, f the external force
per unit mass in direction PP, and a the area of the
section of the cylinder.

The forces acting on the cylinder are
(i) fpa.PP, the external force along PP,
(ii) pa, the thrust on the end at P along PP,
(iii) p’a, the thrust on the end at P’ along PP,
(iv) the thrusts on the curved surface, at right angles
to PP

Hence resolving along PP,
pa+fpa. PP —p'a=0;
S p—p=jfp.PP.

If ds be the length of the small arc PP’ measured
along the line of force this result may be expressed thus,

dp
ds = fp.
The proposition of Art. 21 is a particular case of this.

We can prove in a similar manner that p’—p=/fp. PP,
where PP’ is the distance measured in any given direc-
tion between the consecutive surfaces of equal pressure
p, P, and f is the resolved part of the external force in
the same direction. '

Thus if X be the resolved part of the external force
along any axis Oz, and dz be the length PP, this result
may be written

%=px.

G.E.H. 3
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EXAMPLES.

1. Prove that, if the density of a liquid at rest under gravity varies as
the square root of the pressure, the density increases uniformly with the
depth. [M. T., 1884.)

2. It it be assumed that the earth is a sphere, and that the attraction
it exerts on an internal point varies as the distance from the centre, prove
that the pressure at any point in the sea varies as the rectangle contained
by the segments of a line through the point. [Jesus Coll., 1889.]

8. If a ligquid be heterogeneous and of density pz/a at a depth z, shew
that the pressure is I1 + gpz3/2a, where II is the atmospheric pressure.
[Pet., 1885.]

4. Shew that the pressure at a small depth 2z below the surface of a
sphere of water attracted to the centre of the sphere with a foroe pro-
ducing an acceleration u/r? at a distance r is approximately

II + gp (2 + 2%a),

where a is the radius of the sphere and g the attraction on a unit mass
at the surface of the sphere, [Pet., 1887.]

*27. Pror. When a fluid 18 tn equiltbrium under the
action of a conservative system of forces, the surfaces of
equal density covncide with those of equal pressure.

Let P, @, as in the last Article, be any two points on a
surface of equi-pressure (p).

Let f, p be the resultant force and density at P,
S, p’ the same at Q.

Draw the normals PP, Q@ to meet the consecutive
surface (p’).

Since the external forces form a conservative system,
the work done on a particle of unit mass as it describes
the circuit PQQ'P’ is zero.

The work done in moving along PQ and Q'P’ is zero,
since the path is everywhere at right angles to the lines of
force.
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The work done in moving along Q@ =£". QQ’,

....................................... PP=—-f.PP;
S f.QQ —f.PP' =0.
But by the last Article,
fo . PP'—f'p . Q@ =0,

Sop=p
. the density is uniform over the surface of equi-
pressure.

If the fluid be such that the density depends solely
on the temperature and the pressure, the temperature
also must be uniform over a surface of equi-pressure, i.e.
the surfaces of equi-pressure, -density, and -temperature
coincide.

The theorem of Art. 22 is clearly a particular case of this one,

CoRr. The surface of separation between two flurds of
different densities, at rest under the action of a conservative
system of forces, 18 a surface of equi-pressure.

The proof is similar to that of the Corollary to Art. 22.

#28. The converse proposition to the last also holds,
viz. if the surfaces of equal pressure are also surfaces of
equal density, in a fluid in equilibrium, the external forces
must form a conservative system.

Consider any closed circuit, cutting the surface of equi-
pressure (p) in P and Q, and the consecutive one (p’) in
Q' and P.

The work done on a particle of unit mass in describing
the elements P'P, QQ’ of the path are — f.P'P, f’. QQ
respectively, where f, f* are external forces at P, @ in
directions PP’, Q@' respectively.

3—2
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But (Art. 26) fp. PP'=p'—p=f"p’. QQ’, and by hypo-
s =f.PP+f.QQ =0.

thesis p = p/,

The whole circuit can be divided up into pairs of elements
similar to PP’ and QQ’, such that the work done in
describing any pair is zero: therefore the total work
done in describing the whole circuit is zero; the system
of external forces must therefore be a conservative one.

The following is a particular case of this theorem, a
homogeneous liquid cannot be in equilibrium under the
action of a non-conservative system of forces.

*29. Pror. A homogeneous liquid completely filling a
closed vessel and under the action of a conservative system
of forces must be in equilibrium,

For, if not, the liquid will begin to move so that the
work done on it is positive, i.e. 8o that its Potential Energy
is diminished. But since, considered as a whole, the liquid
occupies exactly the same position as at first, its Potential
Energy is unaltered, i.e. it must be in equilibrium.



GENERAL THEOREMS RELATING TO PRESSURE. 37

*30. The propositions of Arts. 25—29 have been
deduced from the characteristic property of all fluids at
rest, whether viscous or otherwise, that the stress across
any surface is everywhere normal. In the case of perfect
fluids and, for certain kinds of motion, of viscous fluids
also (Art. 12), we can prove analogous theorems for fluids
in motion. When an element of fluid is at rest, we have
seen (Art. 13) that it is acted on by two equal and opposite
forces, the resultant external force and the resultant thrust:
when it is in motion, the resultant of these two forces
gives the element its resultant acceleration.

Thus if at a point P of the liquid, where the pressure
is p, the density p, the external force along a fixed line
Oz, X, and the acceleration along Oz, @, we can shew that
instead of the result of Art. 26, we have

B p(X-a).

¥*31. Propr. The direction of the resultant thrust on
an element of a perfect flusd tn motion, all of whose dimen-
sions are indefinitely small, 18 perpendicular to the surface
of equal pressure through the element.

The direction of the resultant thrust is independent of
the shape of the element, since it depends on the resultant
force and the resultant acceleration only, and both of these
are independent of the shape of the element.

Take an indefinitely small cylindrical element, whose
axis PQ lies in a surface of equal pressure. The thrusts
on the ends being equal and opposite, the resultant thrust
must be perpendicular to PQ. In a similar way it can be
shewn that the resultant thrust is perpendicular to any
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line in the surface of equal pressure. The required result
therefore follows.

EXAMPLES,.

1. Two equal and in every respect similar buckets (weight W) are
connected by a cord which passes over & smooth pulley. If a weight, 3W,
of water is poured into one bucket and a weight W into the other, compare
the pressure of the water at the base of either bucket with what it would
be if the bucket were at rest.

2. A closed vessel containing water and mercury is moved down-
wards with acceleration f: determine the surface of separation between
the two liquids, and the pressure at any point when fis (1) <g, (2) >g.

8. If a vessel in which water is contained slide down a smooth
inclined plane, find the inclination to the horizon of the surface of the
fluid when at rest relative to the vessel. Find the pressure at a given
distance from the surface.

82. We shall apply the last proposition to determine
the surfaces of equi-pressure in a fluid revolving with uni-
form angular velocity about a vertical axis. In this case,
if the vessel holding the fluid also revolve about the
vertical axis with the same angular velocity, there is no
tendency for one portion to slide over another, and the
proof will apply to a viscous fluid.

Pror. To determine the surfaces of equi-pressure in o
heavy fluid revolving with uniform angular velocity about
a vertical axis.

Let GN be the vertical axis, @ the angular velocity.

Let m be the mass of an element of the fluid, situate
at P. This element is acted on by its weight mg verti-
cally downwards and the resultant thrust, which together
give it the acceleration w?PN along PN. Their resultant
must therefore by Newton’s Second Law be mw*PN along
PN.
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Mark off NG along the axis above ¥, so that NG =7,
and join PQ.

‘* @GN :NP=g:w'PN,
the sides @GN, PN of the triangle GNP represent the
forces mg, and me?PN. Hence by the triangle of forces
P@ must represent the resultant thrust. Therefore (Art.

31) P@ is the normal to the surface of equal pressure
through P, and NG the subnormal is constant, (g/w?).

As the normal always intersects the axis NG, the sur-
face of equi-pressure must be one of revolution about NG,
and as the subnormal is constant and above N, the sur-
face must be generated by the revolution of a parabola
whose latus rectum is 2g/w? and whose axis is along NG,
with the vertex downwards. All the surfaces of equi-
pressure then are equal paraboloids of revolution about
the axis of rotation, and with vertices one below another.
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88. ProP. The surfaces of equi-pressure n the last
Article are also surfaces of equal density.

Let P, Q be two points on a surface of equi-pressure
(p)- Let p, o be the densities at P, Q respectively. Draw
PP, Q@ vertically downwards to meet the consecutive
surface of equi-pressure (p") in P, @, respectively.

Construct a cylinder of radius indefinitely small com-
pared with PP’ about PP’ as axis, and consider the fluid
contained within it.

The only vertical forces are the thrusts on the ends at
P and P and the weight, and there is no vertical motion.
Hence if a is the sectional area of the cylinder,

p'a=pa+gpa. PP,

s p—p=gp.PP.
Similarly P —p=go.QQ.
But PP =QQ’;

Sop=a,
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i.e. the surfaces of equi-pressure are also surfaces of equal
density.

CoRr. If there are two homogeneous fluids of different
density which do not miz, their surface of separation 8
one of the family of paraboloids.

For it is clear that this surface cannot cut a surface of
equal density, and must therefore itself be one of the
paraboloids.

A particular case of this is the free surface of a liquid
rotating with uniform angular velocity. It will be the
highest paraboloid of the series.

34 To find the pressure at any point of a homo-
geneous liquid revolving with uniform angular velocity
about a vertical axis.

Let II be the external pressure which we assume to
be uniform. Let AN be the vertical axis, » the angular
velocity about it, p the density of the liquid.
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By Art. 33, the free surface is the highest of the series
of paraboloids, which form the surfaces of equi-pressure.

Let A be the vertex of this paraboloid. Let P be
any point in the liquid.

Draw PQ vertically upwards to meet the free surface
in Q; draw PN, QM perpendicular to AN.

About PQ as axis construct a cylinder of indefinitely
small sectional area a, and consider the liquid contained
in it.

As there is no vertical motion, the vertical forces must
balance one another.

These vertical forces are

(i) thrust on end at @, Ila,
(67 N P, pa,
(iii) the weight gpa . PQ,
<. pa=TIla+ gpa.PQ,
s p=Il+gp.PQ.
But PQ=AN+AM=AN + QM.
=AN +PN3. 0*29;
o p=I1+gpAN +}PN*. 0.

Note. If N is above A, the sign of AN in the above

expression must be changed.

w?

2%

EXAMPLES.

1. A uniform liquid, unaffected by gravity, is revolving in relative
equilibrium with uniform angular velocity about an axis, Find the form
of the surfaces of equal pressure, and the pressure at any point.

2. A vessel in the form of a right cone with its vertex downwards is
filled with liquid and revolves with uniform angular velocity round the
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axis : having given the height of the cone and the vertical angle, deter-
mine how much liquid will remain in relative equilibrium for an assigned
angular velocity. [M.T., 1866.]

8. If the oylinder and its contents in Ex. 3, p. 28, revolve with uni-
form angular velocity w about its axis, supposed vertical, find the pressure
at any point of its base.

4. Fluid is rotating in a oylinder of radius r, whose bottom is closed
by a conical surface of semi-vertical angle a, the vertex being downwards.
Prove that the pressure at the surface of the cone is a minimum at a
point distant }lcot a from the axis where I is the latus rectum of the free
surface, provided ! < 2rtana. [Pet., 1886.]

THRUST ON A PLANE AREA.

36. Prop. The thrust on any plane area exposed to a
homogeneous liguid under gravity is equal to the weight of
a column of the liquid whose base s equal to the area,
and whose height 18 equal to the depth of the centre of mass
of the area below the effective surface of the liquid.

Let the area A be divided into an infinite number
of indefinitely small areas &, a;, s, ..., and let the depths
of these areas below the free surface be z, 2,, 2, ...: let II
be the external pressure and p the density of the fluid.

Z, the depth of the c.M. of the surface,

_antamt st ...
1 .
The pressure at any point of a,=1II + gpz,
.................................... o, =11+ gp2,,

.. the thrust on 4
=T+ gpz)a + (U +gpz)a+...
=I(a,+a,+...)+gp (2l + 20, +...)
=(IT + gpz) 4 =gp7 4,
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where 2/ is the depth of the c.M. below the effective
surface.

Cor. The mean pressure throughout the area is equal
to the pressure at its centre of mass.

36. It has been usual in text-books on Hydrostatics to define the
“whole pressure’ on any surface as the numerical sum of the thrasts on
the infinite number of indefinitely small plane areas into which the
surface may be divided; and to prove that this whole pressure is equal
to the area of the surface multiplied by the pressure at its centre of mass.
This may be proved by the method of the last Article. It has been
purposely omitted here as the whole pressure on a curved surface has no
physical meaning,

N

EXAMPLES.

1. A regular hexagon is placed with its plane vertical and its centre
at a depth ¢ in a liquid of density p. If a (< c) be the side of the hexagon,
and IT be the external pressure, find the thrusts on the triangles into
which the hexagon is divided by joining the corners with the centre.

2. A rectangle whose sides are 10 ft. and 15 ft. respectively is placed
with its plane vertical and one of its shorter sides in the surface of some
water, which is 14 ft. deep, and which rests on a stratum of mercury (sp.
gr.13:6). Find what is the volume of water whose weight is equal to the
thrust on the rectangle, if the atmospheric pressure is equivalent to a
head, 33 ft. of water.

8. The lighter of two fluids, whose specific gravities are as 2 : 3, rests
on the heavier, to a depth of 4 inches. A square is immersed in a
vertical position with one side in the upper surface: determine the side
of the square in order that the thrusts on the portions in the two fluids
may be equal. [M.T., 1855.]

4. A triangle is immersed in & homogeneous liquid with one side in
the surface: shew how to draw a horizontal line dividing it into two
portions on which the thrusts are equal.

5. A parallelogram is immersed in a homogeneous fluid with one
side in the surface ; shew how to draw a line from one extremity of this
side dividing the parallelogram into two parts the thrusts on which are
equal. [M.T., 1860.]
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6. The side 4B of a triangle 4BC is in the surface of a fluid, and
points D, E are taken in AC, such that the pressures on the triangles
BAD, BDE, BEC are equal: find the ratios AD : DE : EC.

[M.T., 1856.]

7. A hollow weightless hemisphere, filled with liquid, is suspended
freely from a point in the rim of its base ; find the thrust on the base.

[St John's, 1887.]

8. A parallelogram is immersed in a homogeneous liquid with one
side in the surface: shew how to draw horizontal lines dividing it into n
portions the thrusts on which are equal.

9. Shew that the thrust on the base of a vessel containing a
homogeneous liquid depends solely on the depth of the liquid and the
area of the base, being independent of the shape of the vessel.

IMPULSIVE PRESSURE.

*37. If the motion of a mass of liquid be suddenly
changed, the internal forces thereby set in action will be
what are ordinarily termed vmpulsive, and are measured
by the change of momentum produced, and not by the rate
of change. 'Thus the impulsive pressure at any point is the
limit of I/A, where A 18 an indefinitely small area con-
tasning the point and I i the normal vmpulse across it.

It is easily seen that impulsive pressure is of 1 dimen-
sion in mass, — 1 in length, and — 1 in time.

*38. Since in a perfect fluid there is never any shear-
ing stress, the impulsive pressure at any point can be
shewn, as in Art. 11, to be the same in all directions,

In all cases where motion is suddenly changed, forces
such as gravity, which require an appreciable time to
produce an appreciable effect, are neglected, so that the
only forces acting on any mass of fluid at the moment
of the impulse, are the impulsive thrusts. By considering
the change of momentum produced in elements of fluid
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of the corresponding shapes, the following propositions
analogous to those of Arts. 25 and 26 respectively can be
proved.

(8) If the motion of a perfect flurd be suddenly
changed, the surface of equal tmpulsive pressure at any
point 18 perpendicular to the direction of the change of
motion there.

(b) If v be the change of welocity produced at any
point of a perfect fluid in a given direction Ox, and p be
the density there

e
where p 1s the impulsive pressure at the point.

As a particular case of the latter proposition we
may take the case of a vessel containing liquid, which
is moving vertically downwards with velocity v and is
suddenly stopped. The impulsive pressure at a depth «
below the surface is pvz. Hence, as in Art. 35, it can be
shewn that the resultant impulsive thrust on any plane
area A is pv¥A, where Z is the depth of A’s centre of
mass below the surface.

It can also be shewn, as in Art. 27, that if a perfect
liquid have a uniform velocity in any direction and be
suddenly stopped, the surfaces of equal density, as well
as those of equal impulsive pressure, are perpendicular to
the direction of the velocity. As these conditions are not
always satisfied, it follows that any given motion of a
liquid cannot always be suddenly annihilated.

Ex. Shew that, if a vessel partly full of liquid and moving

uniformly along a horizontal plane be suddenly stopped, the liquid
is not at once reduced to rest.
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89. In Art. 22, it was deduced from the definition of a fluid given in
Art. 4, that the surface of a liquid at rest is a horizontal plane. It may
be instructive to shew the converse, viz. that if we assume as an observed
fact that the surface of a liquid at rest is always horizontal, it must follow
that in & homogeneous liquid at rest no tangential stress is exerted.

Imagine a hollow cylinder, open at one end, and of indefinitely small
section to be placed anywhere in a homogeneous liquid at rest. Let a close-
fitting frictionless piston work inside this cylinder, and be kept in equili-
brium by the thrust of theliquid on one end and by that of a spring inside
the cylinder on the other. Now suppose that the spring becomes slightly
weaker 8o that the piston gives way slowly to a small extent under the
thrust of the liguid. We know from observation that the liquid will flow
in to fill up the gap left by the piston and that the surface of the liquid will
in consequence be lowered. The total work done by the forces, external
and internal, on the liquid during this displacement is zero. The external
work done is (1) that by gravity in lowering the liquid from the surface
to the gap, (2) that done by the external pressure on the surface of the
liquid, and (8) that done against the thrust of the spring. The internal
work is that done against the shearing forces which resist one portion
sliding over another. Now we may allow the liquid to flow from one
part to another by the shortest course, or, by inserting & number of fixed
diaphragms, we may compel the liquid to take a course as intricate as we
please. Whichever is done, the external work remains the same, and
therefore the internal work also. But if there are any shearing stresses,
the work done against them must be greater when the course the liquid
takes is a very long one, than when it is the shortest possible. We con-
clude then that there are no tangential stresses.

In the above case, let a be the sectional area of the piston, k the
distance it is moved, z its depth below the surface, and p the pressure at
the end of it. Let p be the density of the liquid, IT the external pressure,
and 4 the area of the free surface.

If z is the distance the free surface is lowered when the spring gives
way, x4 =ha, since a volume equal to that of the gap is transferred from
the surface to fill up the gap.

The work done by gravity =gphaz,

......... external pressure=A4Ilx=1Ilka,
against resistance of spring=pah.
- gphaz+Iha=pah,
< p=I+gpz,
the result obtained in Art. 28.
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Also, since nothing has been said about the inclination of the end of
the piston to the horizon, the result is independent of it, and hence the
pressure is the same in all directions.

‘We can also deduce in a similar way the result of Art. 35.

For let 4 be the area: let another area be drawn parallel to it so that
the distance between the two is everywhere h, an indefinitely small
quantity. As before, let one area slowly give way before the liquid
pressure on it until it coincides with the other, the liquid flowing in
from the free surface to fill up the gap. As before the total work done
on the liquid is zero.

The work done by gravity in lowering the weight 4hgp from the free
surface to fill up the gap is 4hgp . 2, where 2 is the depth of the centre of
mass of 4. That done by the external pressure is II. Ak, and that done
against the resistance of the area is Ph, where P is the thrust.

. Ahgpr+IL4dh=Ph;
. P, the thrust on A=(gpZ +II) 4.

ILLUSTRATIVE EXAMPLES.

1. A4 fine tube ABC, of uniform bore, having the parts AB, BC straight
and perpendicular to one another, is held in a vertical plane and contains
several liquids of different densities. If the tube be turned about the
point B in its own plane and the liquids be again allowed to settle without
spilling, prove that the weight of liquid which has passed from one branch
to the other bears to the weight of the whole the ratio tane~tang : 2,
where a, B are the inclinations to the vertical of the straight line bisecting
the angle ABC in the two positions. [M. T., 1870.]

Let W,, W, be the weights of liquid in 4B, BC respectively in the
first position ; and let W be the amount that flows from 4B to BC when
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the tube is turned into the second position. Let @ be the section of the
tube, II the external pressure on the two surfaces. ' Let p be the pressure
at B in the first position,
Considering the equilibrium of the column of liquid in 4B, and
resolving along the tube, we have
Ila+ W, 008 (} 7 —a)=pa.
Similarly from the equilibrium of the liguid in' BC,
Ma+ W,sin (}x - a)=pa.

o Wy /We=tan(}r-a) .......... evorsueressens (i).
Similarly, when the tube is turned into the second position,
(Wy-W)[(Wa+ W)=tan (=) .ceeeerevreceerans (dd).
From (i) tan a=(; - W))/(Fy+W,).
From (i) tan B=(Wy— Wy +2W)((W,+ W),

.. tan a ~ tan 8=3W|(W, + W,).
s Wi (Wy+Wy)=tana~tang: 2.

2. If the attraction of the earth at a depth z below the surface were
a+ bz, prove that the pressure at that depth in water would be p (az +} b2?),
where p is the density of the water. [Pet. 1891.]

It is assumed in the above that there is no external pressure on the
surface of the water.

Let z,, 25, 24, ... # be the depths of a number of points in a vertical
line, the distance between consecutive points being very small.

Let py, 94, Dy, ... p be the pressures at these points.

Then by Art. 26,  py—py=p(a+Dz) (33— 1),

P3—-P3=p(a+0sy) (- 2),

Drn—Pr=p (3 +b2,) (841~ 2,);

or, . pa—m=plat+ib(ent+a)}(s-2)
 =plal-n)+id - a0},
sinoe 3 (23 +2)) =%, ultimately. _
Similarly P3—Py=p {a (25— 23) +3b (25’ ~ 27},
and Pra1—Pr=p {6 (541 — %) + 1D (20 - 2,3)},

.. adding these equations
Prar—01=p {a(tri1 = 2) +3 B (Fpiy — 1Y)} 5
~p=p(az+}be),
* p, and z, ultimately vanish, .
G.E. H. 4
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Let the following indefinitely small virtual displacement be made:
let & small volume v of density p flow from P to P’ and to take its place

let an equal volume of density p’ flow from @' to Q. For stable equi-
librium the work done must be negative. The work done by the internal
forces is zero, and that done by the external forces
=fw. PP - fp'v. QY
=fv.PP'. (p-¢p),
[ PP=f'. QQ,
.. p' must be greater than p.
But since P -p=fp.PP,
p' is greater than p, i.e. p and p increase together,

As a particular case we see that in & heterogeneous fluid in stable
equilibrium under gravity, the density must inorease with the depth. If
however two liquids are prevented from mixing by a flexible membrane,
the heavier may be uppermost. '

5. A liquid occupies a portion of a fine circular tube of radius a,
subtending an angle x+ 0 at the centre. When the tube rotates uniformly
about a vertical tangent, the ,liquid just reaches the top of the vertical
diameter: prove that the angular velocity is

(9/a)} (tan 36 -sin?36)~ Y. [Clare Coll., 1890.]

Let NM be the vertical tangent about which the tube rotates, 40B
the vertical diameter. Let w be the angular velocity, when the liquid
just rises to 4. The other surface of the liquid will be at P, where the
LPOB=90.

Bince 4 and P both lie on the free surface, they lie on a parabola, of
latus rectum 2g/w3, whose axis is MN: let APK be this parabola, K being
the vertex.

Draw AM, PN perpendicular to MN.

4—2
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Then AM ’=E . KM,

and

P
o AMY- PN’=;§ . MN,

. al-at (1-sino)’=’:,_‘f (14008 6),

.9 2 140080

O TEn O - a0
_ 4g cos® § 0
“a(4sin}foos §6-4sin?§ocosT}0)’

- w=(g/a)} (tan} 0-sin?3 0) 1,

6. A straight tube making an angle a with the vertical and filled with
Jfiuid of density p, rotates with uniform angular velocity w about a vertical
azis through its lower end which is closed. Prove that when the atmo-
spheric pressure is II, the greatest length of the tube that no fluid may flow
out is

gp 008 a + w sin a.,/(2ITp)
wipsinia ‘

[Pet. 1886.]
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Let ABC be the tube, 4KS the vertical line about which the rotation
takes place. Through C the highest point of the liquid, draw the

parabola KBC, having 48 for axis, K for vertex, and of latus rectum
2g/w?. The pressure at every point of the liquid on this parabola is IT,

Draw PT the tangent to the parabola which is parallel to 4BC.
Through P the point of contact draw PV vertical, and bisecting BC
in V. As the point ¥ is at a height PV above P, the pressure there is
II-gp.PV. The pressure at every other point of the tube must exceed
this value.

Since the pressure cannot be negative, the limit to the length of the
tube in order that no liquid may flow out is reached when the pressure at
V is zero, i.e. when

PV=1/gp.

‘When this condition is satisfied, the greatest length of the tube is

ABGC, i.e. PT + VC.

" Let S be the focus of the parabola.
Then PT=2SPeosa
2SK cos a
=by property of the parabola, e "
Also cvi=asp. py=25% I
sin?a * gp

But SK=g[2u®,

) _ goosa /2

. ABO= e
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7. A closed right circular cylinder, whose axis is vertical, is very
nearly filled with a homogeneous incompressible fluid. With what angular
velocity must it revolve about the azis of the cylinder in order that the
whole pressure on the base may be half as much again as before?

[Jesus Coll., 1887.]

Let ABCD be the oylinder, EF its axis,

P

-4z
o

D F C

When the liquid is rotating about EF, the surface of zero-pressure
will pass through E, Let PEQ be this surface. Then PEQ is a
paraboloid generated by the revolution about EF of a parabola of latus
rectum 2g/w?, where w is the angular velocity.

The pressure on the base CD, when there is no rotation, is the weight
of the liquid in ABCD; when there is rotation, the pressure is the
weight of the liquid that would fill the volume PDCQE.

Henoe if the latter pressure is half as much again as the former, the
volume PABQE must be half that of ABCD,
But vol. PABQE is half vol. PABQ;
.. vol, PABQ=vol. ABCD,
.. EM=EF.

But PM3=EM. 2g|u%,

s AE3=2g.EF|o®,

~ wi=2g.EF|AE".
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8. To determine the surfaces of equi-pressure in a homogeneous liguid
rotating as if rigid, with uniform angular velocity w, about an azis
tnclined to the vertical at an angle a.

Let AM be the axis about which the rotation takes place.

Let P be any point in the liquid: consider the motion of an element
of liquid of mass m at P. Draw PM perpendicular to AM.

The forces acting on m are mg vertically downwards, and the resultant
thrust along the normal to the surface of equal pressure. These give
the element the acceleration w3PM along PM.

Therefore their resultant is mw*PM along PM.

Through M draw MG vertically upwards, so that

MG : MP=g : «’MP, and join PG.

Then by the triangle of forces PG represents the resultant thrust,
i.e. PG is normal at P to the surface of equi-pressure through P.

Through G draw GN parallel to 4M, and draw MN perpendicular to
GN and join PN.

Then since PM, MN are perpendicular to 4M, PN is also perpendicu-
lar to AM and therefore to GN.

Now NG=MG@G cos a=(g|w?) cos a,
and NM=MG sin a=(g/w?) sin a.

Hence NG is a fixed line in the same vertical plane as 4M, and at &
distance (g/w?) sin a from it.

Also as the subnormal NG is constant (g/w’)cosa, the surface of

equi-pressure must be generated by the revolution of a parabola of latus
rectum (2g/w?) cos a, about its axis NG.



b6 GENERAL THEOREMS RELATING TO PRESSURE.

It should be noted that though this surface is fixed in space, it is not
fixed relatively to the liquid, so that each element of the liquid’ is con-
tinually crossing a surface of equi-pressure.

EXAMPLES. OHAPTER II.

1. A fine tube bent into the form of an ellipse is held with
its plane vertical, and is filled with » fluids whose densities are
P15 Pg... pn taken in order round. the elliptic tube. If ry, 7;...7,
be the distances of the points of separation from either focus, prove

that

73 (1= pa) +73 (pg—ps) + ... ra(pn—p1)=0.
‘What is the corresponding theorem if the fluids do not fill the
tube ? [Pet., 1889.]

2. If there be n fluids arranged in strata of equal thickness
and the density of the uppermost be p, of the next 2p, and so on,
that of the last being np: find the pressure at the lowest point of
the nth stratum, and thence prove that the pressure at any point
within a fluid whose density varies as the depth is proportional
to the square of the depth. [M. T., 1854.]

3. A solid triangular prism, the faces of which include angles
a, B, ¥, is placed in any position entirely within a liquid ; if P, @, R,
be the thrusts on the three faces respectwely opposite to the angles
a, B, y, prove that
Pcoseca+Q cosec B+ R cosec y

is invariable so long as the depth of the centre of gravity of the
prism is unchanged. [M. T., 185%.]

4, If the sea be supposed of an uniform temperature at which
the compreasibility per atmosphere is 00004, the height of the
water barometer being 32 feet ; shew that the compression at a
depth of two miles is about 13 in 1000, and that the reduction
in that depth of water is about 70 feet. [Clare Coll., 1885.]

5. Six equal uniform tubes of small bore are united so as to
form the edges of a regular tetrahedron, and so as to communicate
freely with one another at the angular points. The tubes are
filled with equal volumes of three heavy fluids of different densities,
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and the tetrahedron is placed with one face horizontal and its vertex
downwards ; determine the position of equilibrium when each fluid
is continuous and separated from the other two by smooth small
pistons, [M. T., 1876.]

6. A circular tube of radius a (large in comparison with the
bore) contains liquid filling 1/12 its circumference, and turns about
the vertical diameter with uniform angular velocity. Prove that if
the highest point of the liquid is in the horizontal diameter, the an-

gular velocity is 2 //g/a. [M. T., 1874.]

7. A circular tube of small section is half full of liquid and in
the surface at each side floats one of two small equal spheres which
just fit the tube. The tube rotates with angular velocity o about a
vertical diameter: find the pressure at any point and shew that for
values of w > a certain quantity, the pressure is a maximum at a
depth g2 below the centre. [M. T, 1882.]

8. A circular tiube of uniform bore, whose plane is vertical,
contains columns of two liquids, whose respective densities are p, p',
the respective columns subtending angles 26, 2¢’ at the centre of the
circle. If a be the angle which the portion of the tube intercepted
between the lowest point and the common surface of the liquids
subtends at the centre of the tube, prove that

psin 6 sin (d+a)=p'sin & sin (¢ Fa). [M. T., 1873.]

9. A box containing fluid is projected up a rough inclined plane,
the angle of inclination being greater than the angle of friction.
Shew that the free surfaces of the fluid in its position of rest relative
to the box when going up and coming down are planes inclined to
one another at an angle equal to twice the angle of friction for the
box and the inclined plane. [Peterhouse, 1890.]

10. A railway train, travelling with a given acceleration, arrives
at an incline, and after ascending to a ridge, descends at the same
incline on the other side. Assuming that the pull of the engine
and the resistance are the same throughout, determine the levels
of the water surface in the boiler in going up and down the incline,
and prove that the difference of the levels is equal to the angle
between the inclines. [M. T., 1885.]



58 GENERAL THEOREMS RELATING TO PRESSURE.

11. Two smooth inclined planes of equal altitude are fixed back
to back, and boxes containing liquid slide on the planes under
gravity, the boxes being connected by a fine string passing over
a pulley at the vertex of the planes. Prove that the free surfaces
of the liquids will be parallel and equally inclined to the planes,
if the weights of the boxes and the liquids they contain be pro-
portional to the cosecants of the angles the planes make with the
vertical. [M.T., 1883.]

12. A vessel contains n different fluids resting in horizontal
layers and of densities p,, pg -.. pa respectively, starting from the
highest fluid. A triangle is held with its base in the upper surface
of the highest fluid, and with its vertex in the nth fluid. Prove
that, if A be the area of the triangle and 4, ... A, be the depths
of the vertex below the upper surfaces of the 1st, 2nd, ... nth fluids
respoctively, the thrust on the triangle is

0 o () U v )
. [Trinity Coll., 1889.]

13. The sides of a rectangle are in the ratio  : 4, and semi-
circles are described on the longer sides as diameters. Prove that,
if the rectangle be immersed in water, with one of the shorter sides
in the surface, the thrusts on the two parts external to both semi-
circles will together be equal to that on the part common to them.

[M. T., 1861.]

14. A cylinder, radius @, and height 4, contains liquid to a
height . Shew that if the cylinder and liquid rotate about their
common axis, which is vertical, the angular velocity in order that
the liquid may just not flow out is

2 — 2h g
aV9B=0 or Taf pis
according as ! is > or < }k. [Clare Coll., 1888.]

.15, 1If liquid be contained in a cylinder whose axis is vertical,
and which rotates with the liquid about a parallel axis, prove that
the free surface will meet the surface of the cylinder in an ellipse.

[M. T., 1880.]
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16. Fluid is contained within a circular tube of radius e in

a vertical plane which can rotate about a vertical axis. If the fluid

subtend an angle 4 at the centre, the least angular velocity to make
the fluid divide into two parts is

J(g/a) sec }6. [Peterhouse, 1888.]

17. A hollow cone vertex upwards, is three-quarters full of
water and is set rotating about its axis which is vertical with an
angular velocity equal to 4/89/3% cot a, where a is the semivertical
angle and % the height of the cone. Prove that the thrust on
the base is to the weight of the water in the vessel as 10 : 3.

[Peterhouse, 1889.]

18. Two hollow cones, filled with water, are connected together
by a string attached to their vertices, which passes over a fixed
pulley : prove that, during the motion, if the weights of the cones
be neglected, the thrusts on their bases will be always equal, what-
ever be the forms and dimensions of the cones. If the heights of
the cones be %, %, and heights mA, nA’ be unoccupied by water, the
thrusts on the bases during the motion will always be in the ratio

nf+n+1: mE+m41. [M. T., 1861.]

19. Two equal vertical cylinders of length ! stand side by side
and there is a free communication between their bases. Quantities
of two fluids of densities p,, ps, which would fill lengths @ and ¢
respectively of the cylinders are poured in and rest in equilibrium,
each fluid being continuous. A given quantity of a fluid of density
ps, intermediate between p, and p, is poured slowly into one of the
cylinders. Find the position of equilibrium, noticing the different
cases which may occur, and shew that, if the fluid reach the top
of both cylinders at the same time, either

(p1—pg) (2L—a—c)=c(p—ps) O @(py—py)=c(pg—py)
[M. T., 1882.]

20. When a cylinder open at the top and half full of liquid
revolves with angular velocity © about its axis, which is vertical,
the liquid just reaches the upper rim ; shew that the angular velocity
in order that 1/nth of the fluid may remain in the cylinder is Q \/n.

[Clare Coll., 1887.]
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21. A fine bent tube, on a vertical plane, has its branches 4 B,
BC, inclined to the vertical at angles a, 8 on opposite sides, and
contains two fluids which fill lengths @, b of the tube, the fluids
meeting in the branch 4B at a distance ¢ from B: prove that
they will meet at B, if the tube be turned in its own plane through
an angle whose cosecant is

bjc.sin§(a+B)sec}(a—B)seca—tana. [M.T., 1871]

22, A thin bent tube, open at both ends and of uniform bore,
the two parts of which include a right angle, contains fluid, which,
attracted towards the angle by a force u x the distance, is at rest
relatively to the tube, while one part of the tube remains stationary
and the other revolves with a uniform angular velocity o : find the
respective lengths of the tube occupied by the fluid.

23. A conical vessel without weight just filled with homo-
geneous incompressible fluid is attached to a fixed point by an
elastic string attached to the vertex of the conme, and oscillates
between positions in which the string is of its natural length and
of twice its natural length respectively: find the time of an oscilla-
tion and the greatest pressure of the fluid on the base of the cone.

[M. T., 1869.]

24, Assuming that & mass of liquid contained in a vertical
cylinder can rotate about the axis of the cylinder under the action
of gravity only, in such a manner that the velocity at any point
of the liquid varies inversely as the angular velocity of its distance
from the axis of the cylinder: find the form and position of the free
surface. [M. T., 1872.]

25. A hollow sphere filled with water has a small aperture in
its diametral plane closed by an extensible membrane, and is
spun round a vertical axis : determine in terms of the radius, the
angular velocity necessary for a vacuum to be produced inside by
bulging of the membrane in opposition to the atmospheric pressure.
If the barometer stands at 30 inches and the radius is 3 inches,
prove that the sphere must rotate about 294 times per second. .

[M. T., 1888.]
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26. A semicircular tube has its bounding diameter horizontal,
and contains equal volumes of » fluids of densities successively equal
to p, 2p, 3p, ... arranged in this arder. Shew that if each fluid sub-
tends an angle 2a at the centre, and the tube just holds them all,
then .

tan na=(2n+1) tan a. [M. T., 1891.]

27. If a vessel be in the shape of a paraboloid of revolution with
its axis vertical, shew that no angular velocity will enable the vessel
to contain any water, if & small hole be made at its lowest point.

[Clare Coll., 1884.]

28. A cone stands with its base on a horizontal table and is
filled with fluid of varying density. If it is then turned so that
the vertex is downwards, find the relation between the new and
old positions of the different particles when equilibrium has been
established in the new position. [Pet., 1886.]

29. A semicircle is immersed vertically in liquid with the
diameter in the surface: shew how to divide it into any number
of sectors, such that the thrust on each is the same.

[M. T., 1878.]

30. Shew that if liquid of density ¢ is rotating as if rigid with
uniform angular velocity about a vertical axis, while the air above
it is at rest, the free surface will be a paraboloid of revolution whose
latus rectum is to that of a surface of equi-pressure in the liquid as
o—p: o, if the variations in the density, p, of the air be neglected.

[Jesus Coll., 1891.]

31. Prove that if a mass of homogeneous fluid rotate about an
axis and be acted on by a force to a point in the axis, varying in-
versely as the square of the distance, the curvatures of the meridian
curve of the free surface at the equator and pole are respectively
1/a(1—m) and (1 —mb3/a®)/b, where a and b are the equatorial and
polar radii, and m is the ratio of the centrifugal force at the equator
to the attraction there.

32, A closed vessel whose form is that of a right circular
cylinder, of radius a with plane ends, perpendicular to the axis
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of the cylinder, is nearly filled with liquid of density p, and placed
with its axis vertical: a repelling centre of force (u x distance)
resides at the centre of the base. Shew that if A, the height of
the cylinder, be g/u, the resultant thrusts on the top and on the
bottom will be in the ratio

a® : ab+2ahs. [Clare Coll,, 1891.]

33. Liquid is placed in a vessel and is subjected to the action
of a force whose direction is perpendicular to the bottom of the
vessel and which is directly proportional to the perpendicular dis-
tance from the bottom. Prove that the thrust on a rectangular
ares, which is vertically immersed in the liquid with one side
resting on the bottom is §pA, where A is the area of the rectangle,
and p is the pressure at the bottom, the upper side of the rectangle
being in the free surface of the liquid. [Pet., 1891.]



CHAPTER 1V.
CENTRE OF PRESSURE.

40. DEr. The centre of pressure of amy plane area
exposed to fluid pressure 13 the point of w at which the
resultant thrust on one side of the area acts.

Since the action of the fluid is everywhere perpen-
dicular to the area, the centre of pressure is the centre of
a number of like parallel forces.

41. Pror. The centre of pressure of a plane area
inclined to the vertical in a homogeneous liquid is in a
vertical line with, and at double the depth of, the centre
of mass of the volume enclosed by the area, the effective
surface of the liguid and vertical lines drawn through the
© pervmeter of the area.

If the area be divided into an infinite number of
indefinitely small portions, the pressure on any one is
proportional to the weight of the column of liquid stand-
ing on it (Art. 23). Also the small area is at double the
depth of the centre of mass of the column. Hence the
centre of pressure must be in a vertical line with the
centre of mass of the volume, but at double the depth.

42. Pror. If an area tn a homogeneous liquid be
turned about the line in which its plane meets the effective

surface, the position of the centre of pressure in the area ts
unaltered.
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As the area turns, the depths of the different points
below the effective surface alter in the same proportion,
and therefore the pressures at the different points also
alter in the same proportion. The centre of pressure will
therefore not alter its position.

43. Propr. Hawng given the cenire of pressure of an
area for one position, to determine it when the area is
lowered a given depth, the liquid being homogeneous.

Let P be the resultant thrust on the area A in the
given position, as determined by Art. 35, C' the corre-
sponding centre of pressure; let z be the depth through
which the area is lowered, p the density of the liquid.

By lowering the area through a distance 2z the pressure
at every point of it is increased by gpz, and consequently
the increase in the resultant thrust is Agpz, aud acts at
G, the centre of mass of the area.

The new centre of pressure then is the point where
the resultant of P at C and Agpz at @ acts.

Cor. We can by the above deduce the position of
the centre of pressure when there is an atmospheric pres-
sure, if we know it when there is no atmosphere.

For by Art. 23, the effect of introducing an atmo-
spheric pressure II is equivalent to increasing the depth
by 1I/gp.

44. Prop. To find the centre of pressure of a paral-
lelogram, the upper side of which s in the surface of a
homogeneous liquid, not exposed to pressure.

Let ABOD be the parallelogram, AB being in the
free surface. Join E, the middle point of 4B, with ¥ the
middle point of CD.
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Divide the parallelogram into an infinite number of
indefinitely small equal strips by drawmg lines pamllel
to AB.

- The thrust on any strip is proportional to the area of
the strip and to its depth below the surface (Art. 23), and
clearly acts at the centre of the strip, i.e. at a point in
EF.

But the areas of the strips are all the same, and -their

depths are proportional to their distances from A B mea-
sured along EF.

We have therefore to find the centre of an infinite
number of parallel forces acting at equal intervals along
EF, each proportional to its distance from £, This must
be the centre of mass of the triangle £ZDC. ‘

Hence the centre of pressure is in EF at a distance
from E =4EF.

46. Pror. To find the centre of pressure of a triangle
whose base 18 horizontal, and vertex in the surface of a
homogeneous liquid, not exposed to pressure.

Let A be the vertex of the triangle, BC its base.
Join A4 with D the middle point of BC.

G.E. H. 5
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Divide the triangle into an infinite number of in-
definitely small strips of equal breadth by drawing lines
parallel to BC.

A

The thrust on each strip is proportional to its area
and to its depth below A, and clearly acts at a point in
AD.

The area of a strip is proportional to its distance from
A measured along AD, as is also its depth.

Hence the thrust on each strip is proportional to the
square of its distance from A.

We have therefore to find the centre of an infinite
number of parallel forces acting at equal intervals along
AD, each being proportional to the square of its distance
from A.

But this is the centre of mass of a pyramid whose
vertex is A, and the centre of mass of whose base is D.

Hence the centre of pressure of ABC is in AD at a
distance § AD from 4.

46. Pror. To find the centre of pressure of a triangle,
whose base 18 in the surface of a homogeneous liquid, not
exposed to pressure. .
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Let ABC be the triangle, BC being the base. Join 4
with D the middle point of BC.

A

Divide the triangle into an infinite number of in-
definitely small strips of equal breadth by drawing lines
parallel to BC.

The centre of pressure of each strip is clearly in 4.D.

Consider two strips such that the distance of one from

D is equal to that of the other from 4. Let P, Q be
their respective centres of pressure.

The thrust on the upper strip is proportional to its
area and its depth conjointly, i.e. to AP . PD.,

Similarly that on the lower strip is proportional to
DQ .QA4, i.e. is equal to that on the upper.

The centre of pressure of this pair as well as of every
similar pair is therefore half-way between 4 and D.

Hence the centre of pressure of the triangle is the
middle point of 4D,

CoRr. The thrust on a triangle whose base is in the
surface of a homogeneous liquid 1s equivalent to two equal
Jorces acting at the middle points of the two sides.

5—2
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EXAMPLES.

1. Find the depth of the centre of pressure of a trapezium, (1) with
one of the parallel sides, (2) with one of the other sides, in the surface.

2. Shew that the depth of the centre of pressure of a rhombus
totally immersed with one diagonal vertical and its centre at a depth % is
(#ca?+ h9)/h, where a is the length of the vertical diagonal.

[Jesus Coll., 1889.]

8. A triangle is wholly immersed in a liquid with its base in the
surface. Prove that a horizontal straight line drawn through the centre
of pressure of the triangle divides it into two portions, the thrusts on
which are equal, [Pet. 1891.]

4. In Ex. 8, p. 28, find the centre of pressure on a parallelogram,
with one side in the surface of the oil, and the other in the mercury
surface, assuming that there is no atmospherie pressure.

8. Given that the centre of pressure of a circular disc of radius » with
one point in the surface is at & distance p from the centre, shew that for
& diso of radins R wholly immersed with its centre at a distance A from
the surface, the distance between the centre of the circle and the centre of
pressure is pR3/hr. [M. T. 1881.]

6. Shew that the centre of pressure of a parallelogram immersed in
a liquid with one angular point in the surface and one diagonal hori-
zontal, lies in the other diagonal and is at a depth equal to yi of the
depth of its lowest point. [Pet. 1888.]

47. Pror. Centre of pressure of any triangle.
To find the Centre of Pressure of any triangle wholly vm-
mersed tn a homogeneous liquid.

Let ABC be the triangle, D, E, F being the middle
points of the sides BC, CA, AB respectively: let a, B,
be the distances of 4, B, C respectively from the hori-
zontal line NK, where the plane of the triangle meets the
effective surface. '
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Let A be the area of the triangle, and suppose 4 to
be the highest point.

K N

R

Let P be any point in the triangle. From P draw
PM parallel to AB meeting AC in M, and PN perpen-
dicular to NK.

Then by projecting on PN, we see that

PN =a+ PMsin 0+ MAsin ¢,
where 6, ¢ are the angles which 4B, AC make with NK,
Let PN=2z, PM=a, MA=y,
‘. 2=a+zs8inf + ysin ¢.
The pressure at P = puz, where u is constant (Art. 23).

Thus the pressure can be divided into three parts,
pat, pe sin @ and pysin ¢.

The thrust due to the first part is uAa, and acts at

the c.M. of the triangle. This may be replaced by jula,
acting at each of the points D, E, F.

The thrust due to the second part of the pressure is
(Art. 35) $uAcsind, and (Cor. Art. 46) is equivalent to
3ulcsinf at D and at F. Similarly the thrust due to
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the third part of the pressure is §uAbsin ¢, and is equi-
valent to uAbsing at D and at E. Hence the whole
thrust is equivalent to

jud (a+%csin6) at F, jul (a+ 3 bsin @) at K,
and 4pd (a+4csin @+ §bsin ¢) at D,

Le. to forces at D, E, F proportional to their respective
distances from NK, i.e. proportional to their depths.

This determines the position of the centre of pressure.
Its distance from NK

_F@+Bl+ 3 B+yP+ G+
1@+B)+3B+v)+ilv+a)

_@+B+y+By+ay+aB
2(a+B+7)
It is easy to deduce that the thrust on the triangle is equivalent to
forces proportional to 2a+g8+vy, a+28+vy, a+8+2y, at 4, B, C re-
spectively.

48. Pror. To find the centre of pressure of a circle,
wholly immersed with its plane vertical in a homogeneous
liquid.

Let AB be the vertical diameter of the circle, O its
centre and r its radius. Let p be the density of the liquid;
let & be the depth of O below the effective surface.

Construct a hemisphere on the circle as base, and
consider the equilibrium of the liquid contained in it.
The forces acting on this liquid are

(i) its weight $mrigp, vertica.lly downwards through
the c.M. @, which is situate in the radius at nght angles
to the circle at a distance §r from O;
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(ii) the thrust on' the circle wr3hgp through the
centre of pressure C, which is clearly in the line OB;

A

B
(iii) the resultant thrust on the curved surface, which
must act through O.
Taking moments about O, we obtain
gmrigp x OG = mr3hgp x 0C;
2.8 »n
. 00=§ Xg. -’;=4—h.

Cor. If the plane be not vertical, we shall obtain
(Art. 42) the same expression for OC, provided k denote the
distance of the centre from the effective surface measured
in the plane of the circle.

The centre of pressure of a circle being known, we
can deduce that of an ellipse; it will clearly be in the
diameter conjugate to the horizontal diameter, and at a
distance from the centre\a’/lih, where a is the semi-
diameter, and % the distance of the centre from the
effective surface, measured along the diameter.

\
N
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'49. It is obvious that as any area moves down to an infinite depth,
the centre of pressure approaches and ultimately coincides with the centre
of mass, since the pressure over the area becomes ultimately uniform.

80. The following method is applicable to finding the
centre of pressure of any plane area immersed in a homo-
geneous liquid. '

Let the area be divided into an infinite number of
indefinitely small portions.

Let a be any one of these portions, z its depth below
the effective surface, p the density of the liquid. Then
the thrust on this small portion is gpza, and the depth of
the centre of pressure below the effective surface is

2 (gpa)/Z (gpza), or 2 (z%a)/Z (za).
With the notation of the Integral Calculus, the depth
below the effective surface is [f2*dS/[fzdS, where dS is the
indefinitely small area at depth =.

In the more general case, where the pressure is not
necessarily proportional to the depth below the effective
surface, the depth of the Centre of Pressure is [[zpdS/[[pdS,
where p is the pressure at the depth 2.

ILLUSTRATIVE EXAMPLES.

1. If a quadrilateral lamina ABCD in which AB is parallel to CD be
immersed in liqguid with the side AB in the surface, the centre of pressure
will be at the point of intersection of AC and BD if AB3=8CD3,

[M. T. 1875.]

Let AB=a, CD=b, and let  be the depth of CD.

By Art. 47, we may replace the thrust on a triangle whose angular
points are at depths «, B, v respectively, by forces at those points, propor-
tional to the products of the area of the triangle and the magnitudes
2a+8+7, a+28+y, a+ B8+ 2y, respectively.

Applying this to each of the two triangles 4ABD, CBD, whose areas
are proportional to a, b respectively, we find that the thrust on 4BD is
equivalent to forces, uak at 4, pah at B, and 2uah at D. Similarly
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the thrust on BDC is equivalent to 2ubh at B, Subh at C, and Subh
at D,

Hence the whole thrust is equivalent to wah at 4, u(a+2b)h at
B, 8ubh at C, and x (30 +2a) h at D.

The resultant of the foroes at 4 and C will act at O, the intersection
of AC and BD,

if : pah . A0O=38ubh.0C,
if a8 =8b%;
+ A0[0C=alb.

‘Similarly the resultant of the forces at B and D aots at O.

2. If a quadrilateral area be entirely immersed inwater, and a, 8 v, 3,
be the depths of its four corners, and h that of its centre of gravity, shew
that the depth of its centre of pressure is

3 (@+BHy+0) - - By +yat af+ad+ Bby).
[M. T. 1881.]
Join AC: let 8,, S, be the areas of the triangles ABC, ADC re-
B

D
spectively. The depths of their centres of gravity are

3(@+B+7), and §(a+3+1) respectively.
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Since A is the depth of the centre of gravity of the quadrilateral
R(S,+8)=3 (a+B+v) S+ (a+34+9) Sgeeverinrnnnnnens (1).
This equation determines the ratio of S, : S,.
The depths of the centres of pressure of the triangles 4BC, 4DC
respectively, are (Art. 47)
1 a'+p'4+y+aB+ay+By 1 a?+&3+y'+ad+ay+dy,
o3 atBty ' 2° aty+d ’
and the thrusts on them are proportional to '
38; (@+B+1), 4S;(a+5+7) respectively;
. z, the depth of the centre of pressure of the quadrilateral is given by
2h (8, + 8 =18, (a? + B2+ y* +af+ay+BY)
+38; (a®+92+ &+ ay +ad+v3);
substituting for S,/S, from (1), we obtain the required result.

8. Shew that, if a lamina totally immersed in a homogeneous liguid be
moved without rotation, the vertical distance between the centre of pressure
and the centre of gravity varies inversely as the depth of the centre of
gravity.

If the fluid is heterogeneous with a slowly varying density, the vertical
distance between the centre of gravity and the centre of pressure will, at
considerable depths, be proportional to the quotient of the demsity by the
pressure at the centre of gravity. [M.T. 1880.]

Let h be the depth of the centre of gravity, @, of the area; let z be the
distance, measured vertically downwards, of any indefinitely small ares, a,
below G. Then = (a2)=0.

The thrust on the area a=gp(h+2)a, it p is the density of the
liquid.
Henoe the vertical distance, z, of the centre of pressure below G is
given by . .
22 (gph+2a) =2 (gpzh + 2a),
%ZhZ (a) =Z (s%a),
" z varies inversely as k.
* Z(a) and = (a2?) are independent of k.
When the liquid is of slowly varying density, let p be the pressure at
G, when it is at a great depth .

Since the dimensions of the area are small compared with &, we may
suppose the density over the area to be constant and the same as at G, p.
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Hence the thrust on the area a, distant z vertically from G,

=a(p+gpe),
and the vertical distance of the centre of pressure from G
_Za(p+gpz)z
Za (p+gp2)
=9PZ (a2?)
pZ(a) ’
since 3 (az)=0;
i.e. the vertical distance varies as p/p.

EXAMPLES. CHAPTER IV.

1. A square is just immersed vertically in heavy fluid with one
corner in the surface and a side inclined at an angle 6 to the
vertical : prove that the distances of the centre of pressure from the
two sides of the square which meet in the surface are respectively

a 4sind+3cosd and ¢ 4co8f+3sind
6" sinf+cosd 6’ sinf+cosd ’
where o is the length of a side. - [Jesus Coll., 1890.]

2. ACB is a triangle immersed in a liquid, The side 4B is
in the surface and is divided in D so that 64D .DB=AB% Lines
DE, DF drawn parallel to AC and BC form the parallelogram
DECF. Prove that the depths of the centres of pressure of DECF
and ACB are in the ratio 11: 9. [Clare Coll,, 1890.]

3. A lamina in the form of a right-angled triangle is just im-
mersed in a fluid and the centre of pressure is vertically below the
right angle. Shew that the tangent of twice the angle which one
of the sides makes with the hypothenuse is double of the tangent
of twice the angle which it makes with the surface of the fluid.

[Jesus Coll., 1875.]

4. An isosceles triangle of vertical angle 2a, is placed vertically
with its vertex in the surface of a liquid and its base inclined at
an angle 4 to the horizon. Shew that the depth of its centre of
pressure is S

3 cos?d cos?a + sin? dsin?a
. — = -
4cosd cosa
1 being one of the equal sides. [Clare Coll., 1888.]
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5. A regular hexagon is immiersed in homogeneous liquid with
one side in the surface, prove that the depth of its centre of pressure
is to that of its centre of mass as 23 to 18.

6. A rectangle is immersed in n fluids of densities p, 2p, 3p...np;
the top of the rectangle being in the surface of the first fluid and
the area immersed in each flyid being the same: shew that the

depth of the centre of pressure of the rectangle is gnii 2, where
k is the depth of the lower side. [Trin. Coll., 1891.]

7. A purallelogram, whose plane is vertical and centre at a
depth -2 below the surface, is totally immersed in a homogeneous
fluid. Shew that, if a, b be the lengths of the projections of the
sides on a vertical line, the depth of its centre of pressure will be

A+ (a?+b%)/12k. [M. T., 1882.]

8. A cubical box filled with water is closed by a lid without
weight which can turn freely about one edge of the cube, and a string
is tied symmetrically round the box in a plane which bisects the
edge; shew that, if the lid be in a vertical plane with this edge upper-
most, the tension of the string is one-third of the weight of the water.

[Jesus Coll., 1886.]

9. The embankment of a reservoir is composed of thin hori-
zontal rough slabs of stone of density p and whose coefficient of
friction is u. The top of the embankment is a feet wide, the side
in contact with the water is vertical, and na feet deep. Shew that
the slope of the outer side to the horizon must be <« the smaller of
the angles

cot=1(1/up~2/n), cot-1{\/(1/2p+3/4n3)~ 3/2n}.
[M. T., 1882.]

10. A plane area is completely immersed in water, its plane
being vertical ; it is made to descend in a vertical plane without
any rotation and with uniform velocity, shew that the centre of
pressure approaches the horizontal through its centre of mass with
a velocity which is inversely proportional to the square of the depth
of its centre of mass. [Peterhouse, 1888.]
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11. Prove that the depth of the centre of pressure of a parallelo-
gram, two of whose sides are horizontal and at depths #, ¥ below
the surface of a liquid whose density varies as the depth below
the surface, is

3.4 A2
2. i%%"{;f? . [Jesus Coll, 1884]

12, A portion of the side of a vessel, in the form of a vertical
plane triangle of altitude @, with its vertex uppermost and base
horizontal, is movable about a horizontal line in its own plane,
whose height above the base is na (4n being less than 1): prove
that this portion will be in equilibrium if the vessel contains water
to a depth

{1+n—(1-an+n)}a. - [M.T.,1873])

13. A vessel in the form of a regular tetrahedron rests with
one face on a horizontal table. The other faces are uniform plates,
each of weight «, which can turn freely about their lowest edges,
and when shut fit closely. Through a hole at the top water is
poured in and the sides are pressed out when the depth of the
water is m times the height of the vessel. Shew that if the weight
of water poured in be pw, then

9p (2m3 —-n%)=2 (m?—3m+3). [M. T, 1890.}

14, An ellipse, semi-axes (@, b), is immersed in fluid in a
vertical plane so that the axes make equal angles with the vertical.
Shew that its centre of pressure lies in a line through the centre
making with the vertical an angle

tan~! (a*— b%)/ (a*+b%),
and at a depth k4 (a2+4-02)/8A,
4 being the depth of the centre of the ellipse. [Pet., 1889.]

15. One asymptote of a hyperbola lies in the surface of a fluid;
find the depth of the centre of pressure of the area included be-
tween the immersed asymptote, the curve and two given hori-
zontal lines in the plane of the hyperbola.
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16. A hyperbola is immersed in water with an asymptote 4B in
the surface and from any point € on the curve a line C4 is drawn
(1) touching the curve, (2) parallel to the other asymptote. Prove
that the depth of the centre of pressure of the area between 4B, AC
and the curve is in the former case one-fourth, and in the latter
case one-third the depth of C, and shew how to find its exact
position, [M. T, 1877.]

17. Prove the following theorems for determining the centre of
pressure of a vertical area:

(1) For similarly situated positions the locus of the centre
of pressure in the area is a line through the centre of gravity
and the distance from the centre of gravity is inversely as the
magnitude of the pressure.

(2) If the centre of gravity G'is fixed, and the centres of pressure
when a given line in the area is horizontal and vertical are re-
spectively C,, C;; then when the line is inclined at an angle 6
to the horizontal, the centre of pressure is at ¢ where GC' meets
0102 in D so that

CyD cos §=C,;Dsiné,
and GC=GD (sin §+cos §). [M. T., 1888.]

18. A rectangle (sides 2a, 2b) is completely immersed in water
rotating about a vertical axis: its plane is vertical and one side (2b)
touches the free surface at its lowest point, the point of contact
being the middle point of the side: the rectangle rotates with the

same angular velocity (ng/b)* as the water. Shew that the depth
of the centre of pressure of the rectangle is

a (8a + 6k+nb) / (6a + 6k +nb),
when £ is the height of the water barometer.

19. A closed cubical box with two faces horizontal is just filled
with liquid and made to rotate about a vertical axis through its
centre with uniform angular velocity: one of the sides is attached
by fastenings at its corners only: find the reactions at these points
supposing that the reactions are all perpendicular to the side, and
the reactions at the upper points are equal. Shew that if the
reactions at the upper are to those at the lower points in the ratio
of 2 to 3, then the latus rectum of a surface of equal pressure is
equal to the length of an edge of the box. [M. T., 1891.]




CHAPTER V.
FroATING BoDIEs.

B61. Pror. To find the resultant thrust on a solid
wholly or partly vmmersed in a homogeneous liquid,

Let us suppose the solid to be removed and the gap
it made in the liquid to be filled up with some new liquid
of the same kind. Now the pressure at every point of the
surface of this introduced liquid is the same as it was on
the corresponding point of the solid since it depends on
the depth below the effective surface, and therefore the
resultant thrusts on the new or displaced liquid and on
the solid are the same.

But the displaced liquid is clearly in equilibrium
under the action of its weight, acting vertically downwards
through its centre of gravity, and the resultant thrust.
The latter must therefore be equal and opposite to the
former. )

Hence the resultant thrust on the solid is equal
to the weight of the liquid displaced by the solid,
and acts vertically upwards through the centre of
gravity of this displaced liquid.

This is known as Archimedes’ theorem.

Note. It should be observed that it is assumed that the liquid can
flow all round the immersed part of the solid: for instance, a stone lying
on the base of the vessel containing the liguid but with no liquid below it,
and a stick thrust through the side of the vessel below the level of the
liquid, are not cases to which the proposition applies.
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We can extend this proposition to the case of a
solid immersed partly in one fluid and partly in another,
air and water, for instance, and also to the case of one
immersed in a number of different fluids, arranged in
layers of different densities. In this case, however, we
must be careful to remember that by the displaced fluid
is meant the whole mass which fills up the gap made by
the solid, when the gap in each layer is filled up by a new
liquid of the corresponding density.

62. DEr. The resultant thrust on a solid immersed
i a flusd 18 termed the Force of Buoyancy, and the
centre of gravity of the displaced fluid +s termed the Centre
of Buoyancy.

53. Pror. To find the resultant thrust on any sur-
Jace, one side of which 18 exposed to liquid pressure.

In Art. 35 we have seen how to determine the magni-
tude of the resultant thrust on any plane surface, and we
have in Arts. 44—48, found the centre of pressure in the
case of certain areas. In the more general case of a
curved surface, when the thrusts on the different portions
are not in the same direction, their equivalent is not of
necessity a single force: we can however determine cer-
tain forces to which they are equivalent.

Let the surface be divided into an infinite number of
indefinitely small portions and let the thrust on each be
resolved in three directions, one vertical and the other
two any given horizontal directions at right angles to one
another., We shall now shew how the resultants of these
resolved parts can be severally found.
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To determane the resultant vertical thrust.

Through the perimeter AB of the surface draw vertical
lines to meet the effective surface in the curve ab.

The vertical thrust on any indefinitely small area PQ
of the surface is equal to the weight of the vertical column

Fig. i.
e P4

of liquid PQgp which could stand on the area, its upper
end pgq being in the effective surface. The vertical thrust
is downwards, if the actual liquid is above PQ as in fig. i.;
and upwards if it is below as in fig. ii.

Fig. ii.

B/




82 FLOATING BODIES.

Hence if, as in fig.i,, the liquid is at every point above
the surface, the resultant vertical thrust on AB is down-
wards and equal to the weight of the liquid which would
fill up the space 4 Bba.

If, as in fig. ii,, the liquid is at every point below the
surface, the resultant vertical thrust is upwards, and equal
to the weight of liquid which would fill up the space
ABba.

In each case the vertical thrust acts through the
centre of mass of the volume A Bba.

If, as in fig. iii,, the actual liquid is in some parts above

o ...ulllmm

o
l“llr..

and in others below the surface, we can find as before

the vertical thrusts on AC, CD, DB separately, and thence
the resultant vertical thrust on ACDB.

To determine the resultant thrust tn a given horizontal
direction.

Through every point of the perimeter AB of the
surface draw horizontal lines in the given direction to



FLOATING BODIES. 83

meet a vertical plane perpendicular to them in the closed
curve ab.

Considering the equilibrium of the liquid filling up
the space 4 Bba, we see that the only forces acting on it

Fig. iv.

===

in the given direction are the thrust on the flat end ab,
and the resultant thrust in the given direction on AB,
These two must therefore be equal, ie. the resultant
thrust in the given direction is equal to the thrust on the
projection of AB on a plane perpendicular to the given
direction.

As this is true of every elementary portion of the
surface, the line of action of this resultant thrust passes
through the centre of pressure of ab.
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The above reasoning still applies when the surface is
as in fig. v.

If the perimeter of the surface be a plane curve, the
resultant thrust can be obtained in a simpler way.

Let ABC be a surface bounded by a plane AC. The

thrust on ABC will not be affected by supposing the part
of the surface on the other side the plane AC to be
removed and its place to be filled up with liquid. Then
the resultant thrust on the body bounded by the curved
surface ABC and the plane surface AC is the resultant
of that on ABC and that on AC. The thrust on the
whole body is obtained by the principle of Archimedes,
and the thrust on the plane AC is obtained by the
methods of previous chapters; these two being known the
thrust on the curved surface is easily obtained.

EXAMPLES.

1. A solid hemisphere is placed with its base inclined to the surface
of a liquid, in which it is just totally immersed, at a given angle a, shew
that the resultant thrust on the ocurved portion of the surface will be
equal to twice the weight of the liquid displaced if tan a=2.

[Clare Coll., 1887.]
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2. A regular tetrahedron whose edges are of length a is completely
immersed in water, with one of its faces horizontal, and the opposite
vertex downwards. Having given the depth d of the horizontal face,
find the resultant thrust, (1) on the tetrahedron, (2) on three of the faces
including the horizontal one.

8. A hemispherical bowl is filled with water : shew that the resultant
thrust on the bowl is » times the horizontal thrust on the portion
on one side & vertical diametral plane.

4. A solid is formed by the revolution of a semicircle of radius a
about its bounding diameter through an angle a, and the solid is immersed
with one plane face in the surface of a liquid: prove that the magnitude
of the resultant thrust on the curved surface of the solid is

3 algp {(a - ein a cos a)3+sinta} 3, [Jesus Coll., 1890.]

5. Find the resultant thrust on the curved surface of a right circular
ocone on an elliptic base, when placed with its axis vertical and vertex
upwards and at a given depth below the surface of a uniform liquid.

6. A right circular cone is divided into two parts by a plane through
its axis—one of these portions is just immersed vertex downwards in water.
Shew that the resultant thrust on the curved surface of any frustum
of the semi-cone acts in a direction making an angle tan™! (} rtana)
with the horizontal where a is the semi-vertical angle of the cone.

[Peterhouse, 1887.]

7. A conical wine-glass is filled with water and placed in an inverted
position upon a table: shew that the resultant thrust of the water on the
glass is two-thirds that on the table, [M. T., 1858.]

8. A vessel of water is placed in one scale of a balance, and there
is & weight in the other which will just counterbalance it. Will the
equilibrium be disturbed if a person dips his finger in the water without
touching the sides of the vessel? Give reasons for your answer,

9. With what acceleration would a piece of cork (sp. gr. *5) rise if
plunged below the surface of some water and then released ?

10. A solid cone is just immersed with a generating line in the
surface: if 6 be the inclination to the vertical of the resultant thrust on
the curved surface; prove that

(1-8sin%a)tan §=8sina cosa;
2a being the vertical angle of the cone. [St John’s Coll., 1881.]
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11. A olosed cylinder the diameter of whose base is equal to its length
is full of water and hangs freely by a string fastened to a point in its
upper rim: prove that, the weight of the cylinder being neglected, the
vertical and horizontal components of the resultant thrust on its curved
surface are each half the weight of the water. [M. T., 1874.]

13. Find the vertical thrust on the lower half of the ourved surface
of a oylinder, immersed in any manner in a liquid, the dividing plane
passing through the horizontal tangent lines at the highest and lowest
points, [M. T., 1869.]

54. Pror. Body floating freely. 7 find the con-
ditions of equilibrium satisfied by a solid floating freely in
a fluid.

The forces acting on the solid are

(i) its weight, acting vertically downwards through
its centre of gravity;

(ii) the force of buoyancy, which is equal the weight
of the fluid displaced, and acts vertically upwards through
the centre of buoyancy.

Hence these forces must be equal and in the same
straight line, i.e. the weight of the solid s equal to the
weight of fluid displaced, and the centres of grawity and
buoyancy are in the same vertical line.

85. Pror. When a solid of volume V and density p
18 floating in a liquid of density p’, the volume immersed 18
Velp'

Let ¥V’ be the volume immersed.

Then the weight of the liquid displaced = gp’V”, and
the weight of the solid =gpV;

oo gp' V' =gpV (Art. 54),
. V'=Vplp.
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Cor. Since V’ cannot be greater than V, it follows
that p’ cannot be less than p, or a solid cannot float in a
liquid of less density than its own. If the density of the
liquid be less than that of the solid, the latter will sink;
if the density of the solid be less than that of the liquid,
the former will rise to the surface of the liquid until
the volume immersed is that given by the formula.

Norx. It should be quite olear what is meant by the density of the
solid in the above formula. For instance a hollow iron ball may be
capable of floating in water though the density of iron is much greater
than that of water, because in calculating the density of the ball, we
must take into account the space inside, which may be a vacuum or filled
with air, so that the mean density of the ball may be less than that of
water.

EXAMPLES.

1. A piece of iron weighing 275 grammes floats in mercury of density
136 with § of its volume immersed. Determine the volume and density
of the iron.

2. A cylinder floats between two fluids with its axis vertical, its
height being equal to the depth of the upper fluid: compare the thrusts
on the two ends of the cylinder, the densities of the fluids and of the
eylinder being given. [M. T., 1856.]

8. A right circular cylinder floats in water with its axis vertical,
half its axis being immersed: assuming the specific gravity of air to be
0013, find that of the cylinder. [Jesus Coll., 1880.)

4. A cylindrical vessel, the radius of the base of which is 1 foot,
contains water; if a cubic foot of cork (sp. gr.='24) be allowed to float
in the water, find the additional thrust sustained by the base.

[M. T., 1849.}

5. A steamer loading 80 tons to the inch near the water line in
fresh water is found after a 10 days’ voyage, burning 60 tons of coal a
day, to have risen 2 feet in sea water at the end of the voyage: prove
that, the original displacement of the steamer was 5720 tons, taking a
oubic foot of fresh water as 62-5 1bs. and of sea water as 64 lbs.
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6. Prove that a homogeneous solid in the form of a right circular

oone can float in a liquid of twice its own density with its axis horizontal.

[8t John’s Coll., 1881.]

7. A heavy hollow right cone, closed by a base without weight, is

totally immersed in & fluid: find the force which will sustain it with its
axis horizontal.

8. A body is floating in water and a hollow vessel is inverted over it
and depressed: what effect will be produced in the position of the body
(1) with reference to the surface of the water within the vessel, (2) with
reference to the surface of the water outside ? [M. T., 1857.]

9. A square lamina is placed vertically in a fluid of double its
density: prove that it can rest only with an edge or diagonal vertical.

. [M. T., 1867.]

10. Shew that a uniform lamina in the form of a parallelogram

cannot float in a liquid so as to have two angular points at the same
depth below the surface unless it be rectangular or equilateral.

11. One end of a thin rod of uniform section is made of a substance
whose specific gravity is 5, and the remainder of a substance whose specific
gravity is 1-5: find the proportion of their lengths, in order that the rod
may be able to float in an inclined position in water. [M. T., 1866.]

12. A conical vessel floats in water, with its vertex downwards and a
ocertain depth of its axis immersed: when filled up to the depth originally
immersed, it sinks till its mouth is on a level with the surface of the
water. Find what portion of the axis was originally immersed.

[M. T., 1873.]

66. The Balloon. A balloon generally consists of
a light nearly spherical silken envelope, capable of holding
a large amount of gas. The gas may be any gas lighter
than atmospheric air; hydrogen, coal gas, and air heated
to a temperature above that outside are often used. To
the balloon is attached a light car capable of holding one
or more persons. When the balloon is filled, it will rise,
provided the mean density of the whole including the car
and the persons in it, is less than that of the air. The
balloon will go on rising until it has reached the height,
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at which the atmospheric density is equal to that of the
whole balloon.

*57. We may extend the proposition of Art. 51 to the
case of a body immersed in a fluid which is acted on by
forces other than gravity, or immersed in relative equi-
librium in a fluid in motion, as for instance one revolving
about a vertical axis or moving with uniform acceleration.

In the former case, when the solid is removed, we must
suppose that its place is taken by new fluid, which follows
the law of density, necessary for the fluid to be in equi-
librium. Then as before, since the pressure at every point
of the solid is the same as that at the corresponding point
of the displaced fluid, the resultant thrust on the solid is
the same as that on the displaced fluid. Hence when a
JSiuid is at rest, the resultant thrust on any solid immersed
in 1t 18 equal and opposite to the resultant external force on
the displaced fluid.

Hence as in Art. 54, when the solid is in equilibrium,
the resultant external force on the solid must be equi-
valent to the resultant external force on the fluid displaced,
since each counterbalances the same resultant thrust.

When the solid is in equilibrium relative to fluid in
motion, the resultant thrust and the resultant external
force must together give the solid its acceleration: the
resultant thrust is obtained from the consideration that
together with the resultant external force on the fluid
displaced it would give the latter the acceleration which
the solid has.

It should be observed that in these cases, the resultant
external force, and the resultant thrust are not necessarily
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single forces, since the forces to which they are equivalent
may not reduce to single forces.
Ex. 1. Find the conditions of equilibrium of a body floating in

relative equilibrium in water contained in a vessel which is sliding under
gravity down a smooth inclined plane.

Ex. 2. A piece of cork, of weight w, and specific gravity o, is kept
totally immersed in a vessel of water by a string attached to the base
of the vessel: if the vessel be allowed to fall and be stopped suddenly
when its velocity is v, find the impulsive tension of the string.

58. Pror. Body turning about a fixed point.
To find the conditions of equiltbrium satisfied by a body
wholly or partly tmmersed in a fluid and free to turn
about a fized point.

Let O be the fixed point.

The forces acting on the solid are

(1) its weight W, vertically downwards through @,
the centre of gravity;

(ii) the force of buoyancy W', vertically upwards
tBrough @, the centre of buoyancy;

(iii) the force at O.

N
o N'
AW
G
G’
Yw

The three forces must be in the same plane, which
must be a vertical one as (i) and (ii) are vertical.
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Hence 0, @, & must lie in the same vertical plane, (A).

Draw ONN’ horizontal meeting the lines of action of
(i) and (ii) in N, N” respectively.

Taking moments about O,

W.ON- W' .ON'=0.

Hence G, @ must lie on the same side of the vertical

through O and the horizontal distance of G from O x W
=that of & x W'............. ...(B).

(A) and (B) constitute the necessary and sufficient

conditions of equilibrium.

The action at O is obviously W — W’ upwards.

EXAMPLES.

1. A rectangle movable about an angular point floats with half its
area immersed in a liquid. If the angular point lie outside the liquid,
and if the rectangle float with its sides equally inclined to the vertical,
shew that the ratio of the density of the rectangle to that of the liquid
is 8b+a : 4b where a and b are the sides of the rectangle.

[Jesus Coll., 1883.]

2. A lamina in the form of a regular hexagon ABCDEF can turn
freely in a vertical plane about a hinge at 4 which is in the surface of a
liquid. If in the position of equilibrium 4B be above the fluid and half
of BC be immersed, shew that the densities of the liquid and solid are in
the ratio of 12 to 11. [M. T., 1890.]

8. An equilateral triangle ABC, of weight W and specific gravity o,
is movable about a hinge at 4, and is in equilibrium when the angle C is
immersed in water and the side 4B is horizontal. It is then turned
about 4 in its own plane until the whole of the side BC is in the water
and horizontal: prove that the action at the hinge in this position

~2(1-\o)
==2w. (M. T., 1861.]
*59. Stability of Floating Bodies. We shall now

consider the conditions for the stability of a solid floating
in liquid. If the solid be pushed further down in the
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liquid, the force of buoyancy is increased, and therefore
tends to raise the body again; if the solid is raised, the
force of buoyancy is diminished, and the weight will tend
to sink the body again. For vertical displacements then,
the equilibrium is stable.

It is assumed in the above that the solid is not
floating in a fluid of the same density as itself: otherwise
the equilibrium is neutral.

%60. Let us next consider displacements produced
by an indefinitely small rotation about a horizontal axis.

We shall assume that the axis is such that the in-
definitely small rotation about it does not alter the
volume immersed, so that the force of buoyancy is un-
altered in magnitude.

Let W be the weight of the floating body, @ its centre
of gravity, Let H be the centre of buoyancy, cor-
responding to the position of equilibrium, when HG is
vertical. Let the plane of the paper be taken at right
angles to the horizontal axis of rotation, and so as to con-
tain H@. Let H' be the centre of buoyancy correspond-
ing to the new position of the solid.

If H' be not in the plane of the paper, it is obvious that
in the new position, the couple W at @, and W at H’
will produce rotation about a horizontal axis in the plane
of the paper. We shall confine our attention entirely to
the case in which H’ is in this plane, when the couple
will not cause rotation about a horizontal axis perpen-
dicular to the first one.

It is obvious that if the plane of the paper be one of
symmetry in the body, H’ will lie in it. For instance,
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if a ship pitch, i.e. turn about a horizontal axis perpen-
dicular to its keel, there will be no tendency to rolling
produced thereby.

i

Let the vertical through H’ when the body is in its
displaced position meet HG in M.

Then, if M be above G, W upwards at H' and down-
wards at @, tend to rght the body, i.e. to bring the body
back to its old position. The equilibrium is therefore
stable.

If M be below G, the reverse is the case, and the
equilibrium is unstable.

If M coincides with @, the equilibrium is newtral.

The point M is called the Metacentre corresponding
to the particular displacement made.

*61. DEF. Surface of Buoyancy. Ifa body JSloat-
‘tng n a homogeneous liquid be supposed to take in turn
-every Mﬂo&hm Jor which the volume dwplaced

remains constant, the Tocus of the centre of buoyancy is
termed the e Surface of Buoyancy.

The section tion of the body made by the water-line in any
position 18 termed the corresponding Plane of Floatation.
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The surface enveloped by the planes of floatation i8 termed
the 8urface of Floatation.

*62. Pmor. The tangent-plane at any point of the
surface of buoyancy 18 parallel to the corresponding plane
of floatation.

Let AA’FBB’ be the solid. Let H be the centre of
buoyancy corresponding to the plane of floatation AOB.

Let A’'OB’ be a consecutive plane of floatation. Let
H' be the corresponding centre of buoyancy.
Since the volume AFB =the volume A’FB’, that of
the wedge AOA' = that of the wedge BOB'
Let C, D, K be the centres of gravity of 40A4’, BOB,
A’FB respectively.
Join KC, KD. Then H, the centre of gravity of AFB
must lie in CK, and divide it so that
CH : HK =vol. A'FB : vol. AOA’".
Similarly, H' is in KD, and
KH': HD=vol. BOB : vol. A'FB
=HK :CH.
~. HH' is parallel to CD, i.e. to AB, ultimately.
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In a similar way we can shew that the line joining any
point on the surface of buoyancy near H with H is
parallel to the plane AB; hence the tangent plane at H
to the surface of buoyancy is parallel to the correspondmg
plane of floatation, 4B.

*63. Prop. The positions of equilibrium of a floating
solid are obtained by drawing normals from the centre of
gravity of the solid to the surface of buoyancy.

When the solid is in equilibrium the vertical through
the corresponding centre of buoyancy passes through the
centre of gravity. But this vertical line is perpendicular
to the corresponding plane of floatation which is hori-
zontal, and therefore by the last proposition is the normal
to the surface of buoyancy. Hence the normal to the
surface of buoyancy at every centre of buoyancy cor-
responding to a position of equilibrium passes through
the centre of gravity of the solid.

It is obvious from the above that the positions of
equilibrium of a floating solid correspond to those of a
solid with the same centre of gravity, but bounded by the
surface of buoyancy, and free to roll on a smooth hori-
zontal plane.

We saw in Art. 60, that for certain rotations the lines
through adjacent centres of buoyancy perpendicular to
the corresponding planes of floatation meet, the point of
intersection being the metacentre. A metacentre therefore
is & point where two consecutive normals to-the surface of
buoyancy meet; it is in fact_a centre of curvature of the
surfuce of buoyancy.

*64. Let us consider the case in which- there is a
plane of symmetry in the solid. This is the case with a
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cylinder, and a prism, also with a ship, since it is sym-
metrical about the vertical plane through its keel. If
the displacements are confined to rotations about axes
perpendicular to the plane of symmetry, the centres of
buoyancy will lie on a curve in the plane of symmetry,
which we may term the Curve of Buoyancy. From the
last Art., the locus of the metacentre for these displace-
ments will be the evolute of the curve of buoyancy.

EXAMPLES.

1. A uniform eylinder is floating with axis horizontal in a uniform
liquid, find the curves of floatation and buoyancy, the number of positions
of equilibrium, and the nature of the equilibrium, when (1) the cross
section is a circle, (2) an ellipse, (3) a portion of a parabola out off by a
line perpendicular to the axis, the curved portion only being immersed.

Ans. The curves of floatation and buoyanocy are (1) circles, (2) similar
and similarly situated ellipses, (8) parabolas. The number of positions
of equilibrium are (1) infinite, (2) 4, (3) 1.

9. If the immersed portion of a lamina floating with its plane
vertical be (1) a triangle, (2) a rectangle, shew that the curve of
buoyaney is (1) a hyperbols, (2) a parabola: find the curve of floatation.

8. A rectangular block of wood floats in merocury, the plane of floata-
tion being a square, the side of which is 6 inches: the specifio gravity
of the mercury being 15 times that of the wood, shew that the equili-
brium will be unstable if the height of the block exceeds 10 inches.

[M. T., 1854.]

4. A slender prism whose section is a square floats in a fluid with its
axis horizontal, the ratio of its specific gravity to that of the fluid being
a8 8 to 4: find all the positions of equilibrium and determine which of
them are stable and which unstable. [M. T., 1858.]

*65. ProP. To determine the position of the meta-
centre corresponding to a rotation in a plane of symmetry
in a floating body.

Let the plane of the paper be the plane of symmetry.
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Let ACB be a plane of floatation, cutting off the
volume V. Let H be the corresponding centre of

A\ e ."i """" Ej: "

. Luse 1)
Q,_-.--" H o: N

buoyancy. Let H’ be the new centre of buoyancy when
A’CB is the new plane of floatation, making an inde-
finitely small angle 8 with ACB.

Since  the vol. AFB = the vol. A’FB’,

the vol. ACA’= the vol. BCB..

Draw HM perpendicular to ACB and H’M perpendicular
to A’CH, then the limiting position of M is the meta-
centre

Let D, E be the centres of mass of the volumes ACA’,
BCOB’ respectively. »

The vol. A’FB'=vol. AFB+vol. BCB'—vol. ACA’,
therefore taking morlx‘}ﬁr(xts about the line H'M,

V.HM sin@—vol. ACA’ . DE=0 ...... ),
. _ vol. ACA’.DE
e HM—Ltg=oW‘ﬂ

This result may be expressed analytically as follows : —
Take the line ACB in the plane of the paper as axis
of y, the perpendicular to the plane of the paper through
G.E H. 7
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C that of z. Then if dzdy be the area of an elementary
portion of the area ACB, whose coordinates are z and y,
the height of the small column on this portion, cut off by
A’CHB is t y tan 6, and the volume is + ydzdy . tan 6.

Hence instead of (1) we have
V. HM sin 6 =tan 0. f[y*dzdy,
where the integration is extended over the area ACB.
dzdy AK®
HM=!fy'V y_ 41X,
where AK* is the moment of inertia of the area ACB
about the line through C perpendicular to the plane of

the paper.

EXAMPLES,
1. Find the position of the metacentre in a right circular cylinder of
radius ¢ and length A, floating with axis vertical in a liquid whose density
is ¢ that of the cylinder.

3. If the cross section of the cylinder in Ex. 1 be an ellipse of semi-
axes a and b, find the metacentres corresponding to displacements in
the planes of symmetry.

8. A uniform right circular cone of semi-vertical angle 30° is
floating with its axis vertical and its vertex downwards in a liquid whose
density is § its own; determine whether the equilibrium is stable or
unstable,

#66. In Art. 60 we obtained the condition for the
stability of a solid when the displacement is one of rota-
tion through an indefinitely small angle. It is obvious
however that a Naval Architect should be able to solve
the problem of insuring the stability of a ship when the
displacements are considerable.

Let ABC be the curve of buoyancy: let B be the
centre of buoyancy corresponding to a position of equi-
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librium: let O be the corresponding metacentre, G the
centre of mass of the solid. Let pOg be the evolute of
ABC.

Fig. i. Fig. ii.

If the body be displaced through such an angle 8 that
PpT becomes vertical, the moment of the couple tending
to 7ight the body will be W.GT sin 6, and will be positive
so long as T is above @, but not otherwise. It is obvious
that in fig. i. T approaches G as the angle of displace-
ment increases, whereas in fig. ii, I' recedes from G as
the angle increases. Hence the body is more likely to
right itself for finite displacements in the case of a body
whose curve of buoyancy is like that of figure ii, than
in that of a body whose curve of buoyancy resembles
that in fig. i

7—2
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ILLUSTRATIVE EXAMPLES.

1. 4 prolate spheroid is totally immersed in a liquid with its axis at
a given depth. Find the direction and magnitude of the resultant thrust
upon one of the lower octants of its curved surface cut off by vertical and
horizontal planes. [Peterhouse, 1886.)

Let ABC be the octant, 04 being the axis, OB a horizontal semi-
diameter perpendicular to 04, and OC a vertical semi-diameter.

o A

(o]

Let h be the depth of 04 below the effective surface, a the length of
04 and b that of OB and OC.

The vertical thrust on 4BC is equal to the weight of the liquid which
would fill the volume contained by the surface ABC and the vertical
lines drawn through its perimeter to the surface.

6—' ab3,

The horizontal thrust in the direction OB on the octant=the thrust
on 04C (Art. 53).

This equals the weight of the volume of the column of liquid which
would stand on the area OAC and whose length is the depth of the
centre of mass of 04C below the effective surface,

. T 4b xh b

This volume_z ab x (h+§r) =ab (T +§) .

Similarly the horizontal thrust in the direction O4 on the octant =the-
weight of the volume b? (%h + :_—l;) .

As the components of the thrust in three directions at right angles.
are known, its magnitude and direction are known.

It should be observed that as the three forces to which the thrust on
the octant is equivalent do not generally pass through the same point,
they do not generally reduce to a single force.

The volume of this liquid:l—rabh +

~ccee
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2. A regular solid tetrahedron, whose weight is equal to the weight of
water it displaces, is completely immersed in water: shew that if it be cut
into two halves by a central section parallel to two opposite edges, and one
half be held fast, the force required to draw away the other half will
always be the same, provided the centre of the tetrahedron is always in the
same horizontal plane. [M. T., 1878.]

Let ABCD be the tetrahedron, FGKH the central section parallel to
the edges 4D and BC.

b /
e fee
/

o
x

Let us consider the forces acting on BCGH, which prevent its being
moved away from the other part. Its weight is the same as that of the
liquid displaced: the thrust on it is the same as that on the liquid
displaced except that on the latter there is a thrust across the face
HFGK, and none in the case of the solid body. The liquid body can be
moved away by an indefinitely small force, and therefore the solid body
will require a force equal to the thrust across the face HFGK on the
liquid displaced. But this thrust depends on the area of the section
HFGK and on the depth of its centre of mass, which coinciding with the
oentre of the tetrahedron is at a constant depth.

Hence the required force is constant.

8. An isosceles triangular lamina of density no floats in two liquids of
density‘es and 20 respectively, the depth of the upper liquid being b: prove
that if the base of the lamina be not immersed, and be inclined at an angle
8 to the horizon, 0 must either be zero or be given by the equation

(1+ cos 26) {n%a® (cos 20+ cos 3a)®-+ 8n3atd? (cos 20 + cos 2a)3 — 4%}
= 2n%a® cos3 @ (cos 20 + ¢os 2a)*,
where 2a is the vertical angle, and a is a side of the lamina.
[M. T., 1886.]
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Let O4B be the triangle, O being its vertex at a depth z—-3}b below
the surface of the lower liguid, and at a depth z+ % b below that of the
upper.

Let DE be the line in which the surface of the lower liquid cuts the
triangle, FG that in which the surface of the upper liquid cuts it.
We may replace the force of buoyancy, which is the weight reversed
of the liquid density 20 displaced by ODE, and the liquid density o
displaced by DEGF, by the weight reversed of liquid density o displaced
by OFG, together with that of liquid density ¢ displaced by ODE.
The area ODE
=} 0D . OE sin 2a=} (z — 4 b)3 sec (0 - a) sec (6+ ) sin 2a.
Similarly the area OFG =4} (z+ 4 b)? sec (9 — a) sec (6+ a) sin 2a.
The area 4OB =4 a?sin 2a.
The horizontal distance of c. M. of OED from O
=3 {OE sin (6~ a) + ODsin (8 +a)} =} (z - § b) {tan (0 - a) + tan (0 + a)}.
Similarly that of c.x. of OFG =% (z+ 4 b) {tan (6 - a) +tan (4 +a)}.
The horizontal distance of c. M. of 0AB from O=}a 8in 6 cos a.
Since the weight of body=force of buoyancy,
do {(z-4b)*+(z+4b)*} sec (0 — a) sec (6 + a) 8in 2a=} noa? sin 2a.
Since the centres of mass and buoyancy are in a vertical line
3o {(z~3b)3+ (x+4 )3} sec (9 — a) 8e0 (0 + a) 8in 2a . § {tan (0~ a)
+tan(6+a)}=4nc.a?sin 2a . §asin foos a.
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These equations become
(z®+2b%)=1na? (co8 2a+008260) ...........c.coeuueet 1),
2%+ abt=$na? (cos 2a+cos 20 b @)

By squaring (2) and substituting for 23 from (1) we obtain the required
relation.

4. A cylindrical bucket with water in it balances a mass M over a
pulley. A piece of cork, of mass m and specific gravity o, is then tied
to the bottom of the bucket so as to be totally immersed. Prove that the
tension of this string will be

M 1
el (; - 1). [M. T., 1878.]

The mass on one side the pulley being m + M, and that on the other
M, the former will descend with acoeleration g . ETmﬁ?'

The forces on the cork are

‘(i) its weight mg downwards,
(ii) the tension of the string T, downwards,
(iii) the force of buoyancy, upwards.

(iii) is equal to the resultant ‘thrust on the water displaced, whose
mass is mfo.

But the weight of ‘water displaced, mg/o — remlta’nt thrust would give

the displaced water its resultant acceleration o 2 — s} &

. _mg m mg
,. the resultant thrust= s 5wy

The resultant force on the cork gives it its acceleration ;
mg P,
e m+oM " m+2M’
_ 2Mmg 1
=M +m )
5. A solid cylinder floats in water in a cylindrical vessel, and the

system revolves about the common azis with angular velocity w. R and
r being the radii of the vessel and the cylinder, shew that the cylinder is

depressed by the motion through the space %’; (R¥~79).
[Smith’s Prizes, 1842.

mg+T--+
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It is assumed that the cylinder occupies a symmetrical position in
the vessel, It is obvious that there is a symmetrical position of actual
equilibrium ; besides this, there may be positions of relative equilibrium,
in which the cylinder rotates with the water.

Let bb’ represent the plane surface of water, when there is no motion,
BAB' the paraboloidal surface when the water is rotating.

-

K’

x
q
[
-
i

m

As the cylinder is in equilibrium in both cases, it displaces in each
case its own weight of water, and the volume displaced is therefore con-
stant.

Let the plane BB’ meet the axis in M. Let the plane through 4 at
right angles to the axis meet the vessel in KK’. Let z be the depth 4

. has sunk below b%’, and [let y be the distance the cylinder has risen
relatively to 4.
Then 2 - y=the actual distance through which the cylinder has sunk.
- the volume of water is constant,
xR3. z=vol. of water above KK'=4% vol. BKK'B
1 1 wRé4?
=§ wR2, AM =§ 29 ]
w BIn=20 At
N
Sz= rra
Similarly, since the volume of water displaced by the cylinder is
constant, it may be shewn that

R
y= 4y ’

w?
x-y=Z§(R’-r’).
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6. Two equal uniform rods whose density is p are joined together at
an angle 2a. If they be immersed with the angle downwards in a fiuid of
density o, find the positions of equilibrium, and shew that the rods cannot
rest with the line joining their extremities inclined to the horizon unless
(o - p)/(c+p) be greater than sin®a. If this condition be fulfilled, deter-
mine which of the positions of equilibrium is stable. [M. T., 1861.]

Let 4B, BC be the rods, each of length a. Then the total length of
the two rods immersed in a position of equilibrium is 2b, where ¢b=pa.
Let us find the corresponding curve of buoyanocy.

Let BD be the line blseotmg the angle 4BC, and let PQ cut off a

total length 2b, 80 that PB+ BQ=2b. Let PB=b-xz, BQ=b+z. LetH
be the corresponding centre of buoyancy. Draw HM at right angles to
BD.

Then Hﬂr[:i(b""':),Sin “2_’} (b - z)sin *=zsina,

and

] _z) 3
BM:«}(b+z) cosa;;;}(b x) oosa=b“+a: 08 a

2b
22
It OB=1}b cos a, OM=§ cos8 a.
. HM3%*=2b.0Msinatana.
Hence the curve of buoyancy is a parabola whose vertex is O, axis
OD, and latus rectum 2b sin « tan a.

The centre of mass of the rods is at G, in BD, where BG=} a cos a.
The positions of equilibrium are obtained by drawing normals from G to
the curve of buoyancy.
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It is obvious from the property of a parabola that if the distance of
G from the vertex O is less than the semi-latus rectum, only one normal
can be drawn from G to the parabola, i.e, the normal at O. If however
the distance of G from O exceeds the semi-latus rectum, three can be
drawn, one at O and two others, equally inclined to it on either side.

There will then be one or three positions of equilibrium

acoording as } (a—b) cosa is < or >btanasina,

............... (@a-d)cot?a is ......... 2b,
1-ginta

............... (U*p)—m sresanees 2P,

............... :;z ceere... BiD3a,

Since the locus of the metacentre is the evolute of the curve of
buoyanecy, in the symmetrical position of equilibrium the metacentre is
above G, if OG is less than the semi-latus rectum, but not otherwise.

Hence when there are three positions of equilibrium, the symmetrical
one is unstable, the other two stable; when there is only one position of
equilibrium, it is stable.

The height of the metacentre above O might have been obtained by
the method of Art. 65.

EXAMPLES. CHAPTER V.

1. An oblique cylinder standing on a horizontal plane, the
generating lines making an angle a with the vertical, is filled to a
height % with a weight W of liquid. Prove that the resultant
thrust on the curved surface of the cylinder is equivalent to a
couple of moment } W tan a tending to upset the cylinder.

[M. T., 1884

2. An indefinitely thin hollow sphere 4 and a solid sphere B
connected together are in equilibrium when tfotally immersed in
a liquid: if A were solid and B hollow the combination would float
in the same liquid with B half immersed. Prove that the radii
of the spheres are in the ratio of 1 : J/2. Also compare the density
of the solid sphere with that of the liquid. [M. T., 1871.]
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3. A double funnel formed by joining two equal hollow cones
at their vertices stands upon a horizontal plane with the common
axis vertical, and fluid is poured in until its surface bisects the
axis of the upper cone. If the fluid be now on the point of escaping
between the lower cone and the plane, prove that the weight of
either cone is to that of the fluid it can hold as 27 : 16.

[M. T., 1861.]

4. A right circular cone of density ¢ whose base is an ellipse
floats vertex downwards in a liquid of density p with the extremity
of the shortest generator on the surface and its base inclined at
an angle 8 to the surface. Prove that the longest generator is
vertical, and that

1+tan atanB=(p/a')§,
where a is the vértical angle of the cone. [M. T., 1879.]

5. A sphere is totally immersed in heavy fluid, and a line is
drawn from the centre representing in magnitude and direction
the resultant thrust on the surface of any hemisphere: shew
that the locus of the extremity of this line is a sphere.

[M. T., 1876.]

6. A solid hemisphere of radius @ and weight W is floating
in liquid and at a point on the base at a distance ¢ from the centre
rests a weight w: shew that the tangent of the inclination of the
axis of the hemisphere to the vertical for the corresponding position
of equilibrium, assuming the base of the hemisphere entirely out of
the liquid, is § cw/a W. [M. T., 1882.]

7. A hemispherical shell is floating on the surface of a liquid,
and it is found that the greatest weight that can be attached to
the rim is one-fourth of the weight of the hemisphere: prove that
the weight of the liquid which would fill the hemisphere bears to
the weight of the hemisphere the ratio of ,

25,/5 : 2./50—28. [M. T., 1880.]

8. A hollow copper spherical shell is floating just immersed in
water at 0°C. Prove that as the temperature rises the shell will
again be just immersed at a temperature 8+3k/4: % being the
coefficient of expansion of copper, and the law of density of water

being
pe=p {1—A(¢-4)%
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Prove also that the shell will be highest out of water at a tempera-
ture halfway between those for which it is just immersed.

[M. T., 1880.]

9. A solid cube made of uniform material can turn freely about

one edge which is fixed in the surface of water: prove that if the

cube rests with the face which is not immersed at an angle 30°

to the horizon, the density of the cube is to that of the water in

the ratio of 25—74/3 : 18. [M. T., 1889.]

10. A tetrahedron DABC can float in a liquid of density greater
than itself with either of the two edges DA, DB on the surface.
Shew that either DA=DB, or that the tangents of the angles of
the triangle ABC are in geometric progression. If the tetrahedron
can also float with DC on the surface, it is regular.  [M. T., 1879.]

11, A regular tetrahedron ABCD is immersed with the face
ABC vertical, the side AB being horizontal and in the surface of
the liquid. CE is drawn perpendicular to 4B meeting it in Z.
Shew that the line of action of the resultant thrust on the re-
maining faces of the tetrahedron divides CE in F, so that

EF: FC=5:13. [Pet., 1885.]

12, A right circular cone of height %2 and vertical angle 2a,
made of uniform material, floats in water with its axis vertical
and vertex downwards and a length %’ of axis immersed. The cone
is bisected by a vertical plane through the axis and the two parts
are hinged together at the vertex. Shew that the two halves will
remain in contact if

tan?a < X/(h=K). [M. T., 1886.]

13. A right circular cone has a plane base in the form of an
ellipse: the cone floats on a fluid with its longest generator hori-
zontal: if 2a be the vertical angle of the cone, and 8 the angle
between the plane base and the shortest generating line, shew
that

cot B=cot 4a — } cosec 4a. [M. T., 1866.]

14. In H.M.S, Achilles, a ship of 9000 tons displacement, it
was found that moving 20 tons from one side of the deck to the
other, a distance of 42 feet, caused the bob of a pendulum 20 feet
long to move through 10 inches. Prove that the metacentric height
was 2:24 feet. [M. T., 1884.]
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15. Prove that, if a solid ellipsoid float in fluid of twice its
density, it must float with a principal plane as the plane of floata-
tion, and that, if it float with the largest axis downwards, the
equilibrium is entirely unstable: if with the mean axis downwards,
stable for one principal displacement and unstable for the other;
and if with the smallest axis downwards, entirely stable.

[M. T., 1882.]

16. A basin, formed of the segment of a spherical surface,
is movable about a horizontal axis, which is a diameter of the base
of the segment., Prove that the basin will upset if the ratio of the
weight of water poured in to the weight of the basin is greater than
the ratio of d to D—2d, where d is the depth of the basin, and
D the diameter of the sphere from which it is cut. [M. T., 1883.1

17. A cone is suspended by its vertex from a point above the
surface of a liquid, and rests with a generating line vertical. If
the vertical angle of the cone be 60° and the height of the vertex
above the liquid equal to the radius of the base, prove that the
densities of the cone and liquid are in the radius of

24/2-1:24/2, [M. T., 1868.]

18. A homogeneous body, which can move round a fixed hori-

zontal hinge, is at rest partly immersed in a homogeneous fluid.

If the level of the fluid can be altered until the same plane section

of the body can remain at rest in the surface of the fluid, prove
that the density of the fluid must be twice that of the body.

[M. T, 1864.]

19. A uniform lamina in the form of an equilateral triangle floats
with its plane vertical, shew that there will be only one position
of equilibrium with a given one of the angles immersed and the
opposite side entirely out of the fluid unless the ratio of the density
of the fluid to that of the lamina lies between 16/9 and 2.

[Pet., 1890.]

20. Two closely fitting hemispheres made of sheet metal of
small uniform thickness are hinged together at a point on their
rims, and are suspended from the hinge, their rims being greased
so that they form a water-tight spherical shell: this shell is now
filled with water through a small aperture near the hinge : prove
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that the contact will not give way if the weight of the shell ex-
ceed three times the weight of the water it contains. [M. T., 1887.]

21. A sphere of density o floats just immersed in three liquids.
The densities of the liquids in descending order are p, 4p and 9p,
and the thicknesses of the two upper liquid layers are each one-
third of the sphere : prove that 270 =122p. [Clare Coll., 1890.]

22, A wooden sphere of radius r is held just immersed in a
cylindrical vessel of radius R containing water, and is allowed to
rise gently out of the water: prove that the loss of potential energy
of the water is

Wr (3R? - 2r%)-3R3,
W being the weight of water displaced by the sphere.
[St John’s Coll., 1881.]

23. Prove that a sphere partly immersed in a basin of water
cannot rest in stable equilibrium on the summit of any convex
portion of the base. [Pet., 1889.]

24, A bucket half-full of water is suspended by a string which
passes over a pulley small enough to let the other end fall into
the bucket. To this end is tied a ball whose specific gravity o
is greater than 2. Shew that, if the ball do not touch the bottom
of the bucket and if no water overflow, equilibrium is possible if
the weight of the ball lie between W and o W/(oc —2), where W
is the weight of the bucket and water. [Pet., 1888.]

25. Two spherical shells of the same material and of thicknesses
proportional to their radii are each half-filled with water. Shew
that when tied to the ends of a string slung over a smooth pulley,
and allowed to fall, the resultant thrusts of the water on the spheres
are equal. [M. T., 1890.]

26. A homogeneous solid floats in liquid : if, when the tempera-
ture of both is raised by the same amount, the depth of the lowest
point of the solid remain unaltered, then the coefficients of cubical
expansion of the solid and liquid are in the ratio of 3 to 34— i,
where ¥ is the mass of the solid, and M’ the mass of a cylindrical
volume of liquid of base equal to the area of the plane of floatation
and height the constant depth of the lowest point. = [M. T., 1891.]
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27. A cylindrical piece of wood of length ! and sectional area a
is floating with its axis vertical in a cylindrical vessel of sectional
area A which contains water: prove that the work which is done
in very slowly pressing down the wood until it is just completely

immersed is

3gal® (1-a/4) (- o)¥p,
where p and o denote the densities of the water and wood re-
spectively. [M. T., 1889.]

28. A regular tetrahedron has one edge fixed in the surface
of a fluid. Shew that it will be in equilibrium with the other
edge inclined to the vertical at an angle cosec™! 3, if the density
of the tetrahedron is to that of the fluid as 19 : 64. [M. T., 1881.]

29. A triangular lamina of known weight floats in water so
that its plane is not vertical, with its centre of gravity in the
surface and one angular point immersed, this point being in contact
with a rough fixed surface: find the specific gravity of the lamina
and the reaction at the angular point. [M. T, 1876.]

30. Prove that a solid body of any law of density bounded by a
spherical and a plane surface cannot have more than one position
of equilibrium with the plane fully immersed unless it have an
infinite number: and that in the case of a homogeneous hemi-
sphere of density p and radius a in fluid of density o the position is
stable and the metacentric height

3a(o—p)lp. [M. T., 1888.]

31. A square lamina (side 2a) has one angular point in a fluid
and rests in a vertical plane on two smooth horizontal pegs in
the surface of the fluid and at a distance c apart. If the specific
gravity of the material of the lamina compared with water is
c}/24a?, prove that the inclination of a side of the square to the
horizon in an unsymmetrical position of equilibrium is given by

co8 20 cos (+1m)=alc /2. [Pet., 1886.]

32. The frustum of a right circular cone bounded by planes
perpendicular to the axis is totally immersed in water with its
axis inclined at an angle y- to the vertical, and ¢ is the inclination
to the vertical of the direction of the resultant thrust on the
curved surface of the frustum: 4 is the corresponding inclination
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when the axis of the frustum is horizontal, with the vertex of the
cone at the same depth as before: prove that
_ 3sin2y-2tandsiny
P=1T3cs2y _Ztanfoosy® L1 1 1886]
33. A cone floats in liquid which fills a fixed conical shell : both
the cone and the shell have their axes vertical and vertices down-
wards : the vertical angles of the cone and shell are equal and the
axis of the shell is twice that of the cone. If the cone be pressed
down until its vertex very nearly reaches the vertex of the shell,
so that some of the liquid overflows, and then released, it is found
that the cone rises until it is just wholly out of the liquid and then
begins to fall. Prove that the densities of the cone and the liquid
are in the ratio 45—214/7 : 44/7, the free surface of the liquid
being supposed to remain horizontal throughout the motion.
[M. T., 1875.]
34. A vessel of thin material in the form of a paraboloid of
revolution contains liquid and floats in another liquid, shew that
the equilibrium will be always stable provided the liquid inside be
denser than that without, the mass of the vessel being supposed
small. [Peterhouse, 1885.]

35, A solid right cone of density o, height %, and vertical
angle 2a can turn freely about its vertex which is fixed at a height &
above the surface of a liquid of density p. If it float with its base
wholly immersed, and its axis inclined obliquely at an angle § with
the vertical, shew that

4 (p— &) {cos (6+a) cos (6 — a)}¥ =d* cos 8 cos® a.
[Pet., 1890.]

36. A solid homogeneous cone with an elliptic base floats in
a homogeneous fluid with its longest generator horizontal and
immersed in the fluid and the centre of the base in the surface.
If a is the length. of the horizontal generator and % the height of
the highest point above it, prove that the line of action of the
resultant thrust on the curved surface cuts the vertical through
the centre of gravity of the cone at a depth

(3 + 16) (4a®+ 254%)/800h
below the highest point; find the magnitude of this thrust.
[M. T., 1884]
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37. A portion of a homogeneous elliptic cylinder, the eccen-
tricity of a right section of which is 4, is bounded by one of the
planes through the latera recta of the right section, and floats in
homogeneous liquid with its axis in the surface, and no part of
the bounding plane immersed. Shew (i) that the density of the
liquid is to that of the cylinder as

81r+3t\/§ : 12m,

(ii) that there are three positions of equilibrium, of which two are
stable. [M. T., 1884.]

38. A right circular cone of semi-vertical angle a floats, vertex
downwards, in water contained in a vertical cylinder, and the
surface of the water meets the cone in a circle of radius . The
water is made to rotate with uniform angular velocity @ about
the common axis of the cone and cylinder: shew that the water
now meets the cone in a circle of radius +, given by

2
3 _% r4tana=s%  [Trin. Coll, 1890.]

39. A fine parabolic tube, whose weight may be neglected, has
its plane vertical, so that it is free to roll on a horizontal table:
if the tube contain some liquid, prove that there is only one position
of equilibrium, and that unstable. [M. T., 1865.]

40. A mass of liquid not acted on by gravity revolves uni-
formly round a fixed axis, and contains, revolving with it, two
small solids connected by a string, one of the solids being denser
and the other rarer than the liquid: find the condition of equi-
librium and discuss the cases which may arise.

[Smith’s Prize, 1865.]

41, Two liquids which do not mix are placed in a vertical
cylinder of radius ¢, so that the lighter liquid (density p') lies
above the heavier liquid (density p) and occupies a portion of the
cylinder of length £, Into this cylinder is gently lowered a solid
(density o) in the shape of a portion of a paraboloid of revolution of
latus rectum 2¢ cut off by a plane perpendicular to the axis and
passing through the focus, If the paraboloid just floats in the
liquid vertex downwards when completely immersed, prove that

(p—a)c=4 (Wek~k) (p—p') [Pet., 1891.]
G.E.H. 8
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42, A vessel in the form of a cube, of side 12a containing
liquid is placed so as to rest on the top of a perfectly rough sphere
of radius 5a: neglecting the weight of the vessel, prove that for
displacements in planes parallel to the vertical faces, there will be
stability provided the depth of the liquid is between 4a and 6a.

[M. T., 1881.]

43, The displacement of a laden ship is W tons, and « is the
height of the metacentre above its centre of gravity. Some deck
cargo of weight w is moved across the deck and the ship tilts through
an angle 4. This cargo is now removed to another deck distance 4
below the upper one and placed below its second position on the
upper deck. Prove that the ship now tilts through an angle

aWé/(a W+ hw). [Trin. Coll., 1890.]

44. Liquid of density p is standing in a fixed smooth circular
cylinder with axis vertical of a radius . This is made to revolve
about the axis with uniform angular velocity o, none of the base
being exposed. A paraboloidal solid of density o, shaped just to
fit the cavity in the liquid, is gently placed upon the surface so
that its flat top just passes through the highest rim of the liquid.
If p>o, shew that before it reaches its equilibrium position, the
liquid rising round it, it must sink through a depth

y {1~ (- o) /pHYutatjag,
supposing no interference with the base to take place.
[M. T., 1885.]

45. A rectangular parallelepiped (edges 2a, 2b, 2¢) of density ,
floats with its edges 2a vertical, partly in a lower liquid of density p
and partly in an upper liquid of density o. Prove that for dis-
placements in the planes parallel to 2a, 2b, the equilibrium is stable,
if

b (p-0)*>6a? (p-7)(r~0),
p, 7y o being in descending order of magnitude, and the parallele-
piped being wholly immersed. [Peterhouse, 1888.]

46. A bridge of boats supports a plane rigid roadway 4B in
a horizontal position. When a small movable load is placed at &
the bridge is depressed uniformly: when the load is placed at a
point O the end 4 is unaltered in level; when at D the end B
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is unaltered in level: and when at P the point @ of the roadway
is unaltered in level. Prove that
AG. GC=BG.GD=PG. GQ:
and that the deflection produced at a point R by a load at P is
equal to the deflection produced at P by the same load at R.
i [M. T., 1883.]

47. A sphere of density mo is immersed in a large vessel of
water of density o so that a length ¢ of its vertical diameter is
under water. The centre is then depressed through a depth 4.
Find an expression for the gain in potential energy of the sphere
and water together. Hence prove that, if the sphere were originally
floating at rest, the gain in potential energy (% being small) would
be to a first approximation

3 maghia? (1-2%),
where z is the middle root of the equation
(2+1)2(2—2)+4m=0. [M. T., 1886.]



CHAPTER VI,
THE DETERMINATION OF SPECIFIC (GRAVITY.

67. IN order to ascertain the specific gravity of a
given substance we must find the weights of equal volumes
of the substance and the standard substance. The weight
of a body can be measured with very great accuracy, but
it is often impracticable to measure its volume directly.
In this case indirect methods must be adopted. One
method is to employ the 8pecific Gravity Bottle.

The Specific Grawity Bottle is a glass bottle with the
inside of its neck and its glass stopper carefully ground
so that when pushed home the stopper always occupies
the same position. A perforation runs through the stopper
so that, when the bottle is quite full of liquid and the
stopper is pushed in, the excess of liquid escapes through
the perforation and allows the stopper to go quite home.

68. ProP. To determine the specific gravity of a liquid
by means of the specific gravity bottle.
Observations to be made:
(1) Find the weight of the bottle when empty; let
this be W.
(ii) Find the weight of the bottle when full of water;
let this be W':
.. the weight of the water filling the bottle is W’ —W.
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(iii) Find the weight of the bottle when full of the
given liquid; let this be W”:
. the weight of the given liquid filling the bottle is
w'-w.
Hence the specific gravity of the liquid
_ Weight of the liquid filling the bottle  W"— W
weight of water filling the bottle =~ W —W°

69. Pror. To determine the specific gravity of a solid
by means of the specific gravity bottle.
Observations to be made—
(i) Find the weight of the solid, W.
(ii) Find the weight of the bottle when full of water;
let this be W".

(iii) Find the weight of the bottle, when it contains

the solid and is filled up with water; let this be W":

o W”— W’ =the weight of the solid — the weight of
water it displaces:

«. the weight of water displaced by the solid

=W-W'+W.

Hence the specific gravity of the solid = W/(W + W' —W").

It is obvious that this method will not apply unless it

is convenient to break up the solid into portions small
enough to go into the bottle.

70. Since as a rule the experiments of Arts. 68 and 69
are not made in vacuo, it may be desirable to make cor-
rections on account of the buoyancy of the air. Thus in
Art. 68, if the experiments are made in air, W ~W is
really the excess of the weight of water that will fill the
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bottle over the weight of the air: as the specific gravity
of air is known and the internal volume of the bottle is
known approximately from the weight of water, we can
estimate the actual weight of water it will hold. For air
being comparatively very light, a small error in estimating
the internal volume of the bottle will not affect the weight
of the air materially. Similarly we can correct for the
weight of the liquid.

. Also in Art. 69, W is not the actual weight of the
solid but is the excess of that weight over the weight of
air the solid displaces. As we have already ascertained
the approximate specific gravity of the solid, we can cal-
culate the weight of air it displaces, and so deduce the
actual weight of the solid.

EXAMPLES.

1. A specific gravity bottle full of water weighs 503 grammes, Some
pieces of metal weighing 17-6 grammes are introduced and the bottle is
again filled with water, the combined weight being 659 grammes. Find
the specific gravity of the metal.

2. A specific gravity bottle full of oil weighs 42-5 grammes. A Iump
of metal weight 11'2 grammes is placed in the bottle and the bottle filled
up with oil, the whole now weighing 52'1 grammes. The bottle is now
émptied and 20 grammes of mercury (sp. gr. 18-5) poured into it: on
filling up with oil, the combined weight is found to be 61-9; find the
specific gravities of the oil and the metal.

71. The U-tube Method. By this method we can
compare the specific gravities of two liquids, which when
placed in contact, have, like oil and water, or mercury and
water, a clearly defined surface of separation..

Let the two liquids be poured, one down each of the
two branches of a U-shaped tube of glass.
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Let A be the free surface of one liquid,
of specific gravity p, and A’ that of the
other of specific gravity p’. Let B be the
surface of separation.

Let h, i’ the vertical heights of A and
A’ above B be observed, either by means
of a graduated rule, or better by means

J
"'llllllllllll L T T T

of a cathetometer, an instrument for é
measuring the vertical distance between { s
two points. ;

=5

Since 4B is a homogeneous liquid,
the pressure at B = atmospheric pressure + gph,
and since A’B is a homogeneous liquid,
the pressure at B = atmospheric pressure + gp’A’;
= gph=gp'¥,
Soplp'=FK[k;
or the specific gravities are inversely proportional to the
heights of the free surfaces above the surface of separation.

72. The inverted U-tube method. By this
method we can compare the speocific gravities of any
two liquids.

Take a piece of glass tubing of the shape
indicated in the figure, and fix it so that the two
lower open ends dip ome into each of the two
vessels 4 and B containing the liquids. Attach'a
piece of india-rubber tubing to the upper opening
C, and suck the liquids some distance up the two
branches. Observe the height of the liquid surface
in each branch above that in the corresponding
vesgel. It is obvious that these heights are in-
versely proportional to the specific gravities.

This apparatus is practically Hare’s hydrometer,
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73. The Hydrostatic Balance. This consists of
an ordinary Balance, one scale-pan of which is suspended
by shorter chains than the other: the first scale-pan has a
hook attached to its under surface so that a solid can be
suspended from it and immersed in a vessel containing
some liquid.

74 Pror. To determine the specific gravity of a
solid by means of the Hydrostatic Balance.

(a) When the solid is heavier than water.
Observations to be made—
(i) Weigh the solid; let W be its weight.

(ii) Weigh the solid, when it is immersed in water;
let W’ be this weight:

. the weight of water displaced by the solid is W — W’
(Art. 58);

.. the specific gravity of the solid is W/(W — W’).
(B) When the solid 18 lighter than water.
Observations to be made—

(1) Find the weight W of the solid.

(ii) Find « the weight in water of a piece of metal,
the stnker, which when attached to the solid will cause
both to sink in water.

(iii) Find y the weight in water of the sinker and
solid together;

. y=the weight of the sinker in water + the weight
of the solid — the weight of water displaced by the solid

=« + W — the weight of water displaced by the solid;




THE DETERMINATION OF SPECIFIC GRAVITY. 121

‘. the weight of water displaced by the solid
=W+az-y; .
.. the specific gravity of the solid = W/(z + W —y).

76. Pror. To detérmine the specific gravity of a
liquid by the Hydrostatic Balance.

Observations to be made—

(i) Find the weight W of a solid which will sink
both in the liquid and in water.

(ii) Find the weight W’ of the solid in water.

(iii) Find the weight W” of the solid in the given
quuid.

. W—W’=the weight of water displaced by the sohd

a.nd W-Wi=.ceeeunnnn given liquid .....ccooeiienniiin.

*. the specific gravity of the liquid =(W — W")/[(W - W").

76. In the above cases it is supposed that the solid is
weighed n vacuo: if however W is its weight in air, we
ought strictly to make & correction for the weight of air it
displaces. Knowing the specific gravity of air and using
the uncorrected formula we can find approximately the
specific gravity of the solid, and hence the weight of air
it displaces. The true weight of the solid can then be
deduced.

If the solid is one that will melt in water, its specific gravity may be
compared with that of some liquid in which it does not melt. Or, it may
be coated with wax and the specific gravity of the whole found: then,
as the weight and specific gravity of the wax can be found, we can deduce

that of the solid. The last method also applies to a solid like pumice-
stone which absorbs water.
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71. Jolly’s Balance. This is practically a hydrostatic balance in
whieh a spring balance is used instead of a common one. It consists of
a long spiral spring to which is attached a pan. From this pan is hung
by a fine wire a second pan which is kept immersed in water. The body
whose specific gravity is required is first placed in the upper pan and the
compression produced in the spring observed by means of a scale. The
body is removed and the same compression produced by weights placed
in the upper pan. This gives the weight in air. The weight is next placed
in the lower pan and weights placed in the upper until the compression is
the same as before. This gives the weight of water displaced by the
body. We can obviously apply the method of Art. 756 to obtain the
specific gravity of a liquid by this balance.

EXAMPLES.

1. The apparent weight of & piece of platinum in water is 60 grammes
and the absolute weight of another piece of platinum twice as big as the
former is 126 grammes. Determine the specific gravity of platinum.

2. A piece of wood weighing 5 oz. has attached to it & piece of copper
weighing 4 oz. and of specific gravity 9: the weight of the two together
in turpentine of specific gravity ‘9 is found to be 2'5 0z.: what is the
specific gravity of the wood?

8. A piece of silver and a piece of gold are suspended from the two
arms of & balance which is in equilibrinm when the silver is immersed in
aloohol (density = ‘85) and the gold in nitric acid (density = 1'5). The
densities of the silver and gold being 10°56 and 198 respectively, what are
their relative masses?

4. A uniform ocylinder floats in mercury with 5:14 inches of . its
axis immersed. Water is poured on the mercury to the depth of 1 inch
and it is then found that 5:066 inches of the axis are below the surface
of the meroury. Find the specific gravity of mercury.

5. If W, W' be the weights of a body in vacuo and in water respec-
tively, shew that its weight in air of specific gravity s will be
W-s(W-Ww'). [Jesus Coll., 1886.]

6. The apparent weight of a sinker, weighed in water, is four times
the weight in vacuum of a piece of a material, whose specific gravity is
required: that of the sinker and the piece together is three times that
weight. Shew that the specific gravity of the material is *5.

[M. T., 1855.]
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78. 'The Common Hydrometer. This instrument
is used to determine the specific gravity of
liquids. It consists of a uniform thin straight
stem ending in a bulb A4, cylindrical or spheri-
cal: below 4 is another small bulb B weighted,
generally with mercury, so that the hydrometer
will float with the stem vertical. This hydro-
meter is generally made of glass. When it is
floating in a liquid it displaces its own weight
of the liquid, so that the lighter the liquid, the
greater the volume submerged. This fact en- A
ables us to graduate the stem so that we read
off the specific gravity from the graduation in
the surface of the liquid. As the weight of the ®s
liquid displaced is always the same, this is
sometimes called the constant weight hydrometer.

o

79. To graduate the common hydrometer.

Let W be the weight, V the volume of the hydrometer,
a the sectional area of the stem: let =, 2’ be the lengths
of the stem unimmersed, when the hydrometer floats in
liquids of specific gravities s, &' respectively. Then since
the volume of liquid displaced is V — az,
s(V-—az)=W=¢(V-az)=V —aa (Art. 55),

where @ is the unimmersed portion of the stem when
floating in water, the standard substance.

soa=Viae—Wla,
and z=V/a— W/as;
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Similarly, z’—a,=%r (1-§,);
L &=a _1-1/¢ .
. Q—E_T——l—/? ....... teseceanes (11).

Let the hydrometer float in water and mark the
position of the water-line on the stem: next let it float in
any convenient liquid of known specific gravity s, and
mark the new line of floatation; the distance between the
two marked points is #—a. Hence the distance 2/ —a,
between the first mark and the graduation for specific
gravity & is obtained by equation (ii).

By giving &' different values we can obtain any number
of graduations.

80. It can also be shewn that the graduations corresponding to specific
gravities in Arithmetic Progression are at distances from a certain point
in the stem produced, which are in Harmonic Progression.

Let 4B be the stem of the hydrometer, C the graduation correspond-
ing to water (sp. gr. 1), P that corresponding to a liquid of sp. gr. s.

Ao ¢ e 0

Then using the notation of the last article
AP=z and AC=a.
.. equation (1) becomes
CP=Wla.(1-1/8).ccccocrirrrirrniiirinnnnns (ii).

Produce 4B to a point O, such that CO=W/a, i.e. CO is a length of
the stem, which would displace a weight W of water.

-~ (iii) becomes
CP=CO0 (1-1/s).

;. OP=_-.
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EXAMPLES.

125

1, If a common hydrometer floats in water, with 8:3 inches of its
stem unimmersed, and in liquid of specific gravity ‘85 with 1-3 inches
unimmersed, find the specific gravity of a liquid in which it floats with
6 inches unimmersed, and also the specific gravity of & liquid in which

it floats with 2 inches unimmersed.

2. Assuming the stem of a common hydrometer to be of uniform
section, and that the highest graduation corresponds to & specific gravity
of 1-00 and the lowest to 2:00, find what specific gravity corresponds to
the position of the point half-way between the two divisions. Find

also the graduation corresponding to 1-50.

81. Nicholson’s Hydrometer. This can be used

for ascertaining the specific gravity of either
a liquid or a solid. It can also be used for
weighing small bodies, It consists of a
hollow cylinder A, generally made of brass,
with a thin wire stem supporting a cup B
above it. Another cup C below A4 is con-
nected with it by a wire: C is weighted so
that the hydrometer may float with the stem
vertical. There is a well-defined mark D
on the stem and the instrument is always
weighted so that when floating in any liquid,
D is in the surface. Since the volume im-
mersed is always the same, this hydrometer
is sometimes called the constant volume
hydrometer.

82. To compare the specific gravity of one liquid with

that of another.

Find (i) W, the weight of the hydrometer;

(ii) w, the weight that must be placed in B so
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that the hydrometer may float in liquid of specific gravity
& with D in the surface;

(iii) «/, the weight that must be placed in B so
that the hydrometer may float in liquid of specific gravity
§ with D in the surface.

. if V be the volume immersed in either case
Ves=W+w, and V&=W+w';
8 s=(W+w)[(W+w).

83. To find the specific gravity of a solid.

Place the hydrometer in water and put weights in B
so that D is in the surface. Next put the solid in B and
take out weights W so that D is again in the surface;

. W is the weight of the solid.

Now take the solid out of B and put it in C, and add
weights W’ until D is again in the surface.

W’ must be the weight of the water displaced by the
solid;

. the specific gravity of the solid = W/ W',
Owing to ocapillarity, the water meets the hydrometer stem either

as at 4, or a8 at B, and in order that our resulis may be accurate,
we must ensure that the way is the same in all our observations.

\(,
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EXAMPLES.

1. If the weight required to sink a Nicholson’s hydrometer is 500
grains and when an amalgam of gold, specific gravity 19+4, and of
mercury, specific gravity 13-56, is placed in the two cups 264 and
278 grains respectively are required: find the volumes of the two
metals. [Clare Coll., 1885.]

2. It is found that a weight w of a solid, placed in the upper cup,
ginks a Nicholson’s hydrometer to the same depth in water as a weight
W of the same substance sinks it when placed in the lower cup: suppos-
ing w, W are the actual weights in vacuo, while the other experiments
have been performed in the presence of the atmosphere of specific
gravity s, shew that the specific gravity of the solid is

(W - ws)|(W —w).

EXAMPLES. CHAPTER VI.

1. Having determined by the hydrostatic balance method the
specific gravity of a thin wire, find the greatest error in determining
the mean transverse section of a wire ten yards long, if the weights
are determined accurately to tenths of a grain and the weight of
a cubic inch of water is 252°5 grains. [M. T., 1870.]

2. A mixture of 100+ parts by weight of alcohol and 100 —2
of water is said to be # above proof: find the specific gravity of
such a mixture in terms of that of alcohol, and shew how to graduate
the common hydrometer in such a manner that its reading for
any mixture may give the excess of the mixture above proof.

[M. T., 1876.]

3. A common hydrometer being graduated upwards, its readings
for two different fluids are #; and 2, and for a mixture of equal
parts of these x: shew that the volume of a unit of length of
the stem is to the volume of the whole instrument below the zero
point as

Tyt 2y — 2% 1 22+ 225 — 20,25, [M. T., 1872.]

4. Shew that if o be the specific gravity of & substance found
by the use of the hydrostatic balance when the specific gravity
of the air is neglected, and s be the specific gravity of air, then
the error will be ¢ (¢ —1).
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5. A Nicholson’s hydrometer is used to determine the weight
and specific gravity of a solid, and W and o are the results when
the effect of the air is neglected : prove that the actual weight is

W{l+d/o (1-a)} (1 -afp), |
where a and p are the specific gravities of air and of the material of
the known weights employed.

6. If the reading of a common hydrometer when placed in fluid
at the same temperature as itself be z, and if, when it is placed in
the same fluid at a higher temperature than itself, its reading be at
first z,, but afterwards the reading rises to z,, the ratio of the
expansions of the fluid and of the hydrometer for the same change
of temperature is approximately

T—2 : Tg—2;. [M. T., 1882.]

7. A common hydrometer is used to determine the specific
gravity of a liquid which is at a temperature higher than that
of water. When the hydrometer is transferred from water to the
liquid the specific gravity appears at first to be & but afterwards
to be o;. Shew that the true specific gravity at the temperature
of the water is

o+ (o= ),

where a and o' are the coefficients of expansion of the hydrometer
and the fluid respectively. [Trin. Coll., 1891.]

8. A common hydrometer has a piece of its bulb chipped off.
When placed in fluids of density a and 8, it indicates densities
a', B respectively. Find the proportion of the weight which has
been chipped off, and shew that if in any fluid the apparent density
is z, the true density is

zaf (8’ -a')
; . M. T., 1890.
a8 B-a)- (dB—aB) [ T, 1680

9. Supposing & common hydrometer to be immersed in a liquid
less dense than water as far as the point to which it would sink
in water, prove that, if let go, it will sink through & distance

0 1-s
ks’
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o being the weight of the hydrometer, £ the section of its stem,
and s the specific gravity of the liquid : the hydrometer is supposed
to be never entirely immersed. [M. T., 1880.]

.

10. An old Nicholson’s hydrometer is found with its stem
uniformly coated with rust. Two weights of unknown magnitude
are also found with it. The stem has three marks 4, B, ¢ upon
it which marked the surface of some unknown liquid when the
hydrometer (free from rust) floated in it either free, or with one
or other of the two weights in its upper pan. When it is now
placed in a liquid, the surface in the three cases is at 4', B, C'.

Shew that
A4A’.BC—-AC.BB'+4B.(CC'=0. [M.T.,,1878.]

11, If s be the value obtained for the specific gravity of a liquid
by means of the specific gravity bottle and a spring balance, the
air displaced being neglected, and o the value obtained when the
air displaced is taken into account, if water be taken to be 815

times as heavy as air, prove that
s—1
815 °

12. The weight of a specific gravity bottle is found when full of
glycerine to be = at ¢° C. and 2’ when at ¢°C.: when a piece of lead
weighing w is placed inside the bottle, and the bottle filled up with
glycerine the total weight is y when at ¢°C,, and 3" when at ¢ C.
Assuming that the bottle, the glycerine and the lead expand
uniformly when raised in temperature, find the relative rates of
expansion of glycerine and lead. [Jesus Coll., 1893.]

[Peterhouse, 1890.]

o=8—



CHAPTER VIL
ON GASES.

84 WE have already seen (Arts. 4 and 6) what
property gases and liquids have in common as fluids, and
also what their distinguishing characteristics are.

On weighing a flask full of air, and then exhausting
the air, and weighing again, Otto von Guericke found
that the empty flask weighed somewhat less than when
full. This shewed that the air has weight.

86. That the air exerts pressure is verified by pushing
a tumbler mouth downwards into a vessel of water;
it will be found that the surface of the water inside the
tumbler is below that outside.

If the air exerts pressure, it must follow that if the
air is not allowed access to one portion of the surface
of a liquid, while it is in contact with another portion,
its pressure will force the latter down below the level
of the former. This is the principle of the Barometer,
which affords the most satisfactory way of measuring the
pressure of the air.

The Barometer.

86. To construct a Barometer.

Take a uniform straight glass tube, closed at one end
and about 32 inches long. Fill this with mercury, close
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the open end with the thumb and invert the tube, placing
the temporarily closed end below the surface of some
mercury in a trough: remove the thumb and it will be
found that the mercury will remain in the tube, so that,
at the sea-level, its surface is between 29 and 31 inches
above that in the trough.

Let B be the surface of the mercury in the
tube; let A be a point in the surface of the
mercury outside.

If o be the density of the mercury, the
pressure at A exceeds that at B by goh, where
h is the vertical height of B above 4. (Art. 21.)

But the pressure at A is the pressure of
the air,

Hence the pressure of the air exceeds the
pressure in the tube above B by goh. Now if
by careful heating all air and moisture have been expelled
from the mercury in the tube, and none allowed to get in
when the tube was inverted, there can be nothing to exert
pressure in the space above B except the vapour of
mercury.

The pressure exerted by mercury vapour has been
shewn by Regnault’s and Haager’s experiments to be very
small, so that we may take the pressure of the air to

be goh. The space in the tube above B is termed the
Torricellian Vacuum.

PN AREHL) —
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87. Corrections to be applied to an observation with the mercury
barometer.

(1) Correction for capacity.

As the mercury rises in the tube, it will fall in the trough, and vice-
versf, The distance generally measured in a barometric observation, is

9—2
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the height of the mercury surface in the tube above some selected standard
position. Let = be this observed distance, and let ¢ be the height of the
mercury surface in the tube above that in the trough, when the former is
in the standard position. Then when the one rises through a distance z
the other must sink through a distance za/4, where a, 4, are the sec-
tional areas of the tube and trough respectively. Hence the required
height of the surface in the tube above that in the trough is

c+z+zald,
i.e.+za/A is the correction.

(2) Correction for variation in the density of the mercury on account
of temperature.

Since mercury expands with a rise of temperature, the barometer will
rise as the temperature rises, without any change in the atmospheric
pressure having taken place.

In order that the height of the barometer may be proportional to the
atmospheric pressure, the density of the mercary should be constant. We
must, therefore, caloulate the height of the column which the atmospherio
pressure would support if the mercury were at some standard tempera-
ture, 0°C. for instance. If %’ be this required height, » the observed
height, and o, a¢, the densities of mercury at 0°C. and ¢° C., the actusl
temperature at the time of observation,

ool =ah,
also go=0t(1+X¢t),
where A is the coefficient of expansion of merocury.
~. K=h/(1+\t)=h (1 -\t), approximately ;
.. the correction is — Rk\t.

(8) Correction for expansion or contraction of the measuring rod.

Since the measuring rod used to determine the apparent height z of
the mercury surface in the tube above the standard position expands or
contracts as the temperature rises or falls, it will only give this height
ocorrectly at the standard temperature.

If the temperature at the time of observation be ¢°C. above the
standard temperature, and k be the coefficient of expansion of: the rod,
what appears to be z is really =+ zkt,

.. the correction is +zkt.
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(4) Correction for capillarity.

It is a well-known experimental fact that when a fine tube open at both
ends is pushed down into mercury the mercury surface is lower in the tube
than outside. This depression is due to capillarity, and depends on the
material of the tube and the bore, varying inversely as the diameter
of the bore. On this account the height of the mercury in the
barometer tube is less than it would be if there were no capillarity, or if
the sections of the tube and trough were the same, The correction to be
added is a constant positive one for each barometer, and may be obtained
experimentally, or calculated from the bore of the tube if the sort of
glass of which the tube is made is known,

(8) Correction for height above sea-level,

If the observation is taken above the sea-level, the height is less than
it would have been if it had been taken at the same time and place but
at the sea-level.

g
By Art. 98, this correction is k (e¥ - 1), where z is the altitude above
sea-level, and k is the constant of Art. 91.

88. Other liquids besides mercury may be used in the construction
of a barometer ; the advantages attaching to mercury are due to

(i) its great density: this renders a comparatively short tube only
necessary. If water were employed, the height of the column would be
over 32 feet.

(ii) its small alteration in volume for a change of temperature,

(iii) the very small pressure exerted by its vapour. The pressure
exerted by water-vapour is considerable, and varies considerably with the
temperature.

89. The average height of the barometer is about 76 centimetres, or
29922 inches, The corresponding atmospheric pressure is about 14-7 1bs,
per square inch, and is termed an Atmosphere. Large pressures are
generally measured by engineers in atmospheres; it should, however, be
remembered that this system of measurement is not scientific, as the
value of an atmosphere varies from place to place, for the same reason
that a 1b.-weight varies,

90. The Aneroid Barometer. This instrument contains a chamber
from which the air has been exhausted, and one side of which consists of
a metallic diaphragm. The other side of the diaphragm is exposed to the
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air, and any variation in the air.pressure causes a deflection in the
diaphragm, which is communicated to an index on a dial. The dial is
graduated by comparing it with a mercury barometer.

The advantages of this barometer are its small size and its convenient
shape. The disadvantage is that it is impossible to ensure the same
accuracy as in a mercury barometer.

91. The following law due to Robert Boyle, by whose
name it is known in England, gives the relation between
the pressure and density of a gas, when the temperature
is constant.

Boyle’s Experimental Law.

‘The pressure of a gas varies directly as its
density, or inversely as the volume occupied, if
the temperature remain constant.

The law may be conveniently verified as follows:

Take a straight glass tube AB of uniform bore, and
closed at the end A. Connect this tube with
another similar tube CD, open at both ends,
by a piece of flexible india-rubber tubing.
Now partly fill the tube with mercury, and
then closing the open end C with the thumb,
incline the tubes so that the air bubbles up
to the end A. ‘

Next clamp both tubes in a vertical
position, as in the figure, the ends 4 and C
being uppermost, and remove the thumb
from C. By raising or lowering the tube
CD, we can bring the mercury surfaces in
- the two tubes to the same level PP, thus
ensuring that the pressure of the air enclosed in 4B is
equal to that of the atmosphere.
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Observe (i) the height of the barometer, &,
(ii) the length AP of the tube, occupied by the air;
this length is proportional to the volume.

Now raise CD so that the mercury-surfaces in 4B, CD
are Q, @ respectively: @ will clearly be above Q. '

s J

1
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Observe (iii) k' the difference of level between @
and §';
(iv) the length 4 Q.

Make similar observations when CD is lowered so

that ' is below Q.

If a considerable number of such observations be taken,
it will be found that the product
AQ(h+ k) or AQ(h—F),
according as @ is below or above @, is always approxi-
mately equal to AP. h.
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But AQ is proportional to the volume of the air, and
h+ 1 or h—F, as the case may be, to the pressure.

Hence the pressure x volume is constant, z.e. the
pressure varies inversely as the volume.

But since the mass of air imprisoned remains con-
stant, the density varies inversely as the volume, and
therefore directly as the pressure.

Hence the law may be written

p=kp,
where p is the density, and & is a constant depending on
the nature of the gas and the temperature.

The value of £ may be ascertained by determining the
mass and pressure of a known volume of the gas at the
given temperature.

It would not be difficult to introduce into A B, instead
of air, any other gas, hydrogen or pure oxygen, for instance,
for which it might be desired to verify the law.

The appsratus described above is a modification of that used by
Boyle; it is not so easy to desoribe as the original one, but much simpler
to work with.

. 92, A Perfect Gas is defined as one which obeys Boyle’s law abso-
lutely. Air, oxygen, hydrogen and nitrogen may be regarded as very
approximately perfect gases, since they obey the law very nearly for a
considerable range of pressures and temperatures. A vapour in contact
with its own liquid is so far from obeying the law that its pressure is
quite independent of the volume. A diminution of volume is accom-
panied by a condensation of some of the vapour and an expansion by
an evaporation of some of the liquid, without any alteration in pressure.
If the expansion go on after all the liquid is evaporated, the pressure
begins to diminish but not so rapidly as if it followed Boyle’s law. But
the larger the volume becomes the more nearly does the vapour approxi-
mate to a perfect gas.

When & gas is spoken of, it is generally assumed, unless stated other-
wise, that it is a perfect gas.
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The Diving-Bell.

93. This consists of a large bell-shaped or cylindrical
vessel made of metal, capable of holding several persons.
It is closed at the top and open underneath. It can be
lowered into water by means of a chain: when this is
done the water rises inside the bell and compresses the
air, which will however always prevent the water from
completely filling the bell.

It is usually provided with two tubes, through one
of which fresh air can be pumped to any extent into the
bell, driving if need be all the water out of the bell
The other is to draw off the vitiated air when necessary.

It is obvious that the lower the bell sinks, the greater
is the pressure inside, and, if no fresh air is pumped in,
the smaller the volume of water displaced, and in conse-
quence the greater the tension of the chain supporting it.

The chief object of a diving-bell is to enable work
such as the laying of the foundations of piers, etc. to be -
done under water.

EXAMPLES.
1. A conical wineglass is immersed mouth downwards in water:

how far must it be depressed in order that the water within the glass may
rise half-way up it ? [M.T., ’59.]

2. At a depth of 10 feet in a pond the volume of an air-bubble
is -0001 cu. inches: find approximately what it will be when it reaches
the surface, if the height of the barometer is 30 inches, and the specific
gravity of mercury 13-5. [Peterhouse, ’88.]

8. A diving-bell is suspended at a fixed depth: a man who has been
seated in the bell suddenly falls into the water and floats. Determine the
effect on (1) the tension of the chain, (2) the level of the water in the
bell, (3) the amount of water in the bell. [Jesus Coll., '88.]
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4. A heavy sphere is placed in a vertical cylinder, filled with
atmospheric air, which it exactly fits. Find the density of the air in
the cylinder when the sphere is in a position of permanent rest.

[M.T., '67.)

5. A oylindrical diving-bell is lowered to a given depth in water by
means of a chain and is completely immersed. If it be lowered to the
same depth in a liquid of less specific gravity, will the tension of the
chain be increased or diminished? : [Peterhouse, '90.]

6. A cylindrical diving-bell whose volume is 450000 c. cms. is lowered
in water to a depth of 1500 cms. and it is found that an addition of
700000 c. cms. of air at atmospheric pressure is required to fill the bell.
Find the height of the water barometer and the pressure on the surface
of the water in dynes per 8q. cm., the value of g being taken as 980,

[Trinity Coll., '85.]

7. A barometer stands at 30 inches, and the space occupied by the
Torricellian vacuum is 2 inches: if now a bubble of air which would at
atmospheric pressure occupy half an inch of the tube be introduced into
the tube, prove that the surface of the mercury in the tube will be lowered
3 inches. Shew also that the height of a correct barometer when this

false one stands at z inches is z+ :‘% . [Jesus Coll., ’85.]

8. A diving-bell is made of a substance whose specific gravity is 4,
and its interior will contain a quantity of water whose weight is twice that
of the bell : if the bell be lowered in water till the tension of the rope is
half the weight of the bell, prove that the density of the air within it will
be eight times that of the atmosphere. [M. T., *70.]

9. A diving-bell is in the form of a eylinder with a hemispherical
top, c is the length and a the radius of the cylinder. Find how far the
bell must be sunk in order that the hemisphere may be the only part con-
taining air: shew that in that position the volume of air at atmo-
spheric pressure which must be forced in, to clear the whole bell from
water, must be (¢/H + §¢c/a) x the volume of the bell, H being the height of
the water barometer. [Clare Coll., ’84.]

Charles’ Law.

94. The following law, generally attributed to Charles,
gives the connection between the volume and temperature
of a gas when the pressure remains constant.
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If the pressure of a gas remain constant, the
volume increases by 1/273 of the volume at O° C.
for every degree Centigrade the temperature is
raised.

The gases for which this law holds very approximately
are the so-called permanent gases, oxygen, hydrogen, and
nitrogen. The law does not apply to vapours.

If V,, V, denote the volume of a gas at ¢° C. and 0° C.
respectively, the pressure being the same in each case, it
follows from Charles’ Law that

_y . Ve
Vt—m+273s
) 213+t
- Ve=Vo—gg— -

If now the temperature be measured from a point 273°
below the zero of the centigrade scale, we obtain what is
termed the absolute temperature, the new zero being
termed the absolute zero. If 7' be the absolute tempe-

rature corresponding to the temperature ¢ on the ordinary
scale

T=t+278,
VT
: V‘"273 :

Hence we may state the law thus

The volume of a gas, when the pressure is con-
stant, varies as the absolute temperature.

95. From the laws of Boyle and Charles we can deduce
the relation between the pressure and temperature of a
gas, when the volume is constant.

Let P, V,and T denote the pressure, volume and ab-
solute temperature of a mass of gas.
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By Boyle’s Law
Ve % , when 7' is constant.

By Charles’ Law
V o« T when P is constant.

Ve % when P and T both vary,
2 2 T e @)
and P o T when V is constant, ............... (ii).

Hence from (ii)
The pressure of a gas varies as the absolute
temperature, when the volume is constant.

Since the volume of a given mass of gas varies in-
versely as its density, we may write instead of equation (i)
P=kpT,
where p is the density of the gas and k is a constant

depending on the gas.

For ' experimental methods of venfymg these laws
the student is referred to the chapter on the Dilatation of
gases in Prof. Balfour Stewart’s Treatise on Heat.

Mixture of Gases.

96. Experimental Fact. If two gases, occupying
different vessels, be at the same temperature and pressure,
they unll, when one vessel ts allowed to communicate unth
the other, form a mizture whose pressure is the same as
before, provided no chemical action takes place.

Prop. If the pressures of two gases at the same tem-
perature and volume be p, p’ respectively, the pressure of
the mizture at the same temperature and volume unll be

p+p.
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Let v be the volume of each gas.

Let the pressure of the second gas be altered from p’
to p, then by Boyle’s Law its volume becomes vp’/p.

Now let the two gases at pressure p communicate
with one another, the total volume will be v+ #p’/p or
v (p+ p')/p and the pressure p.

If the mixture be compressed to volume v the pressure
by Boyle’s law will become p + p'.

EXAMPLES.

1. A volume of air of any magnitude, free from the action of force,
and of variable temperature, is at rest: if the temperatures at a series of
points be in arithmetical progression, prove that the densities at these
points are in harmonical progression. [M.T., ’67.]

2. Two vessels contain air having the same pressure II but different
temperatures ¢, ¢': the temperature of each being increased by the same
quantity, find which has its pressure most increased. If the vessels be of
the same size, and the air in one be forced into the other, find the
pressure of the mixture at a temperature zero. [M.T., ’56.]

8. A gas saturated with vapour is at a pressure II. It is then com-
pressed without change of temperature to 1/nth its former volume, and the
pressure is then observed to be =II,. Shew that the pressure of the
vapour= (nIl — I,,)/(n — 1), and that the pressure of the air in the original
volume without its vapour =(II,, - IT)/(n - 1). [Clare Coll., ’88.]

4. The volume, pressure and temperature of a given quantity of gas
are respectively v,, p;, t, and those of a second quantity of gas are
vy, Py, 3¢ supposing the two quantities to be mixed in a vessel of volume
v, and then brought to a temperature ¢, find the pressure of the mixture.

[8. John’s Coll., ’87.]

5. The weight of a litre of dry air at 0° C. and 760 mm. pressure is
1-293187 grammes, find the weight in grammes of V litres of dry air at
t°C. and p mm. pressure. [Peterhouse, ’30.]

6. Find in ft.-1b. sec. units the value of % in the formula
p=kp(l+at),
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for a gas of which at temperature t° C. the mass of V cubic feet is W lbs.,
the height of the barometer being h inches, and the specific gravity of
mercury compared to water being o. [M.T., *91.]

7. Masses m, m’ of two gases in which the ratios of the pressure to
the density are respectively x and «’ are mixed at the same temperature.
Prove that the ratio of the pressure to the density in the compound is

(mic+1'x")/(m+m). [M. T., ’93.]

8. If a cylindrical diving-bell of height a and whose chamber could
contain a weight W of water be lowered 8o that the depth of the highest
point is d, prove that when the temperature is raised ¢°, the tension
of the supporting chain is diminished by

1 What
l1+at ", /(h+d)P+4ah

h bemg the height of the water barometer, and a the expansion of air for
1°C. [M.T., '69.]

early,

9. Shew that if p,, py, t;, Ps, s, t5 and py, py, t3 be three correspond-
ing pressures, densities, and temperatures of a perfect gas,

ty (Dol pa = Ps/py) -+ ta (D3/p5 ~ Prlp1) + t5 (2] P2~ Pals) =0

[M.T., ’54.]
10. A cylindrical diving-bell of internal volume v is filled with air at
atmospheric pressure IT and absolute temperature ¢, and is lowered to a
certain depth below the surface of some water. Shew that if a very
small rise (z) in the temperature, and increase (y) in the atmospheric
pressure now take place, the apparent weight of the bell will be unaltered,

provided zIIv=1tyv’, v’ being the volume of air in the bell.
[Jesus Coll., ’80.]

Density of the Atmosphere.

97. Prop. To determine the relation between the
density of the avr and the altitude.

Let 2 denote the difference of altitude between two
stations.

Let the air between the two stations be divided into
n strata of equal thickness, z/n: let the densities at the
lower sides of these strata, beginning at the lowest, be
Pis Pa, -+ Pn; let p be the density at the upper face of
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the highest stratum. If the temperature be assumed ‘

constant throughout, the corresponding pressures will be
kpy, kps, ... kpy, kp (Art. 91.)

If n be taken indefinitely great, we may suppose the
density of each stratum constant throughout, and the
same as at the lower side.

Hence by Art. 21,

kpy—kps=gp,.2/n, kp,—kps=gp,.2/n...,
kpny —kpn=gpn-—1.2/n, kpn—kp=gpa.z/n.

. p,=p1(l—%.—f;), p,=p,(l—%.n)...,

z z
Pn=Pn (1—‘%. ﬁ)’ P=pn (1—‘% . ')—1’) .
Hence as the altitude increases in Arithmetic the
density dvminishes in Geometric progression.
Also equating the product of the left-hand expressions
to that of the right-hand expressions, we have
L_(1-9 2 %=
p (1 i n) ek,
gince n is taken indefinitely great.

X By using the Calculus, the proof can be simplified
thus

K

d
L-—go (ar 26),

and since p = kp,

- logp =—'% + constant ;

_9*
. p=0Cek,
where C is a constant.
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When z2=0, p=p;;
P1=C)
and P _ e'gif'
P1

If this formula represented correctly the law of density,
it would follow that the density of the atmosphere would
not be zero except at an infinite distance from the Earth’s
surface. As, however, it is obtained on the supposition
that the temperature and g are both constant throughout,
neither of which suppositions is even approximately true
for large differences of altitude, we cannot regard the
formula as approximately correct except for small varia-
tions in altitude.

It is obvious that there must be a finite limit to the height of the
atmosphere from the consideration that at a certain finite height the
force of gravity is insufficient to prevent a particle from flying off on
account of the Earth’s rotation,

98. Prop. To determine the height of one station above
another by means of a barometric observation at each.

Let &, h, be the heights of the barometer at the upper
and lower stations respectively; z the required difference
of altitude.

Let p, p, be the pressures, p, p, the densities at the
two stations.
Then if the temperature be constant throughout
h_p_p_ %
—=4L =L =¢ k" (Art. 97).
h P A ¢ ( )

z=’flogz;:.

<Q
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99. The pressure at any point of the air is the weight
of the column of air of gradually dwindling density, which
stands on a unit area placed horizontally at the point.
If we suppose this column to be compressed so that its
density is throughout the same as at the lowest point,
its new height is termed the height of the homogeneous
atmosphere at the point.

Let p be the density of the air at the point in question,
p the pressure there, and H the height of the homo-
geneous atmosphere.

Then gpH =p,
. H =p/gp =Fk/g = constant,

if the température is constant.

Hence the height of the homogeneous atmosphere is the
same at all places at the same temperature.

Giving k& and g their average values at the sea-
level, we ascertain that the height of the homogeneous
atmosphere is a little less than 5 miles.

The result of Art. 97, may be written

ﬂ= 3_%,
P:

ILLUSTRATIVE EXAMPLES.

1. The readings of a perfect mercurial barometer are a and B, while
the corresponding readings of a faulty one, in which there is some air,
are a and b: prove that the correction to be applied to any reading ¢ of
the faulty barometer is

(@a-a)(B-b)(a-b)
(a-c)(a-a)-(b-c)(8-B)"

[M. T., ’76.]
G.E. H. 10
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Let k be the length of the tube of the false barometer above the
mercury and occupied by air, when the true barometer stands at a.
The pressure of the confined air in this position is measured by a - a,
the difference between the true and faulty barometers.

When the true barometer stands at 8, and the faulty one at b, the
length of tube oceupied becomes k+a —b, and the pressure is measured
by 8—b. Let ¢ + & be the height of the true barometer when the other
stands at ¢; then the length of tube occupied by air is k +a — ¢, and the
pressure is measured by z. Since the volume of the air is proportional
to the length of the tube it ocoupies, and the product of the pressure
and volume is constant (Boyle’s Law),

(a—a) k=(B-b)(k+a-b)=x (k+a-c);

eliminating %, these give us the required value z, the correction to be
added to c.

2. Prove that, neglecting variations in temperature and gravity, the
difference of gravitational potential energy of two equal masses of air is
equal to the work mecessary to compress the air at constant temperature
to the volume of the other. [M.T., ’88.]1

Let p, v be the initial pressure and volume of an indefinitely small
portion of one mass, p its density; let this small portion be lowered a
small distance z vertically, so that in its new position the pressure,
volume and density are p’, v’ and p’ respectively.

The mass of the element is vp, and therefore the change in its
gravitational potential energy =gpvz.

The work done in compressing the element is (v - v') p.

But vp=vp’, and also p’ — p=gpz (Art, 21).

.. the work done=1v' (p’ —p)=gpv'z

=change in gravitational energy,
since v’ and v are ultimately equal.

Since the theorem holds for an indefinitely small mass when it is
lowered an indefinitely small distance, we can by summing up the results

for an infinitely large number of such masses and such distances, extend
it to a finite mass lowered a finite distance.
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EXAMPLES. CHAPTER VII.

1. The readings of a faulty barometer containing some air are
294 and 29°9 inches, the corresponding readings of a correct instru-
ment being 29'8 and 304 inches respectively: prove that the length
of the tube occupied by the air is 29 inches, when the reading of
the faulty barometer is 29 inches: and find the corresponding
correct reading. [M. T., 1879.]

2. If a body floats on a liquid with volumes ¥V, V;, V;, above
the surface when the barometric heights are respectively 4,, A;, A,
prove that

7 Vy (Vy= Vo) +hy Vo(Vs— V1) +A3 V(¥ — Pp)=0.
[Clare Coll., 1889.

3. A thin heavy cylinder, hollow, and open at its lower end,
is found when depressed from the atmosphere successively into
three liquids, to remain at rest when its higher end is at respective
depths %, %, %’ below the surfaces. If s, &, ¢ be the specific
gravities of the fluids, prove that, the weight of the air contained
in the cylinder being neglected in comparison with that of the
cylinder, .

8(8—8")h+8 (8 ~8) 48 (8—8)A"=0.
[M. T., 1864.]

4. Air is compressed in a vessel at a pressure p and at the
same temperature as the atmosphere. An aperture is then opened
and shut the instant the air inside is at atmospheric pressure P,
and it is found that when the air left in the vessel is again at the
same temperature as the atmosphere its pressure is . Find how
much air has issued and the temperature at the instant the aperture
was shut. [M. T., 1875.]

5. A constant pressure air thermometer having been graduated
when the barometer stood at 29 inches, find the true absolute tem-
perature when the barometer is at 30 inches, the absolute tempera-
ture indicated by the instrument being 290°. [M. T., 1874.]

10—2
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8. Determine the numerical value of pv/T in Fahrenheit’s scale
for a pound of air, supposing that a cubic foot of air is 0763 Ib.
at a temperature of 62°F., when the barometer is 30 inches high :
taking an inch as the unit of length, the weight of a pound as the
unit of force, the density of mercury relative to water as 136, and
—273° C. a8 the absolute zero of temperature. [M. T., 1883.]

7. From the following data obtain the true reading of a baro-
meter placed at a height 20 feet above sea-level :

Barometer reading 29'5 inches. Attached thermometer 20° C.
Ratio of area of section of tube to section of cistern=1 : 41. When
the mercury in the cistern is at the zero of the scale, supposed
marked on the tube, the mercury in the tube stands at 30 inches.
Capillary action +-04 in. Fall in barometric height for each foot
above sea-level ‘001 in. Coefficient of expansion of mercury for
1° C.="00018. [M. T., 1892.]

8. Two bulbs containing air are connected by a horizontal glass
tube of uniform bore, and a bubble of liquid in this tube separates
the air into two equal quantities. The bubble is then displaced
by heating the bulbs to temperatures ¢ and #°: prove that if the
temperature of each bulb be increased r degrees, the bubble will
receive an additional displacement which bears to the original
displacement the ratio

2ar : 2+a (4t —2r),
where a is the coefficient of expansion for air. [M. T., 1868.]

9. Prove that the mass of the atmosphere is approximately
equal to that of an ocean of mercury covering the earth, and of
depth equal to the mean height of the barometer, and that this
mass is 53 x 101 tons, the density of mercury being 13-6.

[M. T., 1884.]

10. A cylindrical diving-bell of height 10 feet and internal
radius 3 feet is immersed in water so that the depth of the top
is 100 feet. Shew that if the temperature of the air in the bell
be now lowered from 20° C. to 15° C., and if 30 feet be the height of
the water barometer at the time, then the tension of the chain is
increased by about 67 Ibs. [M. T., 1890.)
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11. A box is filled with a heavy gas at uniform temperature.
Prove that, if o is the altitude of the highest point above the
lowest, and p, p’ are the pressures at these points, the ratio of the
pressure to the density at any point is equal to

a_q/log% . [M.T., 1893]

12, A barometer tube consists of three parts whose sections
starting from the lowest are 4, B, and C. The column consists
partly of mercury and partly of glycerine, so that for a certain
atmospheric pressure the glycerine just fills that part of the tube
whose section is B. Shew that if

A:B::B:C::1:A)
and if p is the ratio of the density of glycerine to that of mercury,
the sensitiveness of this barometer is greater than that of a mercury
barometer in the ratio 1 :A+4-p—2Ap, the alteration of level in the
cistern being neglected. [M. T., 1881.]

13. If the law connecting the pressure and density of the air
were p==£kp? prove that, neglecting changes of temperature and
gravity, the height of the atmosphere would be twice the height of
the homogeneous atmosphere. [Peterhouse, 1886.]

14. If P be the weight of a diving-bell, P’ of a mass of water
the bulk of which is equal to that of the material of the bell, and W
of a mass of water the bulk of which is equal to that of the interior
of the bell, prove that, supposing the bell to be too light to sink
without force, it will be in a position of unstable equilibrium, if
pushed down until the pressure of the enclosed air is to that of the
atmosphere as Wto P— P [M. T., 1857.]

15, Two equal vertical cylinders of length ¢ stand side by side,
and there is a free communication between their bases. They are
partly filled with mercury and a heavy piston is placed at the top
of each and allowed to descend slowly: shew that if the difference
of the weights of the pistons be greater than the weight of the
mercury, air will pass from one cylinder to the other and find the
position of equilibrium when the difference of the weights is less
than the weight of the mercury. [M. T., 1882.]
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16. If a barometer tube dips into a cylindrical cistern of
mercury and is suspended by a string which passes over a pulley
and supports a counterpoise, prove that the ratio of the changes
of height of- the counterpoise to the corresponding changes of height
of the barometric column is equal to the ratio of the sectional area
of the tube to the annular sectional area of the tube.

[M. T., 1875.]

17. A piston of weight W serves as a stopper to confine some
gas within a vertical cylinder open at the top. If 4 is the equili-
brium height of the base of the piston above that of the cylinder
and if it is slowly displaced through a small distance », without any
change in the temperature of the gas taking place, the work done on
the system is Wz%/2% nearly. [M. T., 1885.]

18, Two equal vertical tubes are connected at their lower ends
by a straight horizontal tube of length . The upper ends of the
tubes are open, and mercury is poured in. The end of one of the
tubes is then closed at a height b above the mercury surface, and
the system is rotated round the closed tube with angular velocity .
Prove that, if 4 be the height of the mercury barometer, the mercury
surface in the closed tube will sink through a depth z which is the
positive root of the equation

4922+ 2 {29 (h+2b) — w'af} — wa?b =0,
[Trin. Coll., 1889.]

19. If P, P’ be the weights which balance a body when weighed
in air and in water respectively when the absolute temperature is ¢,
and the corrected height of the barometer is 4, prove that the
density of the body at the temperature 7' is

P, Pb R T
A4k (p=p-p=p 5 7).

where a, is the density of water at the temperature ¢, £ is the coeffi-
cient of expansion of the body, and b is the density of air when the
absolute temperature is 7" and the corrected height of the barometer
is H. [M. T., 1875.]
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20. A barometer tube is filled with 2 superincambent liquids of
densities p;, p; ... px in descending order and 4,, 4, ... 4, are the
sectional areas of the barometer tube at the upper surfaces of the
liquids, 4 of the open cistern. Prove that the fluctuations of the
height of this barometric column are to those of a column of uni-
form density o in the ratio

o (14, +1/4) : py (1A =1/ A5) +py (143 =1/ A+ ... pu (144 1/A).
[M. T., 1883.]

21. A number of cylindrical diving-bells, each formed of uni-
form thin material whose specific gravity is large compared with
that of water, float in water with their mouths downwards and their
tops above the surface: prove that if a communication is opened
between the air in all the bells they will all sink to the bottomn except
that bell whose weight is least in comparison with the pressure of
the atmosphere on its base, it being assumed that no bell turns over
and no air escapes. [M. T., 1888.]

22, In ascending a mountain the temperature of the air is
found to decrease by a quantity proportional to the height ascended,
and &, k£ are the observed heights of the barometer at two stations
whose difference of altitude is z: shew that z varies as Am - k™, where
m is a certain constant, and where changes of density in the mercury
in the barometer are neglected. [M. T., 1882.]

23. A fixed vertical circular tube full of air has within it two
diaphragms of weight w,, w, which fit the tube closely, and are
originally in contact with one another. They are separated by
water being forced into the tube through a small hole which is
closed when the weight of water forced in is w;. Shew that in the
position of stable equilibrium the line joining the weight w, to the
centre of the tube is inclined to the horizon at an angle

1 Wry+yy cos y+wgsin y

wg (1 - cos y)+wgy siny ’
where y is the angle subtended at the centre of the tube by the
water. [M. T., 1878.]

tan—
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24. A long fine tube, open at the lower end and expanding into
a large bulb at the upper, is immersed all but the bulb in water,
with the bulb just full of air at atmospheric pressure. Shew that if
the tube be raised the surface of the water inside will sink below the
surface outside and that provided no air escapes, the pressure in the
bulb is very nearly a mean proportional between the pressure inside
the tube at the level of the water surface outside and the pressure
outside at the level of the bulb. (It is assumed that the pressure of
the air at all points of the bulb is the same, and that the volume
of the tube is small compared with that of the bulb.)
[Jesus Coll., 1891.]



CHAPTER VIIL

HYDROSTATIC MACHINES.

‘The S8iphon.

100. The siphon is an instrument by means of which
we can empty a vessel filled with liquid, without moving
the vessel.

It consists of a bent tube ABC, open at both ends: it
is filled with water or whatever liquid the vessel contains,
the ends being temporarily closed: one end A is placed
below the surface of the liquid in the vessel to be emptied,
and the other O outside the vessel, and below the level of
the liquid surface.

Open the end A and suppose that C is closed by a
plug. We shall consider the forces acting on either side
of the plug.
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Let o be the density of the liquid in the vessel, 2 the
height of the corresponding barometer, = the depth of C
below the surface.

The pressure at the upper side of the plug is gk + gox
(Art. 23).

The pressure at the lower side is that of the atmo-
sphere, goh.

Hence the force on the upper side exceeds that on the
lower, and the plug when free to move is driven out and
the liquid after it.

The water flowing out at C tends to cause a partial
vacuum at B, in consequence of this the atmospheric
pressure on the surface of liquid in the vessel forces the
liquid up A B, and there will be a steady flow through the
siphon.

We have assumed in the above that the height of B
above the surface of the water does not exceed the height
of the water barometer, i.e. that B is below the effective
surface ; otherwise, the water between B and C will flow
out at C, and the rest back into the vessel.

It is obvious that the siphon will not work if C be
above the water surface, as in that case the force on the
lower side of the plug exceeds that on the upper, and the
plug is driven n.

When once started the siphon is self-acting, the

work being done by gravity as the liquid is transferred
to a lower level.

101. The velocity with which a liquid flows through a
siphon is given by Torricells’s theorem.



HYDROSTATIC MACHINES. 155

This theorem gives the velocity of the liquid issuing
from a vessel through a small orifice in the side or base,
or through a siphon-pipe of narrow bore. It asserts that

If a jet of liquid issue from a vessel through a small
orifice, the velocity of the issuing liquid is /2gh, where h 1s
the depth of the orifice below the surface of the liquid in the
vessel.

Let us first suppose that the liquid issues from a short
pipe inserted in the orifice, and fitting it closely. It is
obvious in this case and in that of the siphon, that the
issuing particles of liquid are moving at right angles to
“the cross section of the jet.

We shall also assume that the motion is not just
beginning and that additional liquid is continually sup-
plied to the surface so that its level remains constant, and
the motion is in consequence steady.

Let AB be the surface of the liquid
in the vessel, and let ab be the cross-
section of the jet at the orifice, K
being the area of the one and % that of
the other.

Let p be the density of the liquid.

Let IT be the atmospheric pressure.
This is the pressure throughout AB
and also throughout ab, since the liquid
there has no acceleration in the plane
of this section. Let V, v be the velo-
cities at AB, and ab respectively.

Let us consider the motion of the liquid which at a
particular instant lies between AB and ab. In an in-
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definitely short space of time ¢, the particles originally in
AB will sink through a small distance V%, to the plane
A'B’, while those in ab have moved along the jet to the
section a't’, through the distance »t. As the volume of
this liquid remains unchanged, VK =vk.

The work done on this liquid is
(1) ILK Vi, by the thrust of the atmosphere on 4B,
(2) — Iket, by the thrust across the section ab,

(8) ghkvtph by gravity as the mass kvip is transferred
from AB to ab, i.e. through a vertical distance A.

.. the total work done
=I1K Vt — kvt + kvtpgh = kvtgph.

As the motion is steady, the velocity of the liquid at any
point between A’B’and ab remains the same, so that there
is no change in the kinetic energy of the liquid between
A’B’ and ab. The only change in the kinetic energy of
the mass under consideration is that instead of the mass
kvtp, with the velocity V at 4B, we have an equal mass
with the velocity v at ab.

Hence the increase in kinetic energy is
Yovtp (v* — V?).
But the in¢rease in K . E. =the work done,
<. $kvtp (v*— V?) = kuvtpgh,

s —V2=2gh,
. v — 0k K= 2gh,
! 29h

“1-r/K*
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Since the orifice is small compared with AB, we may

neglect k/K, and obtain
v* = 2gh.

If the pipe be turned upwards so that the liquid issues
with velocity ./2gh vertically upwards, the jet will, but
for the resistance of the air, rise to a height & above the
orifice, i.e. to the level of the surface in the vessel.

When the liquid issues merely through a hole in the
side or base of the vessel, the above reasoning requires
modification as we cannot in that case assume that the
issuing particles are moving perpendicularly to the cross
section of the jet: it is, indeed, an observed fact that the
jet contracts for a short distance after leaving the orifice
and then expands again. The place where the jet is most
contracted is termed the vena contracta, and at this place
the liquid is moving at right angles to the cross section of
the jet. By proceeding as before we find that the velocity
at the vena contracta is / 2(7]», where h is its depth below
the surface in the vessel.

Ex. 1. If mlbs. of fluid issue through a siphon per second, and the
amount of fluid in the vessel be kept constant by allowing the supply
of fresh fluid to flow gently into it, shew that the apparent weight of the
veesel and its contents are less than the actual weight by m lbs. weight

provided the orifice of the siphon be 16 feet below the surface level in the
vessel, and the water issue vertically downwards.

Ex. 2. A cylindrical vessel with its axis vertical is filled with water
and is closed by a heavy piston of mass M. There is a small hole in the
piston through which the water escapes. Shew that the uniform velocity

of efflux is \/2gM[p4 ; where p is the density of the fluid and 4 is the area
of the cross section of the cylinder. [Trin. Coll., 1889.]
102. The Pumps.
A commeon syringe affords an example of the pump in
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its simplest form. It comsists of a hollow cylinder 4B,
ending in a nozzle €. A solid piston works inside the
cylinder.

Let the nozzle be held under water,
when the piston is at B; now draw the <?
piston back, so that a partial vacuum is
formed: in consequence of this the atmo-
spheric pressure forces the water into the
cylinder When the piston is pushed back
again, the water is ejected through the
nozzle in a jet.

The principle of the above and that of
the pumps may be described as that of
suction. It consists in enlarging a space to
which a liquid has access, and consequently
creating a partial vacuum. The pressure on the surface
of the liquid inside the space is diminished and-the
atmospheric pressure on the surface outside forces the
liquid higher up into the enlarged space. A familiar
instance of this is when liquid is sucked into the mouth
‘through a straw. The same principle applies to air as
well as to liquids; for instance, to draw air into the lungs,
we enlarge them by raising the walls of the chest.

103. Valves are used in the construction of many of the hydrostatic
machines. A valve is a contrivance which allows water, air, or steam to
pass through it in one direction, but not in the other. A very simple form
of valve is the leather disc which closes the opening on the lower side of
an ordinary pair of bellows. When the bellows are expanded the pressure
below the flap opens it; when they are compressed the pressure inside
shuts the flap down against the edge of the opening and prevents the air
from escaping that way. It is a form of the hanging flap valve, which is
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generally a metal dise turning on a hinge. Another valve is the ball
clack valve, which consists of a metal ball, fitting into and closing a
circular orifice, but lifting when the excess of pressure is below. The
ideal valve opens with the smallest excess of pressure on one side
and permits no leakage the other way, but practically in all valves a
definite excess of pressure is required, and a certain amount of leakage
occurs.

104. The Common Pump consists of a cylinder 4B,
with a spout E opening out of the
upper part; at the bottom is a valve
C opening out of the pipe CD which
communicates with the water to be
raised. A piston P with a valve F

opening upwards works between B and
E.

(In the figure there-are two piston
valves F' and F".)

The action is as follows :—

Suppose the piston to be at B initial-
ly : when it is raised, a vacuum is created
in PB, the atmospheric pressure con-
sequently closes the piston valve, and the air in C'D opens
C and fills PB; this reduces the pressure in the pipe and
the water rises in it. When the piston is pushed down, the
air in PB is compressed and in consequence the increased
pressure closes the valve C' and opens that in the piston,
so that the air escapes through the piston valve. After
this is repeated several times, the water rises into the
cylinder and is forced through the piston valve when the
piston is lowered, and lifted out through Z when it is
raised again.
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105. To find the height the water rises in one stroke of the piston,
(the n +1th).
Let P, Q be the water-surfaces at the beginning and end respectively
of the upward stroke, y, z their heights above the surface outside. Let B
be the valve between the pipe and the cylinder, ¢ its height above the
surface of the water outside. Let % be the
height of the water barometer, d the length BD
of the stroke of the piston, a, g the areas of the
sections of the cylinder and pipe, respectively.
(i) When Q is below B.
The air originally of volume PB or (¢c-y)8
expands into the volume QB+ BD, aj
(c—2)B+ad.
The pressure alters in the ratio of
h-y:h-2z, B
.. by Boyle’s law, ---{Q
(h-y) (c-y) B=(h—2) {(c-2) S +ad}.
This equation determines z, when y is known. ---{pP
(ii) When @ is above B.
The air originally of volume PB or (¢c-y) 8,
expands into the volume BD - QB, i.e.
a{d~-(z-c)}.
Henoce, as before, we have
(h-y) (c~y)B=(h-2) (d~-z+c)a.

|
C

106. The Lift Pump consists of a
cylinder AB, with a valve C' at the bottom
opening from the pipe CD, which communi-
cates with the water to be raised: there is
also a valve £ at the top opening into a pipe
EF, up which the water is to be lifted. In
the cylinder, a piston P works through an
air-tight collar between A and B. There is a
valve G in the piston opening upwards.

The mode of working is as follows :—

Suppose the piston to be initially at B.
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CE. When several strokes of the piston have been made,
the water rises up through F and, on the next downward
stroke, is forced up CE.

Ex. If A4 be the area of the section of the piston of a force pump,
1 the length of the stroke, n the number of strokes per minute, B the

area of the pipe from the pump, find the mean veloeity with which the
water rushes out. [M. T., 1860.]

108. In all the three pumps above described the water
rises in the pipe below the cylinder through atmospheric
pressure and consequently none of them will work when
the valve at the bottom of the cylinder is more than
32 feet, the height of the water barometer, above the
water level outside : as a matter of fact, owing to the im-
perfection of the valves, it is found that the maximum
height is several feet less than this. In the lift and force
pumps the limit to the height the water can be forced up
the pipe leading out of the cylinder depends only on the
strength of the apparatus and the force that can be applied
to the piston.

109. In order that the force or
lift pump may throw up a continu-
ous stream of water, an air-chamber
is introduced. The valve C from
the cylinder opens into a strong
chamber 4, out of the lower part
of which a vertical pipe BD leads.
The water is first forced into the
chamber, and then up the pipe ; the
air above the level of the lower end
. B of the pipe cannot escape. When
the piston is descending quickly,
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The mode of working is as follows :—

Suppose the piston to be initially at B. When the
piston is withdrawn, a partial vacuum is created in PB,
so that the atmospheric pressure closes the piston valve
and the air in the receiver opens the valve at B and
expands into the barrel. When the piston is pushed back
again, the air in PB is compressed, the valve B is closed,
and ultimately the piston valve is opened, and the air
in PB escapes into the atmosphere. In this way at
every complete stroke a barrelful of air is removed from
the receiver. The exhaustion is however never complete,
as the valve B does not open when the pressure in the
receiver is less than a certain amount: also as there is
always some ‘clearance’ space between the piston and
the end of the barrel, the pressure in PB will not
always be able to open the piston valve.

Smeaton’s Air-Pump.

113. This is the same as Hawksbee’s, except that the
end A of the barrel is closed, the piston works through
an air-tight collar, and there is a valve at A opening
outwards,

The method of working is similar to that in Hawksbee’s
but it has the advantages of carrying the exhaustion further,
and of being easier to work. The first advantage is due
to the pressure in PA, as the piston descends, being less
than the atmospheric, so that the piston valve has a better -
chance of opening than in Hawksbee’s. The second ad-
vantage is due to the pressure in PA being less than the
atmospheric during the greater part of the upward stroke,
so that less effort is required to raise the piston.
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Pror. To determine the density of the air in the
recewver after n strokes of the piston.

Let V be the volume of the receiver, and v that of
the barrel, let p be the density of the atmospheric air,
and p,, ps, ps ... p. the density of the air in the receiver,
after 1, 2, ... n complete strokes.

After one complete stroke the air which occupied a
volume ¥ occupies a volume V + v,

. p(V+v)=pV.
Similarly ps(V+v)=pV,
and 0 =....
Pn (V +v) =ppy v,
pa(V + o) =pV™.
- Ex.1. BSupposing the upper valve of Smeaton’s air-pump to open when

the piston is three-quarters of the way up, what was the density of the
air in the receiver at the beginning of the ascent ? [Jesus Coll., 1886.]

Ex. 2, If the piston works only between two points distant a and b
respectively from the top and bottom of the barrel, and at a distance
¢ apart, while the receiver is equal to a length I of the barrel; find the
density of the air in the receiver after two strokes of the piston.

114. Tate’s Air-Pump consists of a barrel AB,
with an opening C half-way down leading to
the receiver. Two solid pistons P and Q
rigidly connected together are moved up and
down by a rod working through an air-tight
collar at D. At the top and bottom of the P
barrel are the valves F and F”, which open <@
outwards. As the piston is pushed down the
air in CB is driven out through F”, and as it is B
raised the air in CA is driven out through

DA
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The Condenser.

116. This is an instrument for compressing air and is
the reverse of the air-pump. It consists of a hollow cylinder,
AB, the barrel, from which a valve F opens into a strong
receiver C. In the barrel a piston P
with a valve E opening inwards
works. There is generally a stop-cock
@ between B and the receiver.

Suppose the receiver to be full of
air at atmospheric pressure and the
piston to be at B. When the piston
is withdrawn a vacuum is created in
PB, in consequence of which the valve
F closes, and the atmospheric air opens
the piston valve E and fills the barrel.
When the piston is pushed down again
the air in PB is compressed, and so
closes the piston valve, opens F and
enters the receiver. At every stroke
a barrelful of air at atmospheric pres-
sure is forced into the receiver.

Let p be the density of the air at atmospheric pressure,
pn the density of the air in the receiver after n strokes
of the piston. Let V be the volume of the receiver, v
that of the barrel.

After n strokes the total volume of air at atmospheric
pressure in the receiver is ¥V + nv,

p(V+mv)=p,V,

pn=p(1 +m)/V).
In some condensers the piston has no valve, the valve
opening into the receiver is at the side of the barrel near
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the bottom, and at the bottom of the barrel is the valve
opening from the atmosphere.
Ex. 1. If of the volume B of the cylinder only C is traversed by

the piston, prove that the pressure in the receiver of a condenser cannot
be made to exceed B/(B — C) atmospheres. [Jesus Coll., 1890.]

Ex.2. In a certain condenser, the area of the piston-section is 5 square
inches, and the volume of the receiver is ten times the volume of the
range of the piston. If the greatest force which can be used to make the
piston move is 165 lbs., find the greatest number of complete strokes
which can be made. [8t John’s Coll., 1881.]

Gauges.

117. Gauges for measuring pressures less than the
atmospheric pressure, as for instance the pressure inside
the receiver of an air-pump, are termed vacuum-gauges.
The barometer and siphon gauges are gauges of this kind.

The barometer gauge consists of a vertical glass tube,
open at both ends, the upper end being in communication
with the chamber the pressure in which is required, and
the lower end dipping into some mercury in a vessel. The
height of the mercury surface in the tube above that in
the trough measures the excess of the atmospheric pressure
above the pressure in the chamber.

" A modification of this gauge is the open tube vacuum
gauge. This is a U-tube open at both ends, and contain-
ing mercury. One branch communicates with the receiver
of the air-pump, and the other with the atmosphere.

118. The siphon or closed tube vacuwm gauge consists
of a U-tube, containing mercury, closed at one end and
open at the other. At the closed end is a Torricellian
vacuum and the open end communicates with the receiver
of an air-pump. The height of the mercury surface in
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the closed branch above that in the open branch measures
the pressure in the receiver. In using this gauge it is
not necessary to know the atmospheric pressure.

119. Gauges used to determine pressures greater than
that of the atmosphere, as for instance the pressure inside
the receiver of a condenser or in the boiler of a steam-
engine, are often termed manometers.

The open tube method can obviously be applied to
the case of pressures not very much greater than the
atmospheric pressure. It is however very inconvenient
for the purpose of determining large pressures.

The condenser gauge is a uniform glass tube AB,
closed at the end B, but open at A and communicating
with the receiver of the condenser. At the end B is

A o) D B
I ]

some air separated from the air in the condenser by a
drop of mercury. When the mercury is in equilibrium, .
the pressure is the same on either side of it. Let C be
the position of the drop when the pressure inside the
receiver is that of the atmosphere. Then when the drop
is at D the pressure in the receiver is II. BC/BD (Boyle's
Law), IT being the atmospheric pressure. AN c

120. The compressed-air manometer. A
particular form of this consists of a U-tube
ABC, containing mercury. The end C is
open and communicates with the chamber
the pressure in which is required: the other
end A4 is closed and contains some dry air. e’
When the pressure in the chamber is that \>~2/

PI-—

PH e
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of the atmosphere the mercury surfaces P, Q in the two
branches are on a level. As the pressure in the chamber
increases, the mercury surface in the left-hand branch is
pushed up to some point P’ and the air there compressed,
while that on the other side is pushed down to @'

The pressure in AP’ is deduced from the change in
volume, and that in CQ’ exceeds that in AP’ by an
amount proportional to the difference of level between
P and ¢.

In some forms of this manometer the section of the
tube varies considerably.

ILLUSTRATIVE EXAMPLE.

If h be the range of the piston in Smeaton’s air-pump, a its distance
Jrom the top of the barrel in its highest position, b its distance from the
bottom in its lowest position, and p the density of the atmosphere : prove
that the limiting density of the air in the receiver will be

ab
Gra (o)™
[M. T., 1861.]

Let 4 be the upper valve, B the lower, and P the piston-valve. It is
quite clear that the limiting density of the air in the
receiver is not reached when either 4 or B opens as the
piston rises. When the piston is in its lowest position,

A and B are shut and P is open, so that the density a
throughout the barrel is constant; let this density be p,.

Let o’ be the density in the receiver. As the piston rises, -é—
B will open if p’ is greater than the density in the barrel
below the piston, when the piston is in its highest position, |~ B

L2

Also, 4 will open if the density above the piston when in its highest

A

i.e.ifp'isgteatertha.np,.ﬁ_—l:_—b.

position is greater than p, i.e.ifpl.?';ﬁis>p.
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Hence either 4 or B will open if either
,. b
p18>py. h-l:—b’
or i8>p.
Pl P * h+a’
' is > __ab___
PRZP:tra) h+0)

Hence 80 long as p’ exceeds this value the exhanstion proceeds, but no
longer.

i.e. if

EXAMPLES. CHAPTER VIII.

1. Prove that if the area of the section of the vena contracta of a
jet of liquid of density p be 4, the amounts of liquid and momentum
which issue in & time ¢ are A¢4/2pp, and 24pt respectively, where p
is the amount by which the pressure would be increased at the
orifice, if the liquid were at rest.

2. A siphon with vertical arms filled with mercury (p) and
closed at both ends is inserted in a basin of water (o). Prove that
when the stoppers are removed, provided the barometer is high
enough (1) if %, the whole length of the outside arm, be > %, the
whole length of the inside arm, the mercury will flow out followed
by water: (2) if 2 be > £, the end of the immersed tube must be at
a depth below the free surface > (% — k) p/o, in order that the mercury
may not flow back into the basin.

3. Prove that in the common pump the water will just rise into
the upper cylinder at the end of the second stroke if

/

@ (1 - %) (2-%)-15{(4«;4-‘”1; -3 +a(2atnb)=0,
where @, b are the lengths of the lower and upper cylinders, » is the
ratio of the sectional area of the latter to that of the former, and H
is the height of the water barometer. [M. T., 1889.]

4. In Smeaton’s air-pump, find the position of the piston in its
(n+1)th ascent when the highest valve begins to open : and shew that
in that position the tension of the piston,rod : thrust of the atmo-
sphere on the piston :: 1—{4/(4 +B)}* : 1—{4/(A+B)}*. B/(4 + B),
4 and B being the volumes of receiver and cylinder.

[M. T., 1856.]
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5. Prove that if the piston of Hawksbee’s air-pump cannot
traverse the whole length of the cylinder, the density in the receiver
after n strokes will be

- (ika)S

of the density of the atmosphere, supposing A to denote the volume
of the receiver, B that of the cylinder, and C that of the part
traversed by the piston. [M. T., 1883.]

6. In a condenser the motion of the piston is checked by
permanent stops at heights A, £ from the receiver-valve 4. Find
the relation between the heights of the piston above 4 at which
the piston-valve and the valve 4 open in any upward and in the
next downward stroke respectively. [M. T., 1885.]

7. If the greatest and least volumes between the valves of a
condenser be ¥ and v and if the valves be open or closed according
as the difference of pressure on the two sides be greater or less than
p, shew that the limiting pressure in the receiver will be

(a-p)Viv-p,
where II is the pressure of the atmosphere, [M. T., 1872.]

8. If there is a leak in the receiver of a condenser, and the
volume of air measured at atmospheric pressure expelled through it
in a minute be V multiplied by the difference of the logarithms of
the pressures at each side of the leak : prove that the maximum
density attainable is n times that of the atmosphere where

logn=34/V,

8 being the number of strokes per minute, and 4 the capacity of the
barrel of the pump. [M. T., 1870.]

9. Prove that if the density of the air in a receiver of volume V

be increased tenfold, energy amounting to at least ¥V (101log, 10— 9)

must be expended, where IT is the atmospheric pressure and the
temperature is supposed uniform throughout.

[Jesus Coll., 1892.3
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'10. A small hole is made in a partition separating two reservoirs
of unlimited extent, at the depth % below the surface of the water
which stands highest, and the depth & below the other surface :
shew that the water will flow through the hole with velocity

V2g (Vk ~E), nearly.
[Smith’s Prizes, 1861.]

11, Inside a condenser is placed a mercury barometer; shew
that after n strokes of the piston the column will have risen a
distance approximately equal to

Bh K{ Kkh R+n.

"RE+A E+E B J’
where % is the initial height of the mercury column, ¥ the area of
its cross section, K that of the mercury in the basin, B is the
volume of the barrel, and R that of the receiver initially, which is
large compared with the volume occupied by the mercury.
[Trin. Coll., 1891.]



CHAPTER IX.

CAPILLARITY.

121. It has been already mentioned (Art. 7) that
though the surface of a considerable mass of liquid in
equilibrium is horizontal, this is not necessarily the case if
the amount of liquid is small. A small drop of mercury for
instance, when placed on a horizontal glass plate, does not
flatten itself out, and if it is forcibly flattened out, it resumes
its old shape when released, in opposition to the action of
gravity. Also, if a glass tube of fine bore open at both
ends be partially immersed in water, the water rises in
it to a certain extent, so that the surface inside the tube
is above that outside. These facts seem at variance with
the result obtained in Art. 22.

To reconcile theory with observation we are driven
to the conclusion that there must be in action forces
which we have not hitherto considered, or in other words,
that the potential energy of a liquid does not depend
entirely on its position relative to the earth, but also
partly on its own configuration.

122. Very important conclusions may be drawn from
the following experiment devised by Plateau. He placed a
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quantity of oil in a mixture of alcohol and water of the
same density as the oil, and found that the oil when it was
free to do so took a spherical shape: also that it resumed
this shape if it was distorted and then released. The
potential energy of the mass must therefore be least when
the oil has its spherical shape, i.e. when the area of its
surface is a minimum. Since the density of the whole
mass is uniform the shape the oil assumes cannot affect
the part of the energy depending on gravity. We con-
clude therefore that part of the energy of the system
depends on the position of the particles relative to one
another, independently of their position relative to the
earth. Also as the energy is least when the surface is
least, a particle very near the surface must have more
energy than one at some distance from it. If we assume
that it is only very near the surface where this increase
in energy occurs, it follows that the energy due to some
of the particles being near the surface is proportional
to the area of the surface.

Under this assumption the energy of the mass consists
of three parts. One part, due to gravity, is equal to the
product of the weight and the height of the centre of
gravity above the earth’s surface; another, due to molecular
forces, is proportional to the volume and independent of
the shape ; the third part, the surface-energy, is due to the
excess of the energy of a particle near the surface above
that of one distant from it, and is proportional to the
area of the surface.

123. By coating the sides of a vessel containing mercury
with very thin films of different solid substances, Quincke
was able to obtain limits within which the molecular forces,
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to which the surface-energy is due, are sensible, He found
that for sulphide of silver the capillary phenomena were
independent of the thickness of the film so long as it
exceeded ‘000048 mm. and for iodide of silver, so long
as it exceeded ‘000059 mm. We infer then that it is
only within these limits the molecular forces are sensible.

124. The general principle, from which capillary
phenomena may be deduced, may be stated as follows :

When two fluids which do not miz, or a solid and a
Jiurd, are in contact, a portion of their energy is equal to
the product of the area of the surface separating them
and a quantity which is constant for the same pair of
substances and the same temperature, but which varies for
different pairs of substances. This quantity for any pair
of substances may be called their mutual surface-energy
per unit area.

If we assume that the energy of a unit area of a
mercury-glass surface is greater than that of a unit area of
an air-glass surface we can explain why, when a fine glass
tube is dipped into mercury, the mercury inside the tube
is depressed. Since the energy of a material system
always tends to a minimum, the mercury-glass surface
tends to decrease and the air-glass surface to increase,
and this tendency produces the observed effect in oppo-
sition to gravity. Also a drop of mercury does not spread
itself out indefinitely on a horizontal plane, because that
would involve an indefinite increase of the energy of the
surfaces separating the mercury from the air and from the
plane.

A drop of oil placed on the surface of some water
spreads out indefinitely or until it covers the whole sur-

G.EH . . 12
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face, because the energy per unit area of the water-air
surface is greater than that of the oil-air surface and that
of the oil-water surface together.

126. When three fluids which do not mix are in equi-
librium with the surfaces separating each pair intersecting
in & common line, it is a well-known experimental fact
that the angles between the different surfaces are constant
for the same three fluids. This fact can be deduced from
the theory of surface-energy.

Let A, B, C be the three fluids; let Sy, Sea, Sa be
the surface-energies per unit area of the surfaces sepa-
rating B and C, C and 4, 4 and B respectively. Let Obe
the point where the plane of the paper cuts at right
angles the common line of intersection of the three sur-
faces; let OP, 0Q, OR be its intersections with the three
surfaces, a, 8B, ¢ the angles between them respectively.

Since the fluids are in equilibrium, if an indefinitely
small virtual displacement be given to the system, the
total alteration in energy is zero.

Let the common line of intersection be displaced
parallel to itself and in a direction perpendicular to the
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surface (BO), so that O’ is its intersection with the plane
of the paper and 00’ (z) is indefinitely small.

The increase in energy of the surface (4.B) per unit
length of the common line of intersection is

Sa. 2 cos O0R= Sy .2s1n 8.
Similarly that for the surface (40)
=—S8,.zsiny.
That for the surface (BC) = 0.

The alteration in the energy due to gravity (or any
external force) will be a small quantity of a higher order
than 2, as it will depend on the indefinitely small dis-
placements of indefinitely small volumes.

Hence Sapsin B =Sy, sin vy,

. Sab _ Sea _ Sbe « .
"sinry—sinﬁ_sina’mmﬂaﬂy'

As the three angles a, B, v, together make up four
right angles, it follows from these equations that they
are the external angles of a triangle whose sides are pro-
portional to Sy, S.q, Sy, respectively.

‘Hence the angles a, 8, ¢ are constant for the same
three fluids.

126. When two fluids which do not mix (water and
air for instance) have a surface of separation which meets
the surface of a solid (glass for instance), it can be shewn
that the angle between the surface of the solid and the
separating surface is constant.

12—2
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If we regard the solid as the substance C, and the two
fluids as A and B, by displacing the line of intersection
parallel to itself along the surface of the solid through

B

an indefinitely small distance, we obtain from the equa-
tion of virtual work,

Sac — Spe
S’
Le. B is constant, which agrees with the observed results.

. cosfB=

Rise of liquid between two glass plates.

127. If two vertical glass plates are placed parallel to
one another and at a short distance apart in a vessel con-
taining water, it is found that the surface of the water
between them is at a higher level than that outside.
We can determine this difference of level in terms of
the constant angle 8, which the air-water surface makes
with the plates, the surface energy of the air-water
surface, and the distance between the plates.

(It is assumed that the distance between the plates
is so small compared with that between the sides of the
vessel, that a small rise or fall of the surface between
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the plates produces no appreciable change in the level
outside.)

Let Sy, Sw, Sa» be the surface-energies per unit area
of water-glass, air-glass, and air-water surfaces respectively.
Let w be the weight per unit volume of water, & the
difference of level of the air-water surfaces, and d the
distance between the plates.

ﬂp,

NP

M

Let the air-water surface P between the plates be
raised to P’ through a small distance #. In this dis-
placement the work done against gravity per unit length
(measured horizontally) of the plates is whdz, since a
volume dz of water is raised from the level of the surface
outside to that inside.

The increase in the water-glass surface per unit length
of the plate =the decrease in the air-glass surface =2z,
.. the decrease in surface-energy per unit length of the
plate

=2 (S“ - Su) &.
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Hence the equation of virtual work is
2 (Sge — Syo)  — whdz = 0,
oo whd =2 (84 — Spo) =28, co8 B.  (Art. 126.)

Hence the height the water rises is inversely propor-
tional to the distance between the plates.

#128. If one of the plates be free it can be shewn that
it will move towards the other.

The energy, E, of the system per unit length of the
plates is the sum of a constant quantity together with a
quantity a, depending on the rise of the liquid between
the plates above the level outside, and a quantity b,
depending on the area of the plates touched by air and
liquid respectively.

a=whd.g-,
b =2 (Spe— Ssc) h.

Hence £
= constant + }wh*d + 2h (Sp. — S,c)

= constant + 2SS _ 4 (Swcos B 1y oy
wd wd,

= constant — 2(&:0__;25@?, i.e. it diminishes with d,
Since the system always tends to take up the position

in which its energy is least, the plates will move towards

one another, if free to move. Let P be the force per unit

length which must be applied to each plate to keep it in

equilibrium.
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If d be reduced to d — «, where # is indefinitely small,
the decrease in £

_ 2 (84 cos B) A 2 (Sgp cos B x
T w "dd—=z) wd?

= Jwh’z.
The work done by P =— Pa.

Therefore since the total work done during this dis-
placement is zero

twhiz — Pz =0,
oo P=3wh,

129. If instead of two plates, a glass tube of fine bore
(internal radius r) is placed vertically in water, we can
obtain the height, &, the water will rise in it.

ﬂpl
v 1

B

With the notation of Art. 127, if the water surface in
the tube be raised a.n'indeﬁnitely small distance x, the
decrease in surface-energy

= 277w (Sas — Sho).
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The work done against gravity in raising the volume 7'z
of water from the level outside to that inside is wr'zwh,
.". the equation of virtual work is
27z (Sge — Spe) — mrizwh = 0.
. whr = 2(8Su: — Sho),
= 28, cos B, (Art. 126)
or h varies inversely as r. '

130. If mercury, or any liquid which does not wet
glass, be employed instead of water, the formulae of Arts.
127—129 apply, but as the angle 8 in that case is obtuse,
h is negative, i.e. the mercury surface inside the plates or
the tube is depressed below that outside.

Ex. If the capillary rise of water in a glass tube ‘05 in. in diameter
-be *96 inches, find that between two vertical parallel plates <02 in. apart.

Fleaible Membranes.

131. Just as a flexible string is one which will yield to
any force however small tending to bend it, so a flexible
membrane or surface is one which cannot resist the action
of any force however small tending to bend it. From this
it follows that the direction of the stress across any line
drawn in the membrane is at every point in the tangent-
plane at the point. No real membrane fulfils this condition
perfectly, but very many do so approximately.

In some flexible membranes, the stress across a line
drawn in the surface is everywhere perpendicular to that
line, ie. there is no shearing stress; in others, the stress
may be partly or entirely along the line. In the former
case the tension at any point across a line drawn through
the point is measured by the limit of T/}, where T' is the
pull across an indefinitely small length [ of the line.
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132. Pror. In a flexible membrane, incapable of
exerting a shearing stress, the tension at any point is
the same tn all directions.

Through any point A draw two lines AB, AC in the
surface at right angles to one another, and join BC.

Let ¢, ¢, and ¢’ be the average tensions across the
lines AB, AC and BC respectively. Let w be the external
force per unit area on the triangle ABC of the membrane,

”

B t. BC

t. AB

t'AC
making some angle 8 with AC.
Resolving along C4 for the equilibrium of the triangle

ABC, we have .
. t.AB—t".BCcos B+w.}AB.ACcos0=0,

cot=t"—jwACcosf, 4

.. when AB, AC are diminished indefinitely,

t=1¢" and similarly ¢ =¢,

ie. the tensions at 4 in directions perpendicular to 4B,
AC and BC are equal.

In the following propositions (Arts. 133—136) it is
assumed that the membrane is so light that its weight
may be neglected.



186 cufm.mm.

*133. Pror. Ina flexible membrane, incapable of exert-
ing a shearing stress, and in the form of a right circular
cylinder, pr=t, where r is the radius, t the tension at any
point, and p the excess of the internal pressure at the point
over the external.

\\:\ ~
AN
\‘ Ny
\
A B T
D (o}

Let ABCD be a small rectangular portion of the
membrane, where A.D, BC are portions of generating lines,
and AB, CD are arcs of circular sections. Let O be the
centre of the arc AB. Let T, 7" be the pulls across 4D,
BC, respectively.

The thrust on ABCD= p.A4B.AD, and makes an
indefinitely small angle 6 with OA.

Resolving along 04, we have
p-AB.ADoos0=T'sin AOB=T". %2,

Vi
AD =P cos 0,
st =pr ultimately.
Resolving perpendicular to 40,
p.AB.ADsinf+ T cos AOB=T
T T cosdAdOB

E T=p.ABsin6
t—t =0 ultimately,
oo t=t =pr
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Hence the tension and p are constant throughout the
section.

Similarly by resolving along a generating line, it can
be shewn that the tension at every point along it is the
same, and therefore throughout the membrane.

If the right section of the cylinder be not a circle,
the above formulae can be proved in the same way, pro-
vided » denotes the radius of curvature at any point of
the section. In this case pr is constant throughout the
membrane.

*134. If the pressure be the same at all points of a
generating line, the reasoning of the last Article will apply
to a flexible membrane which can exert a shearing stress,
as from symmetrical considerations there will clearly be
none across the lines in the figure.

*136. As a particular case of Art. 133, let us consider
the shape assumed by a thin rectangular membrane, two
of whose sides are attached to the horizontal edges of
8 box, while the other two sides fit the sides of the box
so closely that liquid can be poured above the membrane
without escaping.

It is obvious that the membrane will form a cylindrical
surface whose generators are horizontal.

Let APB be a section of this cylindrical surface, AB
being in the horizontal surface of the liquid.

Draw PN perpendicular to 4B.
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The pressure at P =w. PN,

t the tension is constant throughout the membrane
(Art. 134), and = pr =wr . PN, where r is the radius of
curvature at P.

». the curvature at P is proportional to the depth
below the free surface.

The curve APB is termed the Lintearta, and is the
same as the Capillary Curve (Art. 139).

136. Pror. To prove that in a flexible spherical mem-
brane incapable of exerting a shearing stress, 2t = pr, where
r is the radius, t the tension at any point, and p the excess
of internal over external pressure there.

Let ABCD be a small square-shaped portion of the
membrane bounded by great circles.

(o]

Let FEG, HEK be arcs of great circles bisecting
AB, CD, and BC, AD, respectively.
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The forces acting on ABCD are T,, T,, T, T, the
pulls across AB, BC, CD, DA, respectively, and the re-
sultant thrust, p. AB. BC, along OF.

Resolving along EF, we have
1=Ts.

Similarly T.,=T,,
and by Art. 132, T.="T,.

Resolving along O, we have
N+ T+ T+ T)sin FOE=p. AB . BC,

1 AB
. 4T.§.T=p.AB.BC,
T
..2B—0‘=p1',
. 2t=pr.

137. We have seen in Plateau’s experiment with the oil
in the water and alcohol (Art. 122), and have also deduced
it from the hypotheses about surface-energy (Art. 124),
that the separating surface between two fluids tends to
become as small as possible. Now this is precisely what
would happen if there were a stretched membrane sepa-
rating the two fluids, as it would always tend to shrink;
and it is easy to shew that if the tension throughout
the membrane is constant and numerically equal to the
surface-energy per unit area, the work done in increasing
the area is equal to the total increase of surface-energy.

Let PQRS be a rectangular element of the membrane,
whose length PQ, a, and breadth PS, b, are both in-
definitely small.

Let ¢ be the tension throughout the membrane.
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Let the membrane be first stretched so that QR moves
parallel to itself to the position @R’ through the dis-
tance z.

8 e
-1

The work done in thus stretching the membrane

=t.PS.QQ =tba.

Now if the membrane be stretched so that SR’ moves
parallel to itself to the position S'R” through the dis-
tance ¥, ’

the work done =¢. PQ' .88’ =t(a + ) y.
.. the total work done
=the+t(a+a)y
=t{(a+2)(b+y)— ab}
= ¢ X increase in area. :

But the increase in the surface-energy, if S be the
surface-energy per unit area, is S x increase in area,

={ X increase in area,
Sot=8

As any finite area may be divided into an infinite
number of indefinitely small rectangles, and the theorem
is true of each, it is true of the whole surface.

o

138. It follows from the above that we may investigate
capillary phenomena, either as hitherto from the energy
criterion of the equilibrium of a material system, taking
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the surface-energy into account, or from the ordinary con-
ditions of equilibrium assuming the existence of a uniform
tension throughout each bounding surface, numerically
equal to the surface-energy per unit area.

We may by the latter method obtain the result of
Art. 125, by considering the equilibrium of an element
of the line of intersection of the fluids. The result of
Art. 126 may also be obtained by this method.

*139. Let us apply it to investigate the form of the
Capillary Curve, which is a section of the cylindrical

surface assumed by a liquid in contact with a vertical
plate.

P
1
I
i
.y B 73

Let P be any point of the curve; draw PM vertically
downwards to meet 4B the horizontal surface of the liquid
produced.

The pres. at M = internal pres. at P +w . PM,

But pres. at M =atmospheric pressure = external pres-
sure at P,

.. external pres. liquid at P — internal pres.=w .PM.
But (Art. 133), t=pr=wr.PM,

where r is the radius of curvature at P, and ¢ the surface
tension. ’
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Hence PM varies inversely as 7.

The curve is therefore the same as the Lintearia
(Art. 135).

140. The height a liquid rises in a capillary tube may
be obtained as follows:

Let ¢ be the surface-tension in the surface separating
the liquid from the air. Let 8 be the angle at which this
surface meets the tube. Let 7 be the internal radius of the
tube, h the difference of level of the surfaces inside and
outside, and w the weight of a unit volume of the liquid.

Consider the equilibrium of the column of liquid in
the tube above the level of the surface outside. -

The forces acting on it are

(1) its weight 7r%hw downwards,

(2) the tension at every point of the perimeter of the

circle where the surface meets the tube. The resultant
tension is clearly 2nrt cos 8 upwards,

(3) the thrusts due to the pressure at the top and
bottom of the column. These counterbalance as the
pressure at both top and bottom is that of the atmosphere.

Hence (1) and (2) balance,
.*. 277t cos B = wrihw,
.*. 2t cos B = whr,

which agrees with the result of Art. 129. In a similar
manner we can obtain the rise of a liquid between two
plates.

141. Soap Bubbles. The relation between the excess
of internal over external pressure and the radius in an
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ordinary spherical soap bubble may be obtained from the
relation 2¢ = pr (Art. 136) by regarding a soap bubble as
a flexible membrane incapable of exerting a shearing
stress. It should be observed that as ¢ is here the total
tension in the membrane, it is the sum of the tensions in
the internal and external surfaces, i.e. it is twice the
ordinary surface-tension. We may also obtain this re-
lation by the principle of virtual work as follows:

Let S be the surface-energy per unit area in the
bubble of radius r, p the excess of the internal pressure
above the external.

If the radius be increased by an indefinitely small
quantity «, the increase in the external and internal
surfaces of the bubble together is 167rz, and therefore the
increase in surface-energy is 16mrzS. The work done
by the pressure = 47r’pe, since each element of surface is
pushed out through a distance .

Therefore the equation of virtual work is
16728 = 4mr*pe,
.48 =pr.
Ex. 1. For a soap bubble the surface tension is about 81 dynes per

centimetre, find the difference between the pressure inside and outside a
soap bubble whose radius is one centimetre. [Trin. Coll., 1883.]

Ex. 2. If the surface tension at different parts of a soap bubble were
different, prove that it would not assume a spherical form, and shew how
the variation of the tension would be indicated by its shape.

[8t John’s Coll., 1887.]

G.E. H. 13
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ILLUSTRATIVE EXAMPLE.

The surface of the liguid within a fine capillary tube is approzimately
spherical,

Let 04 be the axis of the tube. Let BPAP'B’ be the section of the
surface of the liquid in the tube made by a plane through 04,

Draw PM perpendicular to O4 and produce it to meet the curve again
in P, Let PO, PT be the normal and tangent to the curve at P.

Let r be the radius of the tube, and let i be the height of 4 above the
level of the liquid surface outside the tube.

i
?

’
1]
I
]
I
1
’
7
i
’
’

Let ¢ be the tension throughout the liquid surface, w the weight of &
unit volume of the liquid.

As in Art, 140, by considering the equilibrium of the cylindrical
column of liquid of radius MP and length &, and resolving vertically, we
obtain

*MP?, hw=2xtPM cos PTO.

(The weight of the small portion of liquid above 4 is neglected, on the
assumption that r is small compared with 4.)

MP
. MP ., hw=2t .-0—1?,
.*. OP=2t[hw, i.e. is constant.

Hence it follows that the curve BPAB' is a circle, of radius 2t/hw,
If 8 be the angle at which the liquid surface meets the tube, we have
(Art. 140)
rhw =2t cos 8,
.. the radius of the spherical liquid surface, 2t/hw, is r sec 8.
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EXAMPLES ON CHAPTER IX.

1, Prove that the surface of the liquid between two vertical
parallel plates very near together is approximately a circular
cylinder, and find its radius.

2. Two soap bubbles, blown from the same mixture, are allowed
to coalesce into a single bubble : find an equation giving the radius
of this bubble, and shew that this equation implies a reduction of
the total surface. [St John’s Coll., 1887.]

3. Explain how a drop of water can be in equilibrium in a fine
vertical tube open at both ends.

4, A liquid film hangs in the form of a surface of revolution -
with its axis vertical. The upper boundary of the film is a circular
wire held horizontally, the lower boundary is a heavy elastic thread,
hanging freely in the form of a horizontal circle of radius ». The
natural length of the thread is 2ra, its modulus of elasticity is A,
and its weight is 2raw. The tension of the film is z. Prove that »
satisfies the equation

(A2—a??) r2— 2A%ar+ (A% +w?a?) a?=0.
[Trin. Coll., 1893.]

5. A soap bubble of radius @ is blown inside another of radius
b, when the atmospheric pressure is II. When the atmospheric
pressure changes to I’ the radii of the two bubbles are o’ and ¥.
Prove that A
b b(a® - a%) (b3—a®) + a¥b® - a"b®
b T ¥ (a? — o) (B - a®) + @%b — a3
the temperature being supposed constant. [Peterhouse, 1892.]

8. If a frame of fine straight wire in the form of a tetrahedron
be lowered into & solution of soap and water and drawn up again,
there are found in certain cases plane films starting from the edges
and meeting in a point. Shew that this is not a possible form of
equilibrium for every tetrahedron, and that it is so if one face be an
equilateral triangle and the others isosceles triangles whose vertical
angles are each less than sec—1(—3). [M. T., 1873.]

13—2




196 CAPILLARITY.

7. A spherical membrane contains air at a pressure w, greater
than the atmospheric pressure I : if 7' be the tension in the
membrane, r its radius, shew that the acceleration outwards of any
point of the sphere is

4w
where X is the mass of the membrane, a its radius at some fixed
time, and w, the value of w at that time.

If the membrane be a soap bubble whose equilibrium radius is
a, shew that small variations about @ in the value of r can take
place, their period being

(=M} (4T + 30a)~E.
[Clare Coll., 1891.]

8. Prove that of the energy required to blow a soap bubble 3 is
spent in forming the film and 2 in compressing the air inside.

[St John’s Coll., 1882.]

9. What will be the result if a capillary tube be bent below the
level of the surface inside it and continued indefinitely in a hori-
zontal direction ? [St John’s Coll., 1886.]
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ANSWERS TO EXAMPLES.

CHAPTER II.

Page 10.
888-8. 2, 13625, 81750, 40875, g being taken as 981.
Page 15.
+845 ou. ft.: 9280000. 2. -0103 ft.
Page 19,
2 gallons, 2. 1 8. (vs+v's)[e.
Sy £,0/(8,% - 8:85). 6. 4'7 per cent.

CHAPTER III

PaGe 28.
36:864 ft. (v. Art. 16), 2. A ft., 2r/5 seca
24865625, 5. 14'96 cu. inches.

16:65 1bs. per 8q. ft. approximately.

yrbyg Ity 3w 1bs. per sq. inch.
At same level, }3} ft. above the horizontal tube.
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Pace 38.

1. For first bucket two-thirds of what it would be, if the bucket.
were at rest; for second, four-thirds.

2. A horizontal plane, (1) water above, (2) water below. (1) Pressure
in water at depth z below the surface, (9 ~f)pz, at depth z below the
mercury surface (9—f){ap+zc}. (2) At height z above water surface
(f-g) pz, and (f-g){ap+zs} at height z above mercury surface. a is
thickness of water stratum, p, o densities of water and mercury.

8. The inclination=a, that of the plane, and the pressure at distance
z from the surface=the atmospheric pressure+ gpz cos a, where p is the
density.

Pace 42.

1. Right circular cylinders having the axis as common axis. The
pressure at distance » from the axis is "—;’—’(a’ -12), where w is the angular
veloocity, p the density, and a the radius of the free surface.

3 ¢ant

2. The volume== . Wtanla
12 g

8. Pressure at distance r from axis=pressure there when cylinder is
at rest+3jw’p (r2—3a?), where p is the density of mercury, and a the
radius of the base,

[4g - 8hw? tan? a].

PAGE 44.

1. }Ma? \/3+}a%p (/3 .c—a cos 6), where 0 is the angle the line
from the centre perpendicular to the base makes with the vertical drawn
upwards. 2. 6138 cubic feet.

3. $(1+4/10) inches. 4. Half the depth of the vertex.

5. If ABCD is the parallelogram, 4B being in the surface, the
required line through 4 meets CD at a point distant }CD, from C.

6. 1:,/23-1:.3-.2 7. 3 /78 times the weight of the
liquid. 8. If % be the depth of the lowest side, the depths of the lines are

1 2 /3 .
h\/;, h\/ﬁ' h\/':,,&c.respectxvely.
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CHAPTER 1IV.

PacGE 68.

1. If a, b be the lengths of the parallel sides, k the distance between
them, the depth of the c.r. when (1) a is in the surface is %g—: . g ,
(2) one of the other two sides in the surface is

b+ b% +bat+ad . 0
2 (b%+ ba + a?) ’
where 4 is the inclination of the parallel sides to the vertical.
4. 164} inches below the oil surface.

CHAPTER V.
PaGE 84.

2 () Aop'NZ  (2) Fagpat/(§90+ 270 +Tadn/6),
where p is the density of water.

6. If 4 be the area of the base, a the } vertical angle, & the length of
the axis, 6 its inclination to the vertical, and p the density of the liquid,

h cos?a sin? 6
th = _ afoiecndi AN
e thrust on the base (P)=gp4 {d + . (0+a) 8in (8= a)} , the thrust on

the whole cone (Q)=44hpsin 4, and the thrust on the curved surface
=\/(P?*+Q*-2PQsin 6).

9. g. 12. If k be the length, r the radius of the cylinder, 6 the
inclination of the axis to the vertical, d the depth of the centre, the
required vertical thrust=wt. of vol. 4=rh {r sin®0 +d (sin 6 +2 cos 6)} of
the liquid.

Pace 87.

1. 364 cu. cms. nearly: 75, 2. If p be the density of the
cylinder, ¢, and o, the densities of the upper and lower fluids, the thrust
on the upper end is to that on the lower :: (p—a;) 0, : pog— %

8. -50065. 4. 15/x lbs. wt.

7. If W be the weight of the cone, W’ that of the liquid displaced,
and h be the length of the axis, the required force is W - W’ aoting

upwards at a point distant (f;;:—;,g_n;'—?% from the axis.
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11. The length of the heavier portion is one-quarter of the whole.
12. 192

Pagre 90.
2. wv(l-o)/ge.
Pace 96.
2. (1) A hyperbola. (2) A point. 4. The sides horizontal

and vertical, unstable: diagonals, vertical and horizontal, stable.

CHAPTER VI

Paae 118,
1. 88. 2. -405 : 2-885.
Page 122.
1. 2L 2. 45/61.
8. The mass of silver is to that of gold :: 37380 : 37249.
185,
Page 125.
1. 13:°9. 2. 4/8: 2/3rds the distance of the 2nd graduation
from the first.
PaGge 127.

1. 115 : 89 approximately.

CHAPTER VII

Page 137.
1. 7 times the height of the water-barometer. 2. 00018 cu.inches.

(1+ ) times the density of the atmosphere, where W=the

weight of the sphere, r its radius and I is the pressure of the atmosphere.

5. Assuming that the height of the bell is small compared with the
height of the water-barometer, the tension is inoreased.

6. If 1600 cms. be the depth of the lowest part of the bell, the height
of water-barometer is 964'8 cms.; the pressure on ﬂ_)e surface is 945014.
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Pace 141.-

2. The one whose temperature is the lower. II 1‘ +_IT
1+m 1+m
. w(_"m_+ sy \
v 278+t 273+,
Vp 213 Vhe 273000
5. 7_6 . 27§+—tx 1293187, 8. 3—.W7 . 38+t .

CHAPTER VIIL

Page 162.

;%ft per second, if 1ft. be the unit in terms of which 4, B and

! are given.
PAGE 166.

1. One-quarter of atmospheric density.
1(1+2b) b(b+c)(b+a)

3 (L+b+e) (l+d+cP(a+d+e)’
PaGE 169.
2. 22,
CHAPTER IX.
PaGe 184.
1. 12 inches.
Page 193.

1. 324 dynes per sq. cm.
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Air.Pump, Hawksbee’s, 164
~———— Smeaton’s, 165
Sprengel’s, 167
Tate’s, 166
Answers to Examples, 197
Archimedes’ Theorem, 79

Balance, Hydrostatie, 120

Jolly’s, 122

Balloon, The, 88

Barometer, The, 130

The Aneroid, 138

Baromeiric observation, Corrections
to a, 181

Barometric observation, Determina-
tion of altitude by, 144

Boyle’s Law, 134

Bramah’s Press, 163

Bubbles, Soap, 192

Buoyancy, Surface of, 93

Capillary Curve, 191
Centre of pressure, Definition of, 63
of any triangle,
68

Charles’ Law, 138
Compressibility, Definition of, 14
Condenser, The, 168

Density, Definition of, 17
Diving-Bell, The, 137

Elasticity, Definition of, 14

Fire Engifte, The, 163

Floatation, Surface of, 94

Floating Body, Conditions of equi-
librium of, 86

Floating Body, Stability of, 91

Fluid, Definition of, 5

—— Definition of Perfect, 6

Gas, Definition of, 6

Perfect, 136
Gauge, Barometer, 169
Condenser, 170
Siphon, 169

Homogeneous Atmosphere, Height
of, 145 ‘
Hydraulic Press, The, 163
Hydrometer, The Common, 123
Hare'’s, 119
———— Nicholson’s, 125

Impulsive pressure, 45
Inverted U-tube, Determination of
Specific Gravity by, 119

Lintearia, The, 188
Liquid, Definition of, 7

Manometer, Compressed-air, 170



