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PREFACE TO VOL. I

THE present edition of this work is divided into two

volumes, the first of which covers the course of hydro-

statics required of students who compete for scholarships

at the Universities. The book has been, in great part,

re-written, and the examples have been very largely

increased in number.

Very much of this subject of hydrostatics is easily

and profitably treated without the use of the differential

and integral calculus not that the calculus is evaded by
artifices more difficult than the principles of the calculus

itself. For example, nearly all the practically useful

work relating to centres of pressure, and much of that

relating to floating bodies, is more easily treated by

simple geometry and algebra than by the calculus.

Hence the first volume contains very little of the

1 differential and integral calculus. The fundamental

principles of certain forms of turbine have been intro-

duced, as they involve no mathematical difficulties and

are of great practical importance.

In the revision of proof-sheets I have had the benefit

of the advice of so able and competent a mathematical

physicist as Mr. Pidduck of Queen's College.

GEORGE M. MINCHIN.
o

OXFORD,

September, 1912.
u-
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CHAPTER I

NATURE OF FLUID PRESSURE

1. Experimental Illustration of Pressure. Let a vessel

of any shape be fitted with a number of weightless pistons

of different areas moving in cylindrical tubes without any
friction, and let this vessel be filled with a liquid suppose
water or mercury. We shall suppose also that the piston

fittings are perfectly liquid-tight, so that no liquid can

escape through the piston tubes.

Fig. i.

Then especially if the vessel has considerable height
and the liquid is mercury we shall observe that, for the

equilibrium of the liquid, each piston requires to be pressed
in with a particular force the magnitude of which depends
on two things: (i) the area of the piston,and (2) the position

of the piston in the vessel.

The forces which urge the pistons out are due, of course,
1424 B



2 Hydrostatics VOL. i

to the weight of the liquid. In the figure A is the highest

point of the liquid, and the pistons are fitted at B, C, ... .

Let P, Q, R, . . . be the forces which have to be applied to

keep the pistons B, C, D, . . . at rest, and let the areas of

these pistons be a
lt 3 , 3 , ... ;

then forces per unit area

exerted by the liquid on the pistons are

These are called the intensities of pressure at 7?, C, D, ... ;

and in the ideal case which we have supposed (absence of

friction, &c.) we should find that the intensity of pressure

at a point is greater the greater the vertical depth of the

point below the highest point, A; and also that the

intensity of pressure is the same at any two points whose

vertical depths below A are the same. For example, if

pB and C are in the same horizontal line,
: - will beOR fll

found to be equal to
,
and will be greater than

P 2 ?3
. We shall now vary the experiment. Having supplieda

to each piston the proper force from without so that there

is equilibrium everywhere, let us fit a piston at A, its weight

being also negligible. This piston requires, of course, no

force to keep it in position. Let s be the area of this

piston. Now to any one of the pistons suppose A let an

additional force, F, be applied to move it in
;
then we shall

find that each of the other pistons will require a special

additional force to keep it in position, and we shall find the

following simple result : if the intensity of the pressure,

F
-, applied at A is denoted by/, the additional force required

to keep B in position is/x a
l ;

the additional force required
at D is/x c

3 ,
and so on ;

that is, the intensity of pressure
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applied at A is transmitted without loss to every other

point, ,C,D,G,....

Precisely the same result is obtained if we produce the

additional intensity of pressure, f, by additional force

applied at the piston 1), or any other piston : this intensity

is transmitted, undiminished, by the liquid to every point

of the vessel. This result is known as Pascal's Principle,

which may be thus enunciated : if intensity of pressure of

any amount is applied at anypoint of the surface of a liquid, the

liquid acts as a perfect machinefor transmitting this intensity

ofpressure, unaltered in amount, to all points of the liquid.

The reason why we began by applying special forces,

P, Q, H, ... to the several pistons in order to keep them in

position, before applying the intensity of pressuref}
is that

we desired to eliminate the effect of gravity and to deal

with a liquid throughout which no bodily force (such as

gravity) acts
;
and this method enables us to do so as

regards points on the surface of the containing vessel
;
but

since the size and shape of the vessel may be altered at

pleasure and the result still holds, we can conclude that

Pascal's Principle holds for points inside the liquid as well

as for points at its surface
; but a complete proof of this

will be given presently.

If the vessel were filled with a very light gas, such as

hydrogen, and it were possible to keep it in without leakage,

it would not be necessary to begin by equilibrating the

pistons.

Intensity of pressure is & force per unit area. Thus if

the area of the piston A is -25 square inches, and the force

^applied to the piston is 10 pounds' weight, the intensity

of pressure, f, is
,
or 40, pounds' weight per square inch.

25
2. Perfect Fluid. A body such that, whatever forces

are applied to it, there is no friction between any two

B a
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particles in contact is called a perfect fluid. The action

between particles consists wholly of force acting perpen-

dicularly to their surface of contact. Such bodies are, of

course, only abstractions, which for many practical purposes,

however, may be assumed to exist : water, mercury, gases,

and many liquids may be taken as such.

It is usual to divide fluids into liquids and gases, and to

define liquids as fluids that cannot be compressed, or that

can be compressed only by applying very great pressure to

them
; gases are fluids that can be easily compressed.

3. Stress in bodies. If a solid body of any kind is

acted upon by any forces, the interior of the body will be

strained. Suppose Fig. 2 to represent such a body ;
and at

Fig. 2.

any point inside it consider the particles at both sides of

a very small plane run. Owing to the forces acting upon
the body of which its weight will be one the particles

at the side A of the plane mn exert forces on those at

the side B which are in contact with them. These forces

may be of the nature either of pressure or of temion

according to the way in which the forces P, Q, ... are applied
to the body ; and the total force exerted on the particles at

the B side will be a force which we have represented by f
(acting towards the B side). As represented, this force is,

on the whole, a pressure, but it has a component along the
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plane mn, which is called a shearing component. The parti-

cles at the A side of mn experience from those at the B side

exactly the same force/reversed. This force, or stress, has,

then, two aspects : it acts in one direction or in the opposite

according- as we consider the action of the A side on the B
side of mn, or vice versa.

If the body which we are considering is a perfect fluid,

this stressf will always be normal to the plane mn, whatever

position this plane may have in the fluid. This we shall

assume as the definition of & perfect fluid.

But in the case of any other kind of body, a great deal

depends on the position of the plane mn. We may imagine
it turned round its centre so as to occupy various positions ;

and then, as a rule, with each position both the magnitude
and the direction of the stressf will vary : in some positions

of mn the stress/
1

may lie in the plane, having- no normal

component. The stress in this case would be pure shear.

Again, for some positions of mn the normal component of

fmay be pressure, and for others tension. In the case of a

perfect fluid/ is always normal pressure.
From the fact that fluid stress on a small plane surface

acts perpendicularly to the surface we can prove a most

important property of this stress namely, that its intensity

is the samefor all smallplanes at the same point, P, in thefluid.

Let P, Fig. 3, be any point in the fluid (whether liquid

or gas) ;
let cdfb be a small plane

at P, and cdea be the same plane

turned through any angle, 2 0, about

the line cd
; complete the prism by

the triangular faces, abc, efcl, per-

pendicular to the edge cd. This Fig- 3-

prism contains a small volume of

the fluid which we can separate in imagination from the

rest of the fluid, and we can, regard it as kept in equilibrium
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by the stresses produced by the surrounding fluid on its faces
and by its weight, ifgravity is the external force acting on the

fluid.

Now, whatever be this external .force, its magnitude is

proportional to the volume of the prism. Let the total

stress on the face cdbf have a magnitude q : it will act

perpendicularly to the face at its middle point. Let the

stress on cdea be a force r, and that on abfe a force s.

There will also be stresses acting on the faces abc and efd,

and each of these acts parallel to cd.

Let Pmn be the cross-section of the prism through

P, which point we can take as the middle point of cd. Let

cd = /, ab = zc, cb = ca = a
; then the areas cdfb and cdea are

each I. a, and the volume of the prism is area abcxl, or

c . a cos Q x /. The external force (weight, or other) acting

on the prism can be represented by

kxc .a .Icosd
;

and if p and // are the intensities of the stresses on the faces

cdfb and cdea, we have

q=pxl.a, r=p'xl.a.
Now express the fact that the forces acting on the prism

have no component parallel to mn, and suppose the external

force to make any angle, $, with mn
\
then we have

p' x /. a . cosQp x I . a . cos + k x c . a . /cos cos
</>
= o.

or // p + kxc cos = o.

If now we diminish the size of the prism indefinitely,

c vanishes while all the other quantities remain finite, so

that the third term, depending on the external force,

vanishes, and we have simply

/ = P,

whatever 6 and < may be ; that is, the intensity of pressure

on the plane cdfb is constant whatever be the position of
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the plane at P; and observe that this equality of the

pressure intensities depends on the fact that the stress

always acts perpendicularly to the plane : if q and ; did not

act normally to the planes on which they act for all

positions of these planes, the result would not follow.

4. Equality of Fluid Pressure round a point. The

student must avoid the fallacy of supposing that pressure

acts on a point. Strictly speaking-, nothing can act ' on a

point
'

: pressure acts on a surface ;
and when we speak of

intensity of pressure at a point, we mean that pressure acts

on a small surface placed at the point. We see now that if

we imagine any small plane area, say I square millimetre,

placed at a given point P of a fluid, the stress or pressure

exerted on this area by the particles at one side of it

on those at the other acts normally to the area and has the

same magnitude however the position of the little area is

varied at that point P. This is the meaning of the

expression
'

equality of fluid pressure at a point '. No such

result holds for any body other than a perfect fluid, as has

been already stated.

To each point, then, in a fluid acted on by any forces

belongs a special intensity of pressure the amount of which

can be calculated if we know the magnitude of the stress,/
7

,

exerted on any small plane area, s, at the point, no matter

what the position of this area at the point may be :

the pressure intensity is

This pressure intensity will, of course, be different for

different points in the fluid.

If a fluid is acted upon by no externalforces, such as gravity,

but only pressure applied somewhere on its surface, the intensity

ofpressure is the same at all points within it.

Let a perfect fluid be contained within the surface
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ABCD (Fig. 4), and suppose pressure to be applied over

its surface so that the intensity of this pressure at A is p

pounds' weight per square inch. At A take a very small

area, .? square inches, represented by
A A', and on this little area erect a

A[A

right cylinder, A P, of any length.

Now consider the separate equilibrium

of the fluid contained within this cy-

linder. This fluid is held in equili-

brium by the force p . s pounds' weight

acting on AA'
}
a pressure on the base

at P, and a series of pressures all over

its curved surface. Resolving forces in the direction A P, we
have p . # = the pressure on the base at P, since the pressures

on the curved surface are all at right angles to A P. But

the area of the base is also * square inches, therefore if

p' intensity of pressure at P,

j).S=ff.S . (l)

.-. P = p'-

Again, the pressure intensity at every point on the

surface is also p. For, let the base at P be turned.round

through any angle, and on its new position construct a

right cylinder cutting the surface obliquely at B. Let 6

be the angle between the normal to the surface at B and

the axis, P , of the cylinder ;
let p' be the intensity of

pressure exerted by the envelope at B on the fluid, and

consider the separate equilibrium of the fluid in the

cylinder P B. The area of the normal cross-section of the

cylinder being s, the area cut off from the surface at B is

* sec 0, and the total pressure on this is // . s sec Q. Now
resolving along the axis P B for the equilibrium of the

enclosed fluid, we have

j) . s =. p'.s sec . cos 0,

.-. p'-p.
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This may also be seen by constructing on the area s at A
a tube, AA'B Bf

,
of any form whatever and of uniform

normal cross-section. The fluid inside this tube is kept in

equilibrium by the terminal pressures on A A' and BB'

together with the pressures of the surrounding fluid which

are all normal to the sides of the tube. Hence (except

that the terminal forces at A and B are pressures and not

tensions) this fluid is in the same condition as a flexible

chain stretched over a smooth surface and acted upon by
two terminal forces only, in addition to the continuously

distributed normal pressure of the smooth surface ;
and it

is obvious, by considering the equilibrium of each elementary

length of the tube, that the forces per unit area at A and

B are equal.

Even when the fluid is acted upon by bodily force, such

as gravity, the Pascal Principle of the transmission of

pressure still holds
;

that is, any intensity of pressure

applied atthe surface of the fluid is transmitted undiminished

in amount to all parts of the fluid, but in addition to this

transmitted pressure there is pressure of different intensities

at different points produced by the action of the bodily force.

5. Principle of Separate Equilibrium. The following

principle is very largely employed, and has been already

used in the previous pages, in the consideration of the

equilibrium or motion of a fluid, or, indeed, of any
material system :

We may always consider the equilibrium or motion of any
limited portion of a system, apartfrom the remainder

, provided
we imagine as applied to it all the forces which are actually

exerted on it ly the parts imagined to be removed.

Thus, suppose Fig. 5 to represent a fluid, or other mass,

at rest under the action of any forces, and let us trace out

in imagination any closed surface enclosing a portion, M,
of the mass. Then all the portion of the mass outside this



io Hydrostatics VOL. I

surface may be considered as non-existent, so far as M
is concerned, if we supply to each element of the surface of

M the stress which is actually exerted on it by the mass

outside it. The stresses exerted on the elements of surface

of M, when the body is a perfect fluid, are represented by
the arrows in the figure.

The portion M is, then, in equilibrium under the action

of these pressures and what-

ever external forces (gravity,

<fec.) also act upon it.

Again, it is evident that,

having traced out in imagi-
\ f ^Tl x / nation any surface enclosing

Fig. 5.
a mass, M, of the fluid, we

might, without altering any-

thing in the state of this mass M, replace the imagined

enclosing surface by an actual material surface, and then

remove all the fluid outside this surface
;
for the enclosing

material surface will, by its rigidity, supply to M at each

point the pressure which is exerted at that point by the

surrounding fluid.

6. The Hydraulic Press. A machine the action of

which illustrates the Principle of Pascal is the Hydraulic

Press, represented in Fig. 6.

It consists of a stout cylinder, A, in which a cast iron

piston, or ram, P, works up and down. This piston has

a strong iron platform fixed on the top ;
on this platform

is placed a substance which is to be subjected to great

pressure between the platform and a strong plate, 1), fixed

to four strong vertical pillars. The pressure is applied

at the bottom of the piston P by a column of water which

is forced into the cylinder A through a tube, f, which

communicates with a reservoir of water, B. The water is

driven out of B by a force-pump whose piston, p, has a
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diameter much smaller than that of the piston P
;

the

piston p is worked up and down by means of a lever L, and

the cylinder in which p works terminates inside the vessel

B in a rose, r, the perforations in which admit water while

preventing the entrance of foreign matter.

It is easy to see what an enormous multiplication of

force can be produced by this machine. If F is the force

w

applied by the hand to the lever L, n the multiplying ratio

of the lever, and * the area of the cross-section of the piston

p, the intensity of pressure produced on the water in the

nF
vessel is

;
so that if S is the area of the cross-section

if

of the piston P, the total force exerted on the end of

this piston by the water in A is

nF.
8
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Thus, if S ioo s and the ratio, n, of the long to the

short arm of the lever L is 5, the upward force exerted on

the piston P is 500 F, so that if a man exerts a force of

100 pounds' weight on the lever a resistance of nearly

50,000 pounds' weight can. be overcome by the piston.

In order to prevent the intensity of pressure in the

vessel B from becoming too great, a safety-valve closed by
a lever loaded with a given weight, W^ is employed.
The Hydraulic Press remained for a long time com-

paratively useless, because the great pressure to which

the water was subject drove the liquid out of the cylinder
A between the surface of the piston P and the inner

surface of the cylinder. This defect was remedied in a

very simple and ingenious manner by Bramah, an English

engineer, in the year 1 796. In the neck of the cylinder A
is cut a circular groove all round, and into this groove is

fitted a leather collar the cross-section of which is repre-

sented at c in the form ^\. This collar is saturated with

oil, in order that it may be water-tight, and it will be seen

that it presses with its left-hand and upper portion against
the cylinder A, while its right-hand portion is against the

piston P. When, by pressure, the water is forced up
between the surface of the piston and the surface of the

cylinder, this water enters the lower or hollow portion of

the inverted U-shaped collar and firmly presses the leather

against both the piston P and the surface of the groove,
thus preventing any escape of water from the cylinder.

In consequence of this great improvement in the machine,
it is very commonly called Bramah's Press.

In order to prevent the return of the water from the

cylinder A on the upward stroke of the piston p, there is a

valve, represented at i in Fig. 6, and shown more clearly at

i in Fig. 7, which is a simple sketch of the essentials of the

force-pump. When the piston jp rises, a valve, e, in the



CH. I Nature of Fluid Pressure

pipe dipping- into the reservoir B, opens upwards and

allows the water to fill the cylinder / and to flow through
o to the valve i. When p descends, the water closes the

valve e and is forced to open the valve i which is pressed

down by a spiral spring. When the piston p moves

upwards, the water which has passed the valve i into the

cylinder A cannot return into the cylinder / because it

obviously assists the spring in closing the valve i. The

safety-valve is represented at v in Fig. 7.

Fig. 7.

The piston p works in a stuffing-box in the upper part of

the cylinder /, this stuffing-box playing the same part as

the leather collar round the ram i. e., preventing leakage.

The piston must not fit the lower part of the cylinder J

tightly, because when/? in its downward motion passes o, the

cylinder would be burst if the water above the closed valve

e could not escape round the piston and out through the

valve i.

Another machine depending essentially on the same

principles and illustrating the Principle of Pascal is the
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Hydrostatic Bellows, which is formed by two circular boards

connected, in bellows fashion, by water-tight leather, the

boards being the ends of a cylinder the curved surface of

which is formed by the leather. One of these boards being

placed on the ground, the other lies loosely on top of it.

A narrow tube communicates with the interior of this

cylinder. If this tube is a long one and held vertically,

when water is poured into it at its upper end, the upper
board of the bellows, and any load that may be placed on

it, will be raised by the pressure of the water, the intensity

of which pressure depends (as will be subsequently explained)
on the height to which the narrow tube is filled.

7. Specific Weight. The specific weight of any sub-

stance means its weight per unit volume. If w is the weight
of a homogeneous body per unit volume, the volume of the

body being V and the weight W,

W V .w.

It will be useful to remember that

i cubic foot of water has a mass of about 62^ Ibs.

i
' 1000 ounces,

j
,, inch of mercury -491 Ibs.

These numbers are, of course, only approximate, because

the mass of a cubic foot of any substance depends on the

temperature of the substance.

A gramme is defined to be the mass, or quantity of

matter, in i cubic centimetre of water when the water is at

its temperature of maximum density ; this temperature is

very nearly 4 C.
'

A term in frequent use is the specific gravity of a sub-

stance, which ought, apparently, to signify the same thing
as its specific weight ; but it does not. The specific gravity
of any homogeneous solid or liquid means, in its ordinary

employment, the ratio of the weight of any volume of the
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substance to the weight of an equal volume of distilled

water at the temperature o C. Thus, for example, in the

following table of specific gravities :

gold 19-3

silver 10-5

copper .... 8-6

platinum .... 22-o

sea-water. . . . 1-026

alcohol .... -791

mercury .... 13-596

the number opposite the name of any substance does not

tell us the weight of a cubic foot, or of any other volume,

of the substance
;

it merely tells, with regard to platinum,
for example, that a cubic foot of it, or a volume V of it, is

22 times as heavy as a cubic foot, or a volume F, of distilled

water. A table of specific gravities is a table of relative

weights of equal volumes. In the C. G. S. system, since

the unit of weight is that of i cubic centimetre of water,

and since water is the substance with which in a table

of specific gravities all solids and liquids are compared,
the number (specific gravity) opposite any substance ex-

presses the actual mass, in grammes, of i cubic cm. of the

substance.

If s is the specific gravity of any substance and w the

actual weight of a unit volume of the standard substance

(water), the weight of a volume V of the substance is given

by the equation
W= Vsw.

The term density is used, as has been said, to denote the

mass per unit volume of a substance. Thus if mass is measured

in grammes and volume in cubic centimetres, the density of

silver is 10-5 grammes per cubic centimetre ; the density
of mercury is 13-596 grammes per cubic cm. If mass is
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measured in pounds and volume in cubic inches, the density
of silver is -3797 Ibs. per cubic inch and that of mercury
491 Ibs. per cubic inch. These latter numbers are, of course,

proportional to the former.

The term density has no reference to gravitation. If

silver and mercury are taken from the Earth to a position
in interstellar space in which there is felt no appreciable
attraction from any Sun or Planet, it is still true that silver

has a mass of 10-5 and mercury a mass of 13-596 grammes
per cubic cm. Neither would, in this position, have any

specific weight^ since there is no external force of attraction

acting on them
;
but the moment th'ey are taken to the

surface of any planet each acquires weight, and the ratio

of the weights of equal volumes of them is the ratio,

10-5 : 1 3'596, f their densities. If, for example, they were

carried to the surface of the planet Jupiter, the weight of

a cubic cm. of each would be nearly i\ times as great as it

is on the surface of the Earth
;
but a table of relative

weights of substances on Jupiter would be exactly the same

as a table of relative weights on the Earth.

If any given volumes of a number of homogeneous sub-

stances are mixed together in such a way as to make a

homogeneous mixture whose volume is the sum of the

volumes of the separate substances, the specific weight of

the mixture is easily found. For, let v
l and w

l
be the

volume and specific weight of the first substance
;
v
z and

w
2 those of the second

;
and so on. Then if w is the

required specific weight of the mixture, since the weight of

the mixture is equal to the sum of the separate weights,

w

Such a mixture is called a mechanical mixture as, for
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instance, a mixture of sand and clay. But when a chemical

combination takes place between any of the substances, the

volume of the mixture is not equal to the sum of the

volumes mixed as when sulphuric acid is mixed with

water. If for any chemical mixture V (which must be

specially measured) is the volume of the mixture, it is

evident that we have, as above,

2 vw
'"=

EXAMPLES.

1. A cask A is filled to the volume v with a liquid of specific

weight w ; another cask, B, is filled, also to the volume v, with
v v

another liquid of specific weight s
;

-
is taken out of A and -

also out of B, the first being put into B and the second into A
,

and the contents of each cask are shaken up so that the liquid
in each becomes homogeneous. The same pi'ocess is repeated

again and again : find

(a) the specific weight of the liquid in each cask after m
such operations;

(b) the volume of the original liquid in each cask.

Result. If w s is denoted by d, and if wm , sm are the specific

weights of the liquids in A and B, respectively, after m opera-
tions,

d

d ( / 2N
7

")= *+ -i 1 - (' ) [
>

2 ( n' )

and the volume of the original liquid in either cask is

[N.B. The liquids are assumed not to enter into chemical

combination.]
2. In a hydraulic press an effort of 20 pounds' weight is applied
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at the end of a lever, at a distance of 9 inches from the fulcrum,

moving the plunger of a force-pump, the point of attachment of

the plunger being 4 inches from the fulcrum. The diameter

of the plunger is i inch and that of the ram 8 inches
;
find the

thrust exerted by Ihe ram.

if tons' weight.
3. In a hydraulic press the diameter of the plunger is i inch

and that of the rani i foot
;
the effort is applied at a distance of

10 inches from the fulcrum, and the point of attachment of the

plunger is 5 inches from the fulcrum ;
calculate the magnitude

of the effort required to produce a thrust of 2 tons' weight by
means of the ram.

15! pounds' weight.



CHAPTEK II

THEOREM OF PLANE-MOMENTS

8. IF any number of particles whose masses are M
lt

m
2t
m

z ,
... are at distances zl5 r

2 ,
z
3 , ... from any plane, it

is known that the distance, I, of their centre of mass, or

centre of gravity, from the plane is given by the equation

_ _ 1 9t 9a ... ,

and the same expression gives the distance of the '

centre
'

of a system of parallel forces P
1}
P

2 ,
P3 , ... from a plane,

the distances of their separate points of application from

the plane being z
lt

z
2 ,

zz) ... (see Statics, vol. i, chap. xi).

In either case if distances measured from one side of the

plane are taken as positive, distances measured from the

other side are to be taken as negative ; and, in addition, if

parallel forces acting in one sense are taken as positive,

those forces which act in the opposite sense are negative.

The result (a) holds, of course, for particles occupying

positions in space of three dimensions, as well as for

particles lying in one plane ;
and similarly for parallel

forces.

Owing to the importance of this equation in all calcu-

lations, we give a diagrammatic representation of the way
in which the student will find it convenient for actual

c 2
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calculation. It is to be observed that no such result as (a)

holds for distances measured from an axis, or a line
;
but in

many cases the result is applicable, by accident, to distances

measured from a line. Thus, if all the particles, or points

of application of parallel forces, happen to lie in one plane

(P), the above will give the distance of their centre from

any line (L) in the plane, but only because the distances

z
l}

s
z

. ... measured from (L) are really measured from a

plane through (L) perpendicular to (P).

We shall refer to (a) as the theorem of mass-moments, or

theorem ofplane-moments.
It is obvious that the mass-moment of any system with

respect to any plane passing through its centre of gravity
is zero.

It is also evident that the distances ,?
1 ,.z2 ,...need not be

perpendiculars ; they may be oblique distances all, of

course, measured in the same direction.

The work of practical calculation is often facilitated by

forming tables ofmasses, distances, and products, in columns,

as in the following example.

EXAMPLE.

At the vertices, A, B
y
C (Fig. 8)

of a triangle and at the middle

points, a, 6, c, of the opposite sides

act parallel forces whose magnitudes
and senses are represented in the

_____ figure ;
find the position of the centre// of the system.

T6
V The position of the centre will be

~ known if its distances from any two

sides, AB and AC, are known.
To find its distance from AB, let the length of the perpen-

dicular from C on AB be p ;
and form a table of forces and

distances of their points ot application from AB as in the fol-
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lowing scheme, taking as positive those forces which act in the

sense of that at A :

Forces.
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AB; the distances of the centres of gravity from AB are

; therefore the diagram is

mosses
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The process, therefore, of finding the point of application

of the resultant of the whole system of pressures acting on

the indefinitely great number of elements of area into

which the given figure can be broken up is precisely

the same as that of finding the centre of area of the

figure.

(2) If parallel forces act at all points of a right line,

AS, Fig. 10, in such a way that the force at any point P
is directly proportional to the distance, PA, of P from one

extremity, A, of the line, the

resultant force acts at the /

point on AB which is of /

the length AB from A. f
For, imagine AB to be

\F

A.

broken up into an indefi- f~

nitely great number of small /

equal parts, PQ; describe /

any isosceles triangle, MAN, M "
"~"B

having AB for height, and

from all the points, P, Q, . . . of division ofAB draw parallels

to the base MN, thus dividing the area MAN into an

indefinitely great number of narrow strips. The area of

any strip, QF, is simply proportional to the distance, PA,
of the strip from A. Hence the areas of the strips are

exactly proportional to the given system of parallel forces ;

but the centre of area of the strips, or centre of area of the

whole triangle, is f AB from A. This point is, then,

the centre of the given system of forces.

(3) If parallel forces act at all points of a right line,

AB, Fig. 10, in such a way that the force at any point
P is proportional to the square of the distance, PA, of

P from one extremity, A, of the line, the resultant force

acts at a point on AB which is f of the length AB
from A.
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For, imagine AB to be broken up, as before, into equal

elements, such as PQ ;
describe any solid cone having- AB

for its axis, and let this cone be represented by MAN.
From all the points of division of AB draw planes parallel

to the base MN of the cone, thus dividing the cone into

an indefinitely great number of thin circular plates. The

volume of the plate at P is irPF2 X PQ, and since the

thicknesses of the plates are all equal to PQ, the volume

of the plate is proportional to PF2
,

i. e., to PA2
. Hence

the volumes of the plates vary exactly as the forces of the

given system, and therefore the centre of volume of the

plates is identical with the centre of the force system ;
but

the former (centre of volume of the cone) is f AB from A
;

therefore, &c.

(4) If parallel forces act at all points of a right line

AB, in such a way that the force at any point P is propor-

tional to the product of the distances PA, PB of P from

the extremities of the line, the resultant force acts at the

middle point of AB.

For, taking a point, P', whose distance from B is equal

to that of P from A, the forces at P and P' are evidently

equal ;
their resultant therefore acts at the middle of AB.

Hence the system of forces from A to this middle point
is the same as the system from B to this point ;

the re-

sultant, therefore, of the whole system acts at the middle

o -V point of AB.

(5) If each infini-

tesimal element of any

plane area is acted upon

by normal pressure pro-

portional conjointly to the

magnitude of the area and

to the distance of the element from a given plane, the

magnitude of the resultant pressure will be proportional to
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the product of the whole plane area and the distance of

its centre of area from the given plane.

For, let yOx, Fig-, n, represent the given plane, and

ABCD the given plane area. Take any point, P, in this

area, and round P describe a very small closed curve whose

area is s. Let PN, the perpendicular from P on the plane

yOx, be denoted by z ; then, by hypothesis, the amount of

force, /, on the element at P is given by the equation

f=k.sz,
where k is a given constant. If *', /',... are any other

elements of area whose distances from the given plane
are /, z'\ . . . the resultant pressure, being equal to the sum

*&fif
r

*f"i of the individual pressures on the elements,

is equal to

But if A = the area of the whole plane figure, and z is

the distance, GQ, of the centre of area, G, from yOxt
we

have , , ,,
Az = sz + / / + *" /'+....

Hence if P is the resultant pressure,

P = k.A.z....... (a)

The student must be careful to observe that the resultant

pressure does not act at G, but evidently at some such point

as 1, whose distance from the plane yOx is greater than the

distance of G from the plane.

In this case, then, the mean intensity of pressure on the

area is that which exists at G.



CHAPTER III

LIQUID PRESSURE ON PLANE SURFACES

10. Intensity of Pressure produced by Gravity. Let

ACS, Fig. i a, be a vessel of any shape containing water

or other homogeneous liquid. Then at each point, P, of

the liquid the action of

tltllNlll'I'l I fa gravity produces a certain

intensity of pressure, the

magnitude of which we

proceed to find. At P
x

x^ ^" draw an indefinitely small
c

-pj I2
horizontal element of area

s square inches, suppose
and on the contour of this area describe a vertical cylinder,

PN. Consider now the separate equilibrium (Art. 5) of the

liquid in this cylinder.

If PN is z inches in length, the volume of the cylinder
= z . s cubic inches, and if the specific weight of the

liquid is w pounds' weight per cubic inch, the weight
of the cylinder = wzs. This cylinder is acted upon by
a vertically upward pressure on the base s at P and a

system of horizontal pressures round its curved surface,

in addition to its weight omitting, for the present, the

surface pressure at N produced by the atmosphere or any
other cause.

If ;; pounds' weight per square inch is the intensity
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of pressure at P, the upward pressure on the base s is p s-

Resolving forces vertically, we have, then,

p . s = 10z . s
;

.-. p ws, (a)

which gives the required intensity of pressure.

If the surface intensity of pressure is j) pounds' weight

per square inch, this will be added to the value (a), by
Pascal's principle ;

hence the complete value of p is given

by the equation

p - wz +p (/3)

Observe that we have not assumed the bounding surface

AB to be horizontal.

Without any reference to the shape of the surface AB,
we can see that the intensity of pressure is the same

at all points P, Q, ... which lie in the same horizontal

plane.

For, draw PQ ;
at P and Q place two indefinitely small

equal elements of area, s. perpendicularly to PQ ;
form a

cylinder having PQ for axis and these little areas for

bases, and consider the separate equilibrium of the liquid

enclosed in this cylinder. The forces keeping it in equili-

brium are its weight, a system of pressures all round

its curved surface, and the pressures on its bases at P and Q.

Resolving forces along PQ for equilibrium, neither the

weight nor the system of pressures on the curved surface

will enter into the equation ;
therefore the pressure on the

base * at P = the pressure on the (equal) base # at Q ;
that

is, the intensity at P = the intensity at Q.

From this it follows that the bounding surface AB on

which at all points there is either no pressure, or pressure

of constant intensity, must be a horizontal plane.

For, take any two points, P, Q, in a horizontal plane,

and let their vertical distances below AB be z and /.
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Then by (/3), we have

VOL. I

z = z.

that is, all points in the same horizontal plane are at the

same depth below the surface AB which proves AB to be

a horizontal plane.

It is usual to speak of the surface, AB, of contact of

the liquid with the atmosphere as the free surface of the

liquid. It is simply a surface at each point of which

the intensity of pressure is constant, the constant being the

atmospheric intensity.

The result at which we have arrived may be also stated

thus all points in a heavy homogenemis liquid at which the

intensity of pres-

sure is the same

lie in a horizontal

plane ; and from

this it follows

that if a mass

of water partly

enclosed by sub-

terranean rocks, &c., has access to the atmosphere by any
number of channels, the level of the water will be the same

in all these channels. It is to be observed that z in (a) and

(ft)
is the depth of the point P (Fig. 13) lelow thefree surface

not the distance, PD, of the point P from the roof of the

cavity in which the water is partly confined.

We may here, if we please, consider the separate equili-

brium of a small vertical cylinder of the liquid terminating
at D, and we shall have simply the result (/3) in which,

however, pQ would now mean the vertical downward com-

ponent of the pressure intensity of the roof of the cavity at

D on the water. But the result (ft) holds for the intensity
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of pressure at P if PH is put for z, where // is the foot of

the perpendicular from P on the plane of the free surfaces

ab, cd, ef of the water
; for, nowhere in the liquid will the

state of affairs be altered if we imagine the roof of the

cavity to be removed, and the space 6Dc to be filled with

water up to the level lie. In this way we shall have

a vertical cylinder, PH, unobstructed by the roof, and

terminating on the free surface.

It is usual to illustrate the fact that all parts of the free

surface of a liquid lie in a horizontal plane by taking
a vessel, ABC, of any shape and fitting into it tubes

or funnels of various forms, and then pouring water in

through any one of these tubes, the visible result being
that the water stands at the same level in all the tubes.

This is, indeed, nothing more than the principle of separate

equilibrium (see end of Art. 5) ; for, these variously shaped
funnels may be supposed to have been surfaces traced out

in imagination in a large vessel of water whose free surface

was af, these imagined surfaces being then replaced by
material tubes, and the outside liquid removed. The level

of the liquid in each tube would still be af.

11. Superposed
Liquids. If in a vessel,

AOB, Fig. 14, several

liquids be placed as

layers, one on top of

another, there being no

chemical combination

between them, the

common surface of each
Fig. 14.

pair ofliquids is a horizontal plane. Let the specific weights
of the liquids be w

l ,
w

2 ,
w

3 , ... . The free surface, AB, has

been already proved to be a horizontal plane (Art. 10); and

the same process will prove CD, the surface of separation
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of w^ and w
2 ,

to be a horizontal plane. For, in the liquid
w
2 take any two points, Q, Q' (as in Fig-, iz, p. 26), in the

same horizontal plane. Then by taking a slender horizontal

cylinder having QQ' for axis, we prove that the intensity
of pressure at Q = that at Q'. Now taking a vertical

cylinder Qmn, at Q, considering its separate equilibrium,
we find that if p is the intensity of pressure at Q, and

Qm = x, mn = y,

p = W.2 ll' + 10
'j I/.

Similarly if Q,' mf ri is the vertical line at Q', and

Q'm' = a', m'n' = /,

p =
Hence ^ (a

,
_^ =

But Qn = Q'n', i.e., x+y x' +y', .'. x x' = y' y ;

so that unless x x' = o and y
f

y = o, equation (i) will

give w
l
= w

z ,
which is not the case, by hypothesis.

Hence we must have

Qm = Q'm', and mn = mn',

and since this holds for all points Q, Q' in the same

horizontal plane, all points, m, m', . , . in the surface CD are

at the same height above the same horizontal plane ;

therefore CD is a horizontal plane. Similarly, by taking
two points in the same horizontal plane in the liquid w3 ,

we prove that EF is a horizontal plane.

If h^ and /i
2 are the thicknesses of the layers wl

and w
2 ,

and if R is a point in w
3 ^,t a depth z below the surface,

El\ of #>
3 ,

the intensity of pressure, jo, at R is given by the

equation
p = w

l
h
1 + 2V

2
/i
2 + w,^z, ..... (2)

to which, if atmospheric (or other) pressure acts on the

uppermost surface AB, must be added /? ,
the intensity of

this surface pressure, so that

W^Z..... (3)
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Similarly for any number whatever of superposed layers.

Each layer of liquid, in fact, acts as an atmosphere,

producing an intensity of pressure on the next layer below

it equal to

wh, (4)

where w is the specific weight of the layer and h its

thickness.

If the /^'s are measured in centimetres and the w's, in

grammes' weight per cubic centimetre, the above equations

expressp in grammes' weight per square cm.

The method of regarding any layer of liquid, even when

there in only one liquid in question, as an atmosphere pro-

ducing an intensity of pressure given by (4) on the layer

on which it rests, this intensity being then transmitted un-

altered to all points below (by Pascal's principle), is one

which we shall frequently employ in the sequel.

From the general principle (Statics, vol. i, Art. 121)

that, for stable equilibrium, any system of material particles

acted upon by gravity only must arrange themselves into

such a configuration that their centre of gravity occupies

the lowest position that it can possibly occupy, it follows

that in a system of superposed liquids of different densities

they must arrange themselves so that the density of each

liquid is greater than that of any one above it.

Again, if ABC,

Fig. 15, represents

a vertical section

of a vessel of any

shape into which

are poured two dif-

ferent liquids, AB
and C, which do not mix, the system will settle down

into a position in which the centre of gravity of the whole

mass occupies the lowest position that it can occupy, and
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the vertical heights, h, h', of the free surfaces, A and C,

above the common surface, B, of the liquids will be inversely

proportional to the specific weights of the liquids.

To see the latter, we may take any point (most con-

veniently a point in the common surface B) and equate
the intensity of pressure produced there by everything
at one side of the point to the intensity of pressure pro-
duced by everything at the opposite. Thus, let w and w' be

the specific weights of the liquids AB and BC, respectively;

select a point, P, in the common surface B. Then if h is

the difference of level between P and A, the intensity of

pressure produced at P by the liquid AB and the overlying

atmosphere at A is

wh +p .

Also, h' being the difference of level of P and C, the

intensity of pressure at P produced by the right-hand

liquid and the atmosphere above C is

There is only one intensity of pressure at P
;
hence these

must be equal ;

. . w . k = i<f . h', ...... (5)

which shows that the heights of the free surfaces above the

common surface, B, of the liquids are inversely as their

specific weights.

Thus, ifAB is mercury and BC water, the surface C will

be 13-596 times as high above B as the surface A is.

As an example, let two liquids, AB, BC, Fig. 16, be

poured into a narrow circular tube held fixed in a vertical

plane, the lengths of the arcs occupied by the liquids being

assigned ;
it is required to find their positions of equi-

librium.

The figure of equilibrium will be defined by the angle, 6,
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which the radius, OB, to the common surface of the liquids

makes with the vertical, OD.

Let the angles, AOB, BOG, sub-

tended by the liquid threads at the

centre of the circle be a, a'
;

let

their specific weights be w, w\ re-

spectively ;
and let r be the radius

of the circle.

Equate the intensity of pressure

produced at B by the one liquid to

that produced by the other. The difference of level between

B and A is

r {cos 9 cos(0 + a)},

and this multiplied by w is the pressure intensity at B due

to the first liquid. The difference of level of B and C is

r (cos 6- cos (a -6}\.
Hence

w (cos0 cos(0 + a)}
= w' {costf cos (a'-0)}, . (6)

,
. a . a

w sin"
5 w sinj -

.-', tanfl = 2 7-,-V- _*.... (7)
w sin a + iv sin a

The equation (6) can be shown to express the fact that

the centre of gravity of the system of two liquid threads

has, in the position of equilibrium, the greatest vertical

depth below that any geometrical displacement of the

two liquid threads could give it
;
and this is a particular

case of the general property that the equilibrium position

of any system of particles subject to any frictionless con-

straints assumes the lowest position that any arrangement
of the particles can give it.

12. Pressure on a Plane Area. Let AECD, Fig. 1 1, p. 24,

represent a plane area occupying any assigned position in

a heavy homogeneous liquid whose free surface is xOy.
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Then if w (pounds' weight per cubic inch, suppose) is

the specific weight of the liquid, and z (inches) is the

depth, PN, of any point below xOy, the intensity of pres-

sure at P, due solely to the weight of the liquid, is ws.

Hence (case 5, p. 24) the resultant pressure on one side

of the area is
A . z . iv, (a)

where A (square inches) is the magnitude of the area, and z

is the depth, GQ (inches), of its centre of area below the

free surface.

If on the free surface, xOy, there is intensity of pressure

(atmospheric or other) of jo (pounds' weight per square

inch), this pressure will produce its resultant, Ap ,
at G,

and the total pressure on one side of the area is

4(zw+p ) (P)

As before pointed out (p. 25) the pressure (a) due to the

liquid does not act at G
t
but at some point lower down.

If a plane area, S, Fig. 14, p. 29, occupies an assigned

position in a liquid on the surface of which are superposed

given columns of other liquids, the resultant pressure on

the area is easily found. For, if z is the depth of the

centre, G
t
of area lelow the surface EF, of the liquid w

3 ,

the pressure of this liquid is Azw3t where A is the magni-
tude of the area. Also the column AD produces a resultant

pressure equal to Ah^ wl ,
where h^ is the thickness of the

column ; the second column produces Ahz
w

2 ; so that the

total pressure on S is

A (h l
w

l + h^ wt +zw3); (y)

and similarly for any number of liquids, the resultant

pressure will be

A(h lwl +^w2 +ha w3 + ...+zwn), ... (5)

where z is the depth of G below the surface of the liquid, icn ,

in which the area lies.
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EXAMPLES.

1. If a plane area, occupying any position in a liquid, is

lowered into the liquid by a motion of translation unaccom-

panied by rotation, show that the point of application of the

resultant pressure on one side of the area rises towards the

centre of area, G, the more the area is lowered. (See Fig. 19.)

Draw the horizontal plane CD, touching the boundary of

the area at its highest point, and consider the pressures due

separately to the layer between CD and the free surface, AB,
and to the mass of liquid below CD. Since there is no change
in the position of the area relative to the liquid below CD,
this latter pressure will always act with constant magnitude
and point of application, 7

;
but the pressure of the super-

incumbent layer, always acting at G, increases in magnitude
with x, the distance between AB and CD. Hence of the two

parallel forces at / and G the first remains constant, while

the second continually increases
;
their resultant, therefore, gets

nearer and nearer to G as CD is lowered.

2. Calculate in pounds' weight per square inch the intensity
of pressure at a depth of 100 feet in water, neglecting atmospheric

pressure.

43-4-

3. A vertical cylinder i foot in diameter communicates by
a tube with a vertical cylinder i inch in diameter

;
and both

contain water. A load of i ton is placed on the surface of the

water in the large cylinder; what force must be applied to

the surface of the water in the small one so that the water may
stand 20 feet higher in the latter than in the former cylinder 1

Ans. About 8;f pounds.

4. If the load on the water in the small cylinder is removed,
how much higher will the water stand in this cylinder than in

the larger one ?

Ans. 45-6 feet.

5. Calculate in pounds' weight per square inch the intensity
of pressure at a depth of 8 inches in mercury, neglecting

atmospheric pressure.

3-93-

D 2
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6. The ram of a hydraulic accumulator is i foot in diameter,
and it descends 7 feet in a minute while the water is working
an engine and developing 12 horse-power; what is the mean

intensity of pressure in the water?

Ans. 500 pounds' weight per square inch. (Take TT = 2
T
2

and i horse-power =550 ft.-lb. weight per second.)

7. A triangular area of 100 square feet has its vertices at

depths of 5, 10, and 18 feet below the surface of water; find

the resultant pressure on one face of the area, the atmospheric
intensity being 1 5 pounds' weight per square inch.

127-12 tons' weight.

8. Find the depth of a point in water at which the intensity
of the water pressure is equal to that due to the atmosphere.

About 34^ feet.

9. A rectangular vessel i foot high, one of whose faces is

6 inches broad, is filled to a height of 4 inches with mercury,
the remainder being filled with water

;
find the total out-

ward pressure against this face, the atmospheric intensity being

15 pounds' weight per square inch.

About 1117^ pounds' weight.

10. Into a vessel containing mercury is poured water to a

height of 8 inches above the mercury. If a rectangular area

6 inches in height is immersed vertically so that part lies in the

mercury and part in the water, find the length of the area im-

mersed in the mercury when the liquid pressure on this portion
is equal to that on the portion in the water.

Nearly 1-46 inches.

11. A beaker containing liquid is placed in one pan of a

balance, and is 'counterpoised by a mass placed in the other pan.
If a solid body suspended by a string held in the hand is then

immersed in the liquid, what will be the effect on the balance 1

If the string sustaining the solid is attached to the arm from

which the pan containing the beaker is suspended, and the

system counterpoised by a mass in the other pan, will the state

of the balance be the same whether the body is immersed in the

beaker or not ?

Ans. In the first case the pan containing the beaker will

descend
;
in the second case there will be no change.
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. 12. A circular tube whose plane is vertical (Fig. 16) contains

a column of liquid of specific weight w; on the ends of the

column rest two piston-heads of weights P and Q, fitting the

tube exactly and freely movable along it
;

find the position of

equilibrium.
Let a be the angle subtended at the centre by the thread of

liquid and 6 the angle made with the vertical by the radius

drawn to the plug P ;
then

_ W(i cos a
~

sn a

IF sin a + a(P+Q cos a)'

where W is the weight of the liquid.

13. A straight glass tube of small bore is bent so that the

two portions, AB, BC, are at right angles ; it is held in a vertical

plane with the point B downward, and the branch BC inclined

at the angle a to the horizon ;
into AB is poured a liquid of

specific weight w, the length of the column being I
;
into EG is

poured a liquid (w
f

, I') ;
find the position of equilibrium.

The length of the branch EG occupied by the liquid of

. wl w'l' tan a
specific weight w is -. r-

tv(l+tan a)

14. If the bent tube is rotated in a vertical plane about B
t

find the locus described by the point of contact of the two

liquids.

Result : if P is this point and PB = r, = angle made by
PB with the horizon, P being assumed to lie in the branch AB,
the locus is the curve

it}

r(sin + cos 0) = I' cos 6---.1 sin 0.

w

15. A rectangular area,

LMRS, Fig. 17, whose

plane is vertical, has one

side, LM, in the free sur-

face of water; show how
to divide the area, by hori-

zontal lines into n strips

on each of which the water

pressure shall be the same.

Let LM =a, LR = h, Fig. 17.
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w= specific weight of liquid, and measure the depths. xv xz,xs ,...

of the successive lines of division, /
x
m

1 ,
Z
2
w

2 ,
l
z
m

s ,
... each from

the surface.

Then the pressure on the rectangle Lm1
= -

(pressure on LS);
tv

ii
Lm

t
=

( ) ;

7Z-

?! si ii -^3 = -
( ,i ) ;

and so on. Thus, instead of calculating the pressures on the

separate strips, Lml) L^vti^ Lt
m

3 ,
... and equating them to -

n
of the pressure on LS, we take successive rectangles each having
one side LAf in the free surface. This is simpler.

Now the pressure on LS is o/t .-./; the pressure on Lm^ is

ax
1

. .w; pressure on Lm
2
is ax

t
. . w ; hence

ft

16. A triangular area, ABC, has its vertex A in the surface

of water, its plane vertical, and its base BC horizontal ; divide

the area by horizontal lines into n strips on which the water

pressures shall be equal.

Ans. The depths of the successive lines of division are
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17. A parallelogram is immersed vertically in water with

one side horizontal and at a depth of 6 feet below the

surface, the opposite side being at a depth of 14 feet; find

the horizontal line which divides the area into two parts

equally pressed.

The line is about 4-8 feet below the upper side.

18. ABCD is a parallelogram placed vertically in water with

the side AB, which is 9 feet long, at a depth of 6 feet, and the

side CD at a depth of 18. P is a point in AB distant I foot

from A. Show how to draw through P a line across the area

dividing the area into two parts equally pressed.

The required line cuts CD at a distance of 2 feet

from C.

19. ABCD is a trapezium whose parallel sides are AB and
CD

;
the first is placed in the surface of water, and the second

is below at a depth of 15 feet, the plane of the figure being
vertical. AB = 14 feet, CD = 16. Find a point P in the

area such that the pressure on PAB should be equal to that on

PCD.

P lies anywhere on a horizontal line at a depth of

12 feet.

20. ABCD is a trapezium immersed as in the last case; find

a point P in the area such that the pressures on PAD and PBC
shall be equal.

In this case the areas PA D and PBC must be equal ;
hence

the locus of P is the right line joining the middle points of

AB and CD. If the pressure on PAD is n times that on PBC,
the locus of P is still a right line.

21. ABCD is a parallelogram with the side AB in the surface

of the liquid and the side CD below. Show how to draw from

the corner D a right line across the area dividing the area into

two parts equally pressed.

If the line cuts BC in P, we have

PC: BC = 3-^3: 2.



4o Hydrostatics VOL. i

22. In the last show how to draw the line through D so

that the pressure on the triangle DPC shall be to that on the

trapezium ABPD as 5 to 7.

P bisects BC.

23. A trapezium whose plane is vertical has one of the

parallel sides in the free surface of a liquid ;
divide the area by

a horizontal line into two parts on which the liquid pressures
are equal

Let a, b be the parallel sides, the former lying in the surface ;

let h = height of trapezium ;
let c = b a, and x = depth of

the required line ; then x is given by the equation

2c(2x
3 hs

) + 3ah(2x*~- h
2

)
= o (i)

The root of this equation which is relevant lies between
h . h

-y and j, which, respectively, correspond to the cases of
22 23

examples 15 and 16.

When b = o, or the area is a triangle with its base in the

surface and vertex down, the values of x in
( i

) are -
,
-

(
i

the first of which alone is relevant to the problem, since

the latter two give, respectively, a value of x which is > h,

and a negative value of x both of which are physically

impossible.

24. A cube is filled with a liquid, and held with a diagonal
vertical ;

find the pressures on one of the lower and one of the

upper faces.

2 i

--7=. W and 7= W, where W = the weight of the liquid
V3 Vs

in the cube.

25. A circular area is immersed in a homogeneous liquid, a

tangent to the circle lying in the free surface, A being the

highest point of the circle; draw a chord, BC, of the circle

perpendicular to the diameter through A so that the pressure
on the triangle ABC shall be a maximum.

The distance of BC from A is f of the diameter.
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26. A triangle has its base, BC, in the free surface of a liquid,
and its vertex A, down

;
find a point, 0, in its area such that

the pressures on BOC, COA, AOB shall be proportional to three

given numbers.

If the pressures on these areas are to the pressure on ABC
in the ratios ft : p8 : ps ,

and h is the depth of A, the point

is the intersection of a horizontal line at a depth h */'/?,
with

a line drawn from A to a point, P, in BC such that

PC
=
fa

'

27. A semicii'cular area is placed in water with its diameter

in the surface
;
show how to divide it into n sectors about the

centre on each of which the pressure is the same.

Divide the diameter into n equal parts ;
the extremi-

ties of ordinates at the points of division determine the

sectors.

28. A triangular area, ABC, occupies any position in a liquid;
find a point, 0, in its area such that the liquid pressures on the

parts BOC, COA ,
and A OB shall be proportional to three given

numbers.

Let a, /3, y be the depths of A, B, C below the free surface
;

let the ratios of the pressures on the above areas, respectively,
to the pressure on the whole triangle ABC be pl} pa , pa ; let z

be the depth of 0, and put x for z+ a + fl + y; then x is deter-

mined from the cubic

Pi Pz PS r
/ \

. . .

x a x ft xy a + fi + y

Assuming a>/3>y, the value of x in this equation which is

>a is the only one relevant, because the values which are

between a and /3 and between /3 and y give negative values of z.

The position of is completely defined by its areal co-

ordinates, i. e., by the ratios of the areas BOG, COA, AOB to

the area ABC. If these ratios are I, m, n, respectively, the

equations are

*(*+/3+y) = ft(a+/3+y), .... (2)

and two similar, where z is 2a + mfi + ny. When z is known
from (i), I is found from (2); &c.
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13. Centre of Pressure. Hitherto we have been occu-

pied with the calculation of the magnitude of the resultant

pressure on one side of a plane area. We have now to

consider the point of the area at which this resultant

pressure acts. Except in the case in which the plane of

the area is horizontal, this point which is called the centre

of pressure is always lower in the area than G, the cen-

troid, or
'

centre of gravity ', of the area.

The position of the centre of pressure on a given area

varies with the position (depth, orientation, &c.) of the

area in the fluid
;
and before determining its position in

a few simple and frequently occurring cases, we shall lay

down a general principle, founded on the remark near the

middle of p. 31, which is often of great assistance in calcula-

tion. When a plane area or, indeed, any surface whatever

occupies any position in a liquid, we may draw any hori-

zontal plane whatever in the liquid and consider the column

of liquid above this plane as playing the part of an atmo-

sphere i.e., as producing at all points below the plane
a constant intensity of pressure, which is transmitted in

virtue of Pascal's Principle. The most convenient hori-

zontal plane for this purpose is one through the highest

point of the given area.

Thus, for example, if nrm
y Fig. 18, is any plane area

whose plane is vertical in a

liquid, and we wish to find

the magnitude and point of

action of the resultant pres-

sure on one side of this area,

we may draw a horizontal

plane, CD, touching the con-

tour of the area at its highest point, n, and then consider

separately the pressures due to the layer of liquid between

AE and CD and to the body of liquid below CD,
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With regard to the layer ACDB, if x is its thickness, we
know that it produces at all points on CD and at all points

below (Art. n) an intensity of pressure equal to

w . x ;

and since this pressure is uniformly distributed over the

area n r m, its resultant is (case I
,
Art. 9)

A w x acting- at (?, (5)

where G is the centre of area of nrm and A the magnitude
of the area.

Hence, if we knew the magnitude and point, 7
,
of

application of the pressure of the liquid below CD, we

should have the magnitude and point, /, of application of

the pressure of the whole liquid below AB on the area by
a simple composition of two parallel forces acting at G and

7 . This we shall presently illustrate by a few simple

examples.
Thus we obtain the following construction for the centre

of pressure, 7, on a plane area A B

(Fig. 19) occupying any posi-

tion in a liquid : through the

highest point, n, on the con-

tour of the figure, draw a

horizontal plane, CD, the free

surface of the liquid being
AS

;
from the centroid, G, (or

' centre of gravity ')
of the figure draw a vertical line meet-

ing these planes in P and Q ; suppose 7 to be the (known)

position of the centre of pressure if the surface of the liquid

were CD
;
draw QT ,

and from P draw PI parallel to QI ,

meeting GT in 7. This point 7 is the required centre of

pressure on the area. We shall presently proceed to illus-

trate this method by some simple examples.
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14. Special Cases of Centre of Pressure.

(i) To Jind the position of the centre of pressure on a

plane parallelogram^ whose plane is vertical, with one side in

the free surface.

Let ABDC, Fig-. 20, be the parallelogram. Let the area

be divided into an indefinitely great number of indefinitely

narrow strips, of which mnsr is the type, and let E and F
be the middle points of the sides AB and CD. Then the

middle point of every strip lies on the line EF. Also if x

is the depth of the strip ms below AB, and w the specific

weight of the liquid, the intensity of pressure is the same

at all points in the strip and (Art. 10) equal to wx, and the

resultant pressure on the

strip acts at its middle point,

i.e., at the intersection, f,

of ?ns with EF. Hence the

resultant pressure on the

whole parallelogram acts at

some point on EF. Also,

since the areas of the strips

are all equal, the series of pressures on them are simply

proportional to their distances from AB
;
therefore (case 2,

p. 23) the point of application of the resultant pressure is f
of FE from E. Denote this point by T (see Fig. 21). Then

ET=%FE. (a)

If h is the height of the parallelogram, and p the

perpendicular distance of the centre of pressure, T, from

the surface p-\h (a'}

If the plane of the parallelogram is not vertical, the

same point, T, will still be the centre of pressure. For, if

the area is inclined to the vertical at any angle, 0, and x is

the perpendicular distance off from AB. we have

x =/E . cos0 ;
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and as 6 is the same for all the strips, the pressures on them

will still be proportional to their distancesfE, &c.

(2) To find the position of the centre of pressure on a

plane triangle having one side in the free surface, and vertex

down.

Let ABD be the triangle. Divide the area, as before,

into an indefinitely great number of strips, of which ts is

the type. Let x be the perpendicular distance of this strip

from the base AB. Now compare this with another strip,

#/, whose perpendicular distance from D is also x. Let h

be the height of the triangle, a = AB, k = the indefinitely
ll OC

small breadth of each strip. Then tn = . a
; so that

(Art. 1 2) the pressure on this strip is

~x(h-x)w...... (i)

But this is also the pressure on the second strip, t'*'.

CG

For, t'n'
ja,

and the depth of t'ri \&hx\ therefore (i)

is the pressure on this strip. Since each strip is pressed at

its middle point, and since all the middle points lie on ED,
the resultant acts at some point on ED. Also we have just

seen that the pressures along ED are equal at two points

such that the distance of one from .Z7=the distance of the

other from D. Hence (case 4, p. 24) the resultant pressure
acts at the middle point, M, of ED (see Fig. 21) ;

that is,

EM = |ED. .

'

.....
(/3)

IfJo is the perpendicular distance ofM from the surface

Also, whatever be the angle of inclination of the plane of

the triangle to the vertical, the same point, M, is the centre

of pressure.
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(3) To find the position of the centre of pressure on a

plane triangle having a vertex in the free surface and its

base horizontal.

Let ACD (Fig. 21) be the triangle. Then a combination

of the two results just proved will enable us to find Q, the

centre of pressure. For, complete the parallelogram A BDC.
Then the pressure on the parallelogram is the resultant of

the pressures on the two triangles ACD and ADB. Let

AF bisect CD and let DE bisect AB. Let T be the centre

of pressure on the parallelogram, and M that of the triangle

ADB. Then the force at T is the resultant of one at J/

and one at Q. Join the point, Af, of application of one of

the two parallel forces to the point, T, of application of the

B

resultant, and produce MT to meet AF in Q. Then Q is

the point of application of the pressure on ACD.

OF FT
Now ==* *=*'.

(y)

If h is the height of the triangle, and p the perpendicular

distance of Q from thefree surface,

* = !*; ....... </)
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and, as before, the point, Q, of application of the resultant

pressure is the same whatever be the inclination of the

plane of the triangle to the vertical.

The result might have been deduced directly from case 3,

p. 23. For, if the area be divided into strips, we have
/Yl

mt = -ra, where a = CD, and x is the perpendicular from

A on mt. Hence the pressure on the strip mt is j wx
2

,
so

that the pressures along AF are proportional to the squares

of the distances of their points of application from A. The

resultant, therefore, acts at a point f of the way down

along AF.

These three simple cases, combined with the principle

(see p. 31) of regarding any column of liquid as an atmo-

sphere, producing its resultant pressure at the centre of

area, will suffice for calculations concerning the centres of

pressure of many plane polygonal and other figures occupy-

ing any positions in a liquid.

Thus, let the area be nrm, Fig. 18, p. 42 ; and suppose

that, if all the liquid above the horizontal plane CD is

removed, we know the depth, J? ,
of the centre of pressure,

J
,
of the remaining liquid below CD. Then, if Z

Q
is the

depth of G below CD, A = magnitude of the area, w =
specific weight of the liquid, the pressure, P ,

at / is

A ZQ w.

Let x = the thickness of the column AD. Then the

pressure due to this column = Axw, and it acts at G. The

resultant pressure (at 1) is of course the sum of these forces;

and if jo is the depth of I below AS, we have, by the

theorem of plane-moments,
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the point / dividing 7 6T

so that

VOL. I

IG W

(4) To find the position of the centre of pressure on a

plane triangle occupying any position in a liquid.

Let ABC, Fig. 22, be the triangle ;
let A be its area,

and a, /3, y the depths of its vertices below the free surface

of the liquid.

Take any point, P, in the area ABC, and let x, y, z be

the lengths of the perpen-
diculars from P on the sides

BC, CA, AB of the triangle.

The point P is the centre

of gravity of three masses

proportional to the areas

BPC, CPA,&nd APB placed,

respectively, at the vertices
Fig. 22.

//, B, C
;

for if the line AP produced meets BC in m, we

have by Euclid VI. i,

Bm : mC = area BAm : area mAC
;

and also m :mC = BPiu : mPC
;

therefore Bm:mC = area BAP : area APC.

Hence the centre of gravity of the three masses above

named lies somewhere on AP
; similarly it lies somewhere

on HP, and it is, therefore, the point P itself. If the sides

BC, CA, AB are denoted by a, 6, c, the masses are pro-

portional to ax, by, cz. Now let f be the length of the

perpendicular from P on the free surface of the liquid, and

use the theorem of plane-moments (p.
1 9) thus :
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masses
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(Fig. 23) as produced by a superposition of these three

fictitious pressure systems.

But if BC were placed in the surface of a liquid of

specific weight -w, the centre of pressure would be at i
l

(Fig. 23) which is the middle point of the bisector, AA', of

the side BC
;
and if p is the length of the perpendicular

from A on BC, the total amount of the pressure acting at i
l

would be (Art. 1 2)

p aa . AA--* .w, or Aaw.
3 2^

Similarly, the total forces at i., and i
z would be ? A ft to

and \Ayw. The actual pressure, then, on ABC in Fig. 23
is in magnitude and line of action the resultant of these

three forces, supposed acting at i1} i
z ,
and i

3 . We thus get
the result that the centre ofpressure coincides with the centre

of gravity of three particles placed at the middle points of the

bisectors of the sides, their masses being proportional to the

depths of the corresponding vertices.

This is not quite the most convenient representation.

The force A aw at ^ can be replaced by ^ Aaw at B' and

Aaw at C'
;
that at i

2 can* be replaced by ^ Afiw at C1

uud | A ft ic at A'; and that at ?
3 by \Ayw at A' and
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^ Ayw at B'. Thus the forces are now transferred to the

middle points, A', B', 6", of the sides, and their magnitudes
are A (/3 + y] w, &c. ; so that if we denote the depths of

A', B' t
(7 below the free surface by , rj, the forces at Af

,

Bf, C
f
whose centre coincides with the centre of pressure are

Hence we get one of the most useful rules in Hydrostatics,

which we shall call the Particle Rule

the centre of pressure on a triangular area which occupies any

position in a homogeneous liquid coincides with the centre of

gravity of three particles placed at the middle points of the

sides, their masses being proportional to their depths beloiv the

free surface.

If a plane area consists of two or more triangles, the

Fig. 24.

particles to be placed at the middle points of their sides are

to have masses proportional to the products of the several

areas and the depths of the middle points. Thus, for

example, suppose the plane area to be a trapezium ABCD
(Fig. 24) whose parallel sides are AB = 42, CD = 30, with

a perpendicular distance 18 between them, the side AB
being horizontal and at a depth 10 below the free surface,

LM.
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Break the area into two triangles, ABC and ACD. The
areas ofthese are proportional to 7 and 6, so that the particles

at the mid points of ABC can be taken as having masses

70, 133, 133 ; those at the mid points of ACD are 114,

1 14, 1 6 8. There is a double particle equal to 133 + 114 at

the middle point of AC.

Now since the trapezium can be broken up into infinitely

narrow horizontal strips the resultant pressure on each of

which acts at its middle point, the centre of pressure must

lie somewhere on the line joining the middle points of AB
and CD ; so that we have merely to find its distance from

some horizontal plane. The simplest plane to take is the

horizontal plane through PQ wThich contains three of the

particles. Using, then, the principle of plane-moments,
and taking distances below PQ as positive, we have the

scheme :

% masses
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The proof of the Particle Rule given above was com-

municated to the author by the late W. S. Mc
Cay, Fellow

of Trinity College, Dublin
;
the rule itself had been given

previously in a paper by the late Dr. E. J. Routh.

15. Pressure on Circular Area. Let a circular area,

AEBF, be immersed vertically in a liquid with its highest

point, A (Fig. 25), in the surface. It is required to find the

centre of pressure, /, on this area. This point lies on the

Fig. 25. Fig. 26.

vertical diameter, AB. Imagine a hemisphere to be con-

structed on the given area, and consider the separate

equilibrium of the water contained within this hemisphere.

The forces keeping this water in equilibrium are (i) its

weight acting vertically through its centre of gravity ;

(2) the pressure of the outside water acting over the

plane base AEF and producing its resultant at 7; and

(3) the pressure of the outside water acting all over the

curved surface of the hemisphere. This last produces

a resultant acting through the centre 0, since at each

element of the curved surface the pressure is normal to the

surface.

Let Fig. 26 represent a plane section of the hemisphere of

Fig. 25 made by a plane through AB perpendicular to the

plane of the paper. The circular base AEBF is represented

by the line CD. Now the centre of gravity, G, of a homo-
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geneous hemisphere of radius r is f ? from the centre

(Statics, vol. i, Art. 173), and the weight of the water

acting through G is 7rr
:3

w; also the magnitude of the

pressure at / on the plane base is (Art. 12) -nr
3
w\ and the

resultant of these two forces must act through 0, because it

is equal and opposite to the resultant action on the curved

surface. Hence
TT f*

8w nl

~'W

where n is the point of meeting of the two forces. Now
nl= OG = r

i.e. the centre of pressure is one-quarter of the radius below

the centre. From this by the principle of Art. 13 we obtain

the position of the centre of pressure when the circular

area is at any depth.

16. Semicircular Area. In precisely the same way we
can find the centre of pressure on a semicircular area whose

bounding diameter is in the free surface. Let EFbe the

bounding diameter (Fig. 27), and consider the separate

equilibrium of the liquid contained within the quarter-

sphere having the semicircle EFB for base. Let Fig. 28

represent, as before, a section of this quarter-sphere through
OB perpendicular to the plane of the paper. The centre

of gravity, <?, lies on the radius which is inclined at 45 to
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OD
t
and its perpendicular distance, gO, from the base is the

same as for a hemisphere, i. e.

9 = lr=gG.
The weight of liquid in the quarter-sphere is j -rrr

3
w, and

the pressure on the base EBF is ^isr* . --w^iace (Statics,

Art. 165) the distance of the centroid of a semicircular area

4 V
from the centre is -- Also the liquid pressures all over

the curved surface pass through ;
hence

r*w nl ?

16

EXAMPLES.

1. A triangular area whose height is 12 feet has its base

horizontal and vertex uppermost in water; find the depth to

which its vertex must be sunk so that the difference of level

between the centre of area and the centre of pressure shall be

8 inches.

Four feet. (Use the principle in p. 31 .)

2. Find the depth of the centre of pressure on a trapezium

having one of the parallel sides in the surface of the liquid.

If the side a is in the surface and 6 below, h being the

height of the trapezium, the depth of the centre of pressure
is

2 2 + a

and it lies, of course, on the line joining the middle points of a

and b.

3. In the last example find the position of the centre of

pressure by geometrical construction.

(Break up the area into a parallelogram and a triangle, or

two triangles.)
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4. The plane of a trapezium being vertical, and its parallel

sides horizontal, to what depth must the upper side be sunk in

a liquid so that the centre of pressure shall be at the middle

point of the area ?

Ans. The parallel sides being a and 6, of which the upper,

a, must be the greater, the required depth = h, where h =
CL

height of the trapezium.

5. A rectangular area of height h is immersed vertically in a

liquid with a side in the surface
;
show how to draw a horizontal

line across the area so that the centres of pressure of the parts of

the area above and below this line shall be equally distant

from it.

The line must be drawn at a depth (A/S r)
-
2

6. ABCD is a trapezium whose parallel sides, AB and CD,
are 16 and 32 feet long, respectively, their perpendicular distance

being 12 feet. AB is horizontal, at a depth of 20 feet below the

free surface of water in which the area is immersed vertically,

CD being below AB. Find the position of the centre of

pressure.

The centre is i-i feet below the mid horizontal line of the

figure.

7. Given that when a circular area of radius r is immersed

vertically in water with its highest point in the surface the
V

centre of pressure is - below the centre, find the position of the
4

centre of pressure on a vertical circular area of radius 2 feet, its

centre being at a depth of 6 feet below the free surface.

2 inches below the centre.

8. The parallel sides of a trapezium are 40 and 30 feet long,
and the height is 24 feet. If the figure is immersed vertically
in water with the parallel sides horizontal and the longer

uppermost, what must be the depth of this side below the

free surface so that the centre of pressure shall lie on the

horizontal centre line ?

Ans. 72 feet.
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9. What must be the depth of the upper side of this trapezium
so that the centre of pressure shall be

(a) 8 inches above the horizontal centre line 1

(b) $ feet above this line 1

Ans. The first position is impossible at any depth; the

second requires an infinite depth.

10. ABCD is a trapezium whose parallel sides, AB, CD, are

30 and 1 6 inches long, respectively; the sides EG and DA
are 15 and 13 ;

and the figure is placed in water with A in the

surface and AB vertical. Find the position of the centre of

pressure.

Its depth is 17-54, and its distance from the vertical centre

line is -75, towards AB.

11. A triangular area ACB is placed vertically in water with

the point C in the surface
;
the area being turned in its plane

round C, prove that, so long as the area remains completely

immersed, the centre of pressure describes a right line in the

area, this line being parallel to AB at a distance equal to

i
(height of triangle).

Apply the particle rule. If in any position x and y are

the masses of particles at the mid points of BC and CA, the

particle at the mid point of AB is x+ y.

12. ABC is an isosceles triangle, CA = CB'
t

it is placed

vertically in water with A in the surface and AB vertical
;

prove that the c. p. is vertically below the centre of gravity at

A' 4.
AB

a distance
12

Use the particle rule.

13. ABCD is a parallelogram with AB in the surface and
CD down. Lines are drawn from D across to points, P, on BC.
Find the locus of the centre of pressure of the triangle DPC as

P varies.

14. A plane area in the form of a regular hexagon is placed

vertically in water with one side in the surface ; find the

position of the centre of pressure by an application of the

particle rule.

Its depth is ^ of the height of the hexagon.
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1 5. A rectangular vessel of height h contains liquid of specific

weight w' to a height f, the remainder being filled with a liquid
of specific weight w ; prove that the distance of the centre of

pressure on one of the vertical faces from the base is

/ w)
'

w)

'

16. The water at one side of a rectangular dock gate of

breadth b stands at a height a, and the water at the other side

at a height c; find the magnitude and line of action of the

resultant water pressure on the gate.

If w is the weight of a unit volume of water, the

magnitude is \w (a
2

c
2

)6, and the line of action is at a

a _ f

height 4-s above the bottom of the gate.3
a' c

18

17. The gates of a canal lock are each 12^ feet wide, and the

breadth of the lock is 24 feet; the water at one side is 18 feet

high and at the other side 12
; prove that the magnitude of the

thrust between the gates is about 56 tons' weight.

18. A plane area of any form is immersed vertically in water

with its highest point in the free surface
;
and in this position

h is the depth of the centre of gravity and h + c that of the

centre of pressure. If the area is lowered into the water

without rotation and with uniform velocity v, prove that the

vertical velocity of the centre of pressure at the time t, reckoned

from the initial position, is

ch

19. A circular area of radius r is immersed vertically in

a liquid, the depth of the centre of the area below the surface

of the liquid being h
;

show from the consideration of the

separate equilibrium of the hemisphere of liquid having the

given area for base that the depth of the centre of pressure on

the area, below its centre, is
r

20. A triangular area ABC of height h is immersed vertically
in'water with C in the surface and AB horizontal; the area is

divided by a horizontal line PQ into two parts on which the
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pressures are equal. Prove that the depth of the centre of

pressure on the lower part is

21. A circular area of radius r is immersed vertically in

water, its centre being at a depth h
;

is the lowest point of

the area. Show how to draw a horizontal chord, PQ, of the

circle so that the depth of the centre of pressure on the triangle

OPQ is a minimum.

Result. The depth is ( -- i V^ + r). If, however, this

-1 i

2 v/5
is<A r, that is, if h> -

r, the minimum will correspond
5

to a chord PQ of infinitesimal length at the highest point of

the circle. The maximum depth corresponds, of course, to an

infinitely short chord touching at 0.

17. Self-acting Sluice. If an aperture of any shape

(rectangular, circular, &c.) is made in a vertical wall or a

lock-gate at one side of which there is a mass of water

rising to any height, and the aperture is closed by a rigid

plane surface movable about a horizontal axis in its plane,

this axis can be so fixed that when the level of the water

rises to any assigned height above the top of the sluice the

sluice will open, let out the water, and prevent any increase

in the height of the water.

It is obvious that the axis must

be fixed at the centre of pressure

on the sluice corresponding to the

assigned level of the water.

Thus if the sluice is the rectangle

ABCD whose sides are horizontal

and vertical, and if AD = 6 feet,

while the sluice is to open when the

level of the water is 6 feet above

AJ3, we can find the depth of the centre of pressure below

m n
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the line mn which bisects AD and BC by breaking- the area

into two triangles whose areas may be taken as i
,
I

;
and

the depths of middle points as 2, 3, 3, 3, 4, so that the

depth of c. p. below mn is- f
'*-

,
i. e. i of a foot.

'

EXAMPLES.

1. If a rectangular sluice 3 feet high is to open when the

level of the water rises i feet above its top, where must
the axis of the sluice be fixed?

Ans. 3 inches below the centre of the rectangle.

2. If the height of the sluice is h, and if it is to open when
the level of the water rises to a height x above its top, where
must the axis be fixed ?

?2

Ans. i- below the centre.
'

2X+k

3. Supposing a rectangular vessel whose base is horizontal to

be divided into two water-tight compartments by means of a rigid

diaphragm movable round a horizontal axis lying in the base of

the vessel
;

if water is poured into the compartments to different

heights, find the horizontal force which, applied to the middle

point of the upper edge of the diaphragm, will keep this dia-

phragm vertical, and find the pressure on the axis.

Let a be the length of the axis, c the height of the

vessel, h and h' the heights of the water in the compartments

(h> h') ;
then the required force is (h

3
h'3

) w, and the pressureO C

on the axis is ^a(h
2

h'
2

)w (h
3

h'
3

)w.
O C

IS. Lines of Resistance. Supposing Fig. 30 to re-

present a vertical transverse section, ABCD, of an embank-

ment which is pressed by water on the side AB (assumed

vertical), if we take any horizontal section, PQ, of the

embankment and consider the equilibrium of the portion,

QPAD, above this section, we see that it is acted upon by
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its weight and also by the water pressure which is a

horizontal force acting at a point two-thirds of the way
down AP. Taking the resultant of these two forces, its

line of action, RS, intersects the section PQ in a point R,
the calculation of the position of which is of great impor-
tance in the construction of reservoirs.

As the section PQ varies in position, the point R
describes a curve which is called a line of resistance ; and

it is considered essential to the stability of the wall AB
that this curve must cut each horizontal section, PQ, in

Fig. 30.

a point, R, which lies somewhere within the middle third of

that section
;

that is, if we divide PQ, into three equal

parts, R must lie somewhere within the middle part.

Our figure represents a comparatively simple case that

in which the vertical cross-section of the embankment is

a trapezium ABCD with the side next the water vertical.

If we make AD = o, we have the case of a triangular

section.

Let AB h, AD = a, BC = a + c
;
draw Dpq vertical,

and consider the area APQD as composed of a rectangle,

APjiD, and a triangle j)QD ;
let AP = y ;

let w =
specific
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weight of water, w' = sp. weight of the masonry ; let be

the mid point of AD, and take as axes of reference horizontal

and vertical lines through 0. Let the figure represent

a portion of the embankment one unit of" length thick

the thickness being measured perpendicularly to the plane
m wiP

of the figure. Now the water pressure against AP is -

v
acting at the centre of pressure /, which is - above P

; the
\J

weight oAPpD is w'ay acting through its middle point,

w ct/^

G; the weight of jpQD is
j- acting through the centre
/'

of gravity G' and cutting PQ in a point r such that

The resultant of these forces must be counteracted by the

stress exerted over the section PQ on the portion APQ.D
by the lower portion, PCQ ;

so that the resultant of this

stress must be a force acting through R and opposite to the

resultant of the above three forces.

The most simple way to find the position of R is to

express the fact that the algebraic sum of the moments of

these three forces about R is zero. Let tR = x
;
then by

moments we have

wyz
y w'cij2 / cu a \ f- - + -j- (-*- + #

)

- w ay . x = o.
2 3 2 /t V

3 h 2

If we put w' nw, where n will usually be between

2 and 3, this equation is

and this gives the locus of li as the section PQ, varies.

We see that the locus is a hyperbola passing through 0,

having one asymptote horizontal and the other parallel to

the Hue indicated between the brackets.
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In the special case in which AD = o, the locus reduces

to the right line

If BC AD, that is if the vertical cross- section is a

rectangle, c o, and the locus is the parabola

f = 6an.x, ...... (3)

whose vertex is at 0.

We have assumed that the reservoir is full.

To find where the curve (i) cuts the base BC, put y = //,

and we have

and for safety this must be < ^ (a + 4 c).

Thus for a rectangular cross-section the condition for

stability is h < a
(

EXAMPLES OF LINES OF RESISTANCE.

1. The vertical cross-section of an embankment is a rectangle,
and the water reaches to a distance c from the top ; show that

the equation of the line of resistance referred to horizontal

and vertical lines through the mid point of the top side

of the rectangle is

/ xs
6w'

(y cf = axy,

where a is the breadth of the rectangle, w and w' being the

specific weights of water and the masonry.

2. The vertical cross-section of an embankment is a rectangle
of height h and breadth a

;
find the greatest height to which

the reservoir can be filled so that the embankment shall be safe

from failure by tilting over the outer edge.

Ans. ( a?h
)v 10 /
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3. The vertical cross-section of an embankment is the

trapezium in Fig. 24, p. 51. Given AD = 6 feet, BC = 20,
AB = 1 6, mass of i cubic foot of masonry = 140 pounds, find

the point in which the line of resistance cuts the base.

At a distance of 8-56 feet from B.

4. If in the same figure AD = 6, AB = 18, / = 140 lb.,

find the least length of BC so that the line of resistance may cut

the base within the middle third.

BC= 10-8.

5. If in the same figure the straight line AC ia replaced by
any curve, x =

</>(?/),
show that the equation of the line of

resistance is

6. If the curve AC is a parabola, so is the line of resistance.

10. Stress in thin pipes. When a hollow tube, or pipe,

is filled with water derived from an elevated reservoir, the

very considerable water pressure in the tube produces
a transverse tension in the tube which tends to split it.

Suppose that Fig. 31 represents a transverse section of the

tube, and consider the separate

equilibrium of a small part of

the tube made by two close

radial sections OP and OQ in-

clined at the angle POQ or

d, and contained between two

close planes perpendicular to

the axis of the tube i. e. by

Fi 3I
the plane of the figure and one

above it at the small height
c. In reality we imagine the figure to lie midway be-

tween these close planes.

Now the normal pressure N causes the portions of the
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material outside P and Q to exert a tearing force, T, at P
and at Q. Also N acts along O;/, the bisector of POQ.

Resolving along On for equilibrium, we have

N = 2 Tew-
,
or N=TB, nearly . . . (i)

2

Now if jo is the intensity of the water pressure,

jV = j0.r0.e, where r is the inner radius, since the area

pressed is rO . e. Also if t is the intensity of the tearing

force i. e. the magnitude of this force per unit area

T = t . e . r, where T is the (small) thickness of the tube.

Hence we have from (i)

tr =jpr ....... (2)

The bursting of the pipe depends on the magnitude of t,

which is tabulated for pipes of various materials in tons'

weight per square inch or other appropriate units.

If instead of a thin cylinder we have a thin spherical

surface subject to internal pressure,

p, the intensity of tearing stress is

only half of that for the cylinder of

same radius.

Let Fig. 32 represent a small

patch of the spherical surface in-

cluded by four great circles ; then,

considering its separate equilibrium,

we shall have four T's instead of
Fi 2

two, similarly related to the normal

pressure N, so that by resolving along the normal we have

now evidently

which gives
t.r = kpr .... (3)

Thus in the case of a cylindrical boiler closed at both

ends by spherical caps, if the thickness is the same through-
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out, the tendency to burst at the side is twice as great as

that at the ends.

In the case of thick pipes the tension T (or
'

hoop stress
')

varies throughout the thickness, and the preceding results

do not tell us anything about the magnitude of the stress

at a definite point in the substance.

In (2) and (3) it must be understood that p means the

excess of internal over external intensity of pressure : the

external pressure will often be that of the atmosphere.

EXAMPLES.

1. Assuming that the greatest intensity of stress permissible
in a metal pipe is 5,000 Ib. weight per square inch, find the

greatest intensity of pressure allowable inside a pipe i foot in

diameter and ^ inch thick.

Result. 138-8 Ib. weight per square inch.

2. Water is conveyed in pipes from a height of 400 feet
;
the

diameter of the pipes is i foot, and the maximum allowable

stress is 2,800 Ib. weight per square inch; what is the least

thickness of pipe necessary ?

Result. -37 inch.

3. A thin elastic spherical envelope, of radius r, contains air

at atmospheric pressure ;
if n times the mass of the original air

is forced into it, find its new radius, assuming that the increase

of surface is proportional to the intensity of tension.

Result. If / is the new radius, and r'
2 r2 = kT, r' is

found from the equation

2 /2

(r'
2 -

v-
2

)
= kp [(n + i

)
r3- r'

3

].



CHAPTER IV

PRESSUEE ON CURVED SURFACES: PRINCIPLE

OF BUOYANCY

20. Principle of Buoyancy. If any curved closed

surface, M (Fig. 5, p. 10), be traced out in imagination in

a fluid acted upon by gravity, the pressures exerted on all

the elements of this surface by the surrounding fluid have

a single resultant, which is equal and opposite to the

weight of the fluid enclosed by M.
This is evident, because the fluid inside M is in equili-

brium under its own weight and the pressure exerted on

its surface by the surrounding fluid ; hence this pressure

must reduce to a vertical upward force equal to the weight
of the fluid inside M and acting through the centre of

gravity of this fluid.

This is obviously true whatever be the nature of the

fluid liquid or gaseous, homogeneous or heterogeneous.

If the curved surface M is not one merely traced out in

imagination in the fluid, but the surface of a solid body

displacing fluid, the result is the same

tfie resultant pressure of a heavy fluid on the surface of any
solid body M is a vertical upwardforce equal to the weight of

the fluid which could statically replace M, and this force

acts through the centre of gravity of this replacing fluid.

v 2
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Let Fig. 33 represent the solid body, which we may

imagine to be a mass of iron, of solid rock, or any other

substance, the surrounding fluid being water, air, or any
fluid acted upon by gravity. The body is represented as

held in its position by cords attached to fixed points,

C,D, ..., and the arrows represent pressures exerted on its

surface by the fluid at various points.

Now it is quite clear that if the body were replaced by

any other one having exactly the same surface and

occupying exactly the same position, the pressure on each

element of its surface would be identically the same as

before, of whatever substance the new body may be. If

the new body were of

wood, or instead of

being solid were a thin

hollow shell, it might
be necessary to keep it

in the position repre-

sented by means which

prevent its rising up
33- out of the fluid

;
but

we are not at all con-

cerned with the forces which keep the body M in this

position ;
our object is merely to ascertain the resultant,

if any, of the fluid pressures exerted in the given position

on its surface.

In general, a number of forces acting in various lines

which do not lie in one plane have no single resultant :

their simplest reduction is to two forces whose lines of

action do not meet (Staticg, vol. ii, chap. xiii). But it

is remarkable that the pressures exerted on the various

elements of any closed surface by a heavy fluid lave a single

resultant ; and the truth of this we see by imagining the

place occupied by M to be occupied by a portion of the fluid
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itself, placed in the vacancy without disturbing any of the

surrounding fluid.

With regard to this replacing fluid, observe two things :

firstly, it is in equilibrium ; secondly, it is kept so by its

own weight and the very same system of pressures as that

which acted on the body M, since this body and the re-

placing fluid present identically the same surface to the

surrounding fluid. Hence, then

the system of pressures has a single resultant which is a

vertical upivard force equal to the weight of the statically

replacing fluid and acting through the centre of gravity of this

fluid.

The centre of gravity, H, of the replacing fluid is called

the centre of buoyancy ; and, so far as the general principle

of buoyancy is concerned, there is no relation between H
and the centre of gravity, G, of the body ;

nor is there

any relation between the weight, W, of this body and the

weight, L, of the displaced fluid.

If the fluid is water, or any homogeneous liquid, the

resultant pressure is the weight of the liquid which would

flow into the vacant space if M were removed
;
but if the

density of the fluid is different in different layers, we must

not imagine the replacing fluid to be that which would

flow in when M is removed, but rather to be a continuation

of the surrounding fluid placed in the vacancy without any
disturbance of the external fluid, and having the same

surfaces of equal density as this fluid. The distiibution of

this replacing fluid is unique and determinate, as will be

subsequently proved.
COR, i. Pressure of uniform intensity exerted over any

closed surface produces no resultant.

For, imagine the closed surface to be one traced out in

a perfectly weightless fluid or a very light gas whose

surface is subject to any pressure.
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The intensity of pressure will be uniform throughout the

whole fluid, and therefore over the given surface
;
and by

what has just been said, the resultant pressure over this

surface is equal to the weight of the enclosed fluid that is

to say, zero.

The result of this Corollary may also be thus stated :

given any closed curve, plane or tortuous, in space ;
if

a surface of any size and shape be described having this

curve for a bounding edge, and if pressure of uniform

intensity be distributed over one side of this surface, the

resultant of this pressure is the same whatever the size and

shape of the surface.

Hence if the given bounding curve is plane, the resultant

pressure on any surface having it for a bounding edge is

the same as the resultant pressure on the plane area of the

curve.

COR. 2. The principle of Archimedes.

The pai'ticular case in which the solid body M which

displaces fluid is in equilibrium solely under the action of its

own weight and the fluid pressure over its surface furnishes

the Principle of Archimedes.

The resultant of the

system of fluid pressures

must then be exactly

equal and opposite to the

weight of the displacing

body.

Thus, let Fig. 34 repre-

sent a heavy body whose

Fig. 34. centre of gravity is G
}

floating in equilibrium in

a heavy fluid. The surface over which the fluid pressure is

exerted is ADB, which is not a closed surface ; but, as there

is no pressure due to the fluid exerted over the free surface,
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,
of the fluid, we can suppose the immersed surface ADB

to be closed by the section of the body made by the horizontal

plane AB. Hence the resultant of the pressures is the

weight of the fluid that would fill the space ADB ;
and if

H is the centre of gravity of this fluid, the resultant

pressure acts up through //, so that G and H must be in

the same vertical line. Hence there are two distinct con-

ditions of equilibrium of a body floating freely in a heavy

fluid, viz.

(1) the weight of the body must be equal to the weight of the

fluifl ichich it displaces ; and

(2) the centre of gravity of the body and the centre of gravity

of the flriid that would statically Jill its place (centre of

buoyancy] must be in the same vertical line.

The student must observe that the principle of Archi-

medes applies to a closed surface, which is completely
surrounded by liquid or, as pointed out above, to an

unclosed surface, such as that of the immersed portion of a

ship, which may be supposed to be closed by a surface of

zero pressure. It does not apply to such a case as the

following :

ABC (Fig. 35) is a solid body with a perfectly flat base,

BC, resting on the base of a vessel into

which water is poured, the fit of the

bases being so accurate that no water

flows in between them. The water

pressure on the body, so far from an -D

upward force, is a downward one, the

reason being that the surface pressed is

not closed and subject all over to water pressure, and

that it cannot be assumed to be closed by a surface of

zero pressure, as the intensity of the pressure at the level

of BC is not zero. We might as well expect the elevated

curved portion of the bottom of a champagne bottle to
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be raised by the liquid as expect the body in Fig. 35 to

be urged upwards. It is important also to bear in mind

that the principle of Archimedes is not identical with the

general principle of buoyancy, but only an application of

the latter to the particular case of a body floating freely in

a liquid under the influence of no forces but its own weight
and the pressure of the surrounding liquid.

We have hitherto supposed that the only fluid displaced

by the body is that represented in the vessel below the

surface LM ;
but if above this there is air, whose weight is

considered, there is also displaced a volume of air repre-

sented by ACB, and the resultant effect of the air is to

produce an upward vertical force, even though (as in the

figure) the air pressure exerted by the air actually in contact

with the displacing body should be a downward force
;

for.

we must remember that the surface LM of the lower fluid

is all subject to air pressure which is (by Pascal's Principle)

transmitted undiminished all through this fluid, so that the

lower part, ADB t
of the surface of the body is really acted

upon all over by air pressure of constant intensity. Now
by Cor. I, the resultant of this system of air pressures on

the curved surface ADB is the same as if the pressure was

applied over the lower side of the plane area AB in which

the surface LM cuts the body. The resultant air pressure

is, therefore, an upward force equal to the weight of the air

that would statically fill the space ACB, and it acts through
the centre of gravity of this air.

The case of a balloon floating in the air is also an instance

of the principle of Archimedes
;
the force of buoyancy is the

weight of the air that could statically replace all the solid

portions of the balloon and the gas which it contains. It

must not be supposed that, since the balloon is a com-

paratively small body, the intensity of the air pressure is

constant all over its surface a not unnatural error
; for. if
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this air pressure were of constant intensity all over the

surface, its resultant would be absolutely zero, as we have

already seen, and there would be no force of buoyancy.
If the medium surrounding

1 a body is ever so slightly acted

upon by gravitation, its intensity of pressure cannot be

constant, and hence the densities of the air at the top and

at the bottom of the balloon tire not the same.

MISLEADING STATEMENT OF THE PRINCIPLE OF ARCHIMEDES.

A desire for conciseness of expression leads very often to

misleading and erroneous statements of scientific facts.

Thus, a very common reply to the question
' what is the

principle of Archimedes ?
'

is simply this
' the weight of

a floating body is equal to the weight of the fluid displaced.'

To show the misleading nature of this reply, take the

following example :

A cylinder contains a small quantity of water whose

level is AB (Fig. 36) ;
a cylindrical

block of wood, mnpq, whose diameter is

nearly equal to that of the vessel is

lowered into the water and allowed to

float, if it can do so. Suppose that it

does float without touching the bottom

of the vessel, and occupies the position

m'n'p'q'. There will remain a thin layer

of water at the bottom between the

vessel and the wood, and the remainder

of the water will be forced up the sides and attain the

level A'B'.

Now the weight of the floating block may be very many
times as great as that of the water actually displaced and,

in fact, greater than that of all the water present. The

force of buoyancy is not at all equal to the weight of the

water displaced, but to the very much greater weight of the

171, Tt,
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volume, A'B'j/q', of water that would occupy the place of

the immersed portion of the body without disturbing- the

surrounding water.

As a numerical example, suppose that the radius of the

vessel is 3 cm., the radius of the cylindrical body mnpq

2-9 cm., the mass of this body 240 grammes, and the height
ofAB above the base i cm. In this case we find that the body
will float with a layer of water about -41 cm. below it, and

that the water will rise to a height of about 9-5 cm. above

the base of the vessel.

Here the fluid actually displaced is only a column of

radius 2-9 and height equal to the difference of level of AB
and f/p', that is about -6 cm.

;
and the weight of the water

displaced is the weight of about 15-85 grammes, whereas the

force of buoyancy is the weight of the volume A'B'p'q',

and is, of course, the weight of 240 grammes.
21. Introduction of Fictitious Forces. In the case in

which a body is partially immersed in a fluid, or a part of

the body is in one fluid and the remainder in another, it is

often very convenient to introduce fictitious forces of buoy-

ancy in one part of the calculation and to take them away
in another.

Thus, suppose Fig. 34 to represent a body of which the

portion ADB is immersed in water while the portion ACB
is in vacuo. Then the actual force of buoyancy is due to

the volume ADB of water
;
but we can complete the volume

of the displaced water by supposing the portion ACB to be

also surrounded by water, and then supposing that there is

a downward force, in addition, due to the action of this por-

tion ACB of water taken negatively. Thus the actual force

of buoyancy viz. an upward force at H equal to the weight
of the volume ADB of water can be replaced by an upward
force equal to the weight of the whole volume ADBC of

water acting at the centre of gravity of the homogeneously
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filled volume ADBC(i\o{, G, the c. g.of the body, unless the

body is itself a homogeneous solid), together with a down-

ward force equal to the weight of the volume ACB of water

acting at the centre of gravity of the homogeneously filled

volume ACB.
In the same way, if the portion ACB is in a liquid of

specific weight wl5 and ATJB in one of specific weight w
2 ,

we may regard the force of buoyancy as consisting of an

upward force equal to the weight of the whole volume

ADBC of the liquid w
z together with a downward force

equal to the weight of a fictitious liquid of specific weight
w

z
~ w

i
acting at the centre of gravity of the homogene-

ously filled volume ACB.

EXAMPLES.

1. A solid homogeneous right cone floats in a given homo-

geneous liquid ;
find the position of equilibrium, firstly, when

the vertex is down and base up ; and, secondly, when the base is

down and the vertex up.
Let wf

, V, h be the specific weight, volume, and height of the

cone
;

let w be the specific weight of the liquid, and x the length
of the axis immersed when the vertex is down. Then since the

volumes of similar solids are proportional to the cubes of their

corresponding linear dimensions, the volume of the displaced
Xs

liquid = j-g
F. Hence, equating the force of buoyancy to the

weight of the cone,

*L Vw = Ft*/,

In the second case, if x is the length of the axis above the

3,3

liquid, the volume of the displaced liquid = (i 'r-J
V, and we

I
^ ll '

have , i

if w Vx = h I i
)

V />/
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2. A solid homogeneous isosceles triangular prism floats in

a given homogeneous liquid ;
find the position of equilibrium in

each of the two previous cases.

If x is the depth of its edge below the surface, h the height of

the isosceles triangle which is the section of the prism by a

plane perpendicular to the edge, and A the area of this section,

since the areas of similar figures are as the squares of their

3.2

corresponding linear dimensions, A is the area of the face of
fif

the immersed prism in the first case, and if I = length of

edge, the volume of the prism is IA ,
so that the volume of the

y
immersed prism is V. Hence

li

, /
. . x = h (

Vtw

In the second case,

.-. . = *(,-=.)V W'

3. A uniform rod, AB, of small normal section and weight- W
has a mass of metal of small volume

and weight - W attached to one ex-
n

tremity, B ;
find the condition that

the rod shall float at all inclinations

in a given homogeneous liquid.
Let AB = 2 a, let m be the middle

point of AS, Fig. 37, G the centre of

Fig. 37. gravity of the rod and the metal, w'

the specific weight of the rod, w that

of the liquid, and s the area of the normal section of the rod.

Then TF= zasw' and BG = . Also G must be the
n+i

centre of buoyancy if the rod floats in the oblique position repre-
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sented, and the length, SO, of the displaced column of liquid
2n= -

a, so that if the weight of this column == (i + -\ jf
n'

both conditions of equilibrium will be satisfied, whatever be the
inclination of the rod. Equating the weight of the body to the
force of buoyancy,

, 2n
2 asw = asw

;

71+ I

which is the relation required between the specific weights. .

4. A solid homogeneous cylinder floats, with its axis vertical,

partly in a homogeneous liquid of specific weight w, and partly
in one of specific weight wz ,

the former resting on the

latter; find the position of

equilibrium.
Let h be the height of the

~~
cylinder, A the area of its

base, w its specific weight,
and c the thickness of tlie

upper liquid column.
Then if we assume the top,

"i
-

_,.A, of the cylinder to project
a distance x above the upper
surface of the upper liquid, as

in Fig. 38, and equate the weight of the cylinder to the sum of the

forces of buoyancy due to the displacements of the liquids, we
have

c x)u\2 , ..... (i)

T / M>,\ , / W \
It c( i --

) > hi i -- I. we must write
\ w' \ to

and it would appear that the position of equilibrium is one in
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which, as in Fig. 39, A is below the upper surface of the upper

liquid by the distance

(
w
i\ if w

\c ( i
J ^

i
J > \4/

in virtue of the usual interpretation of a negative co-ordinate in

algebra.
To take a numerical case, suppose c = ^h, and

w:w
1
:w2

= 5:2:6;

then x = ^h, and it would appear that A is ^h below the

upper surface of the upper fluid.

itfow if we had originally assumed A to be, as in Fig. 39, at

an unknown distance, x, below the surface, our equation would
have been hw = (c-x)wl + (hc + x}w2 ,

.... (5)

i
wi w

,,-\
.-. x=.ch

, (6)w
z
w

i

which disagrees with (4), and which in the particular numerical

case gives x = %h, instead of x = ^h, which we had been led to

expect by interpretation of the negative value (3).

Why the disagreement ? Because the continuity of the values

of variables in algebra and algebraic geometry finds no corre-

sponding characteristic in the hydrostatical conditions. In fact,

the supposition that the negative value (3) harmonizes with the

physical assumptions leading to the first solution is untrue
; for,

in this solution we assume that, whatever be the unknown posi-
tion of equilibrium of the body, the whole column of the upper
liquid is operative in producing its force of buoyancy, as is

evident from the first term, cw
l ,

at the right-hand side of (i) ;

whereas the supposition that A is below the upper surface of

this liquid is an explicit assumption that the whole column of

the liquid may not be so operative. Hence we ought not to

expect the two solutions to agree.
In the case, therefore, in which the value of x in (2) is nega-

tive, the correct result is (6) and not (3).

5. A heavy uniform bar, AB, of small cross-section is freely
movable round a horizontal axis fixed at one extremity, A, at a

given height above the surface of a homogeneous liquid in which
the rod partly rests

;
find the position of equilibrium and the

pressure on the axis.
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Let AB = 2 a
;

let h be the height of A above the liquicl ;
let

a = area of cross-section of the rod
;

let it/ and w be the specific

weights of the rod and the liquid ;

and let = the angle between AB
and the vertical.

Then ifEC is the part immersed,
the centre of buoyancy, H, is the

middle point of EC. If W-= weight
of rod, W 2 asw'

;
also

BC = 2ah sec 0,
^-

. . the force, L, of buoyancy .

=
(2ah sec 0) sw.

The rod is in equilibrium under the action of L, W, and the

pressure at A, which last must be vertical and = W L.

Taking moments about A for equilibrium,

W. AG sin 6-L.AH sin 0, (i)

and if we reject the factor sin 0, i. e. omit the consideration that

sin = o gives one position of equilibrium (the vertical one), we.

have
4 V/ = (4a

2-A2
sec

2

0)w, (2)

h / w \k , ,

cos = I ,1 (3)

The oblique position requires w to be greater than w' and also

w > ^ p w'
;

so that, for example, if the bar were of metal and the liquid

water, the only position of equilibrium would be the vertical one.

6. A uniform pole, AB, the linear dimensions of whose cross-

section are small compared with its length, is supported by
a cord attached to A and floats, partly immersed, in water;
find its position of equilibrium.

Result. If 2 x is the length of the immersed portion, w and

w' the specific weights of the liquid and pole,



80 Hydrostatics VOL. i

Hence the length of the immersed part is independent of the

inclination; but if w'>w, the pole must float vertically. The

suspending cord always assumes a vertical position.

7. If the pole is 1 2 feet long, and its specific gravity f ,
and

if the end A is fixed by a horizontal axis at a height exceeding
8 feet above the water, the only position of equilibrium is a

vertical one. If the height of A is 6 feet, prove that the

inclination of the pole to the vertical is cos"1

-75.

8. Two uniform straight rods, of lengths 2 a, 26, and specific

gravities s, /, respectively, are joined together to form a single

straight rod; find the ratio a : b so that there may be an

inclined position of equilibrium when the system floats freely

in water.

Result. The ratio is given by the equation

s(i )a
2
+2s'(i s)ab + s'(i -s')^

= o,

or the same with 23(1 /) for the coefficient of ab.

9. The specific gravity of ice is -918 and that of sea-water

1-026; prove that the volume of the submerged portion of an

iceberg is 8^ times that of the portion above water.

10. A hollow closed cone of metal whose specific gravity is 8

is to be made of such uniform thickness that it will float in all

positions wholly submerged in water
;
show that the thickness

must be -0109 x h, where h is the height of the cone.

1 1. If the specific weight of the metal is /, and the cone floats

in all positions, wholly submerged, in a liquid of specific weight
w, show that the semi-vertical angle of the cone must be sin"1

,

and that the thickness must be

h

4

12. A solid homogeneous cone is floating in water with its axis

vertical and vertex downwards
;
to cause it to sink until f of its

axis is immersed requires a load of 50 grammes on its base ; and
to cause to be immersed requires 96 grammes ;

show that the

sp. gr. of the cone is -324 nearly.

13. A cylindrical block of wood the area of whose section

perpendicular to its axis is 50 square inches floats, with the
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axis vertical, in water in a vessel whose horizontal cross-

section is unifoim and equal to 80 square inches; the specific

gravity of the wood is f and the height of the blcck is 2 feet
;

how much does the level of the water rise above the position
which it occupies when the block is withdrawn, and how much
of the axis is under water ?

Ans. 10 inches; 16 inches.

14. A block of wood of height h, cross-section B, and specific

weight w' floats in a liquid of specific weight w contained in

a vessel of cross-section A
;
how much does the level of the

liquid rise after the immersion of the block, and how much of

the block is immersed ?

Ans. B w' w'
. h

;
h.

A w ID

15. A body of weight JFis allowed to float in a tank of cross-

section A containing a liquid of specific weight w ;
how much

does the level of the liquid rise ?

Ans. W
Aw

16. A block of wood, of sp. gr. ^, in the shape of a prism
whose section perpendicular to its edge is an isosceles triangle
whose base is 8 inches long and height 10 inches, the length
of the edge being 27 inches, is placed with its edge submerged
in a tank i foot broad and 3 feet long ;

how high does the level

of the water rise, and what is the depth to which the edge of the

block is submerged 1

Ans. i^ inches; 6 inches.

17. The section of an isosceles prism of wcod perpendicular to

its parallel edges is a trapezium whose parallel sides are 8 and
6 feet long, the perpendicular distance between them being

4 feet
;
the sp. gr. of the wood is -|f ,

and the prism is floating
in water with the longer of the parallel sides uppermost ;

find

the position of equilibrium.

The thickness of the immersed part is 2 feet.

[Whatever the distance between the parallel sides may be, if

the other data remain unaltered, half the thickness will be

immersed.]
14U Q
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18. ABCD is a uniform rectangular board of specific weight
w*

;
it is to float in a liquid of specific weight w with the

diagonal AC submerged and horizontal when a particle of

negligible volume whose mass is n times that of the board is

attached at the corner B; find the condition and position of

equilibrium.

If the side AD cuts the surface of the liquid at P,

and if we put DP = . DA. m is determined by the equationm

3m3

(
i

) 3m + i = o, while n and m must satisfy the
> w '

.. W f I \

equation n = -.[ i ---- )
i.

r V 2 m2'

19. A solid homogeneous hemisphere is movable round a

horizontal axis which is a tangent to its rim and rests partially
immersed in a liquid

' find its position of equilibrium.

Result. Let h be the height of the axis above the liquid,
a the radius and w' the specific weight of the solid, w being
that of the liquid ;

then the plane of the base is inclined to the

horizon at an angle given by the equation

(a h + asin Qf(2a + h a sin 6)w = 2a3

(i f tan 6}w'.

20. A solid homogeneous body of any shape is movable round
a fixed horizontal axis and rests partially immersed in a liquid
contained in a trough, the section of floatation being a curve

AB marked on the surface of the body; liquid is poured into

the trough, the body rising by rotation round the axis which
becomes immersed at increasing depths ;

it is observed that in

the course of revolution the same curve AB becomes again the

curve of floatation. Show that the specific gravity of the body
must be one-half of that of the liquid.

22. Resultant Pressure on an unclosed curved surface.

Suppose BCDA, Fig. 41, to represent any unclosed surface

in a heavy fluid, and suppose its bounding- edge to be a

plane curve so that the surface can be closed by a plane base,
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represented by AB. It is required to find the resultant of

the fluid pressures exerted on one side of the unclosed

surface.

Closing- the surface by means of the plane base AB,
the resultant of the pressures all over the outside of the

completely closed surface is the vertical upward force, L,

represented by the line HL drawn through the centre of

gravity, H, of the fluid which would

fill the volume. But if P is the

resultant fluid pressure on the plane
base A, acting at the centre of

pressure,/, the force L is the resultant

of P and the resultant pressure over

the unclosed part. This latter force,

Q, is therefore found by producing
the lines of action of L and P to

Fig. 41.

meet at 0, suppose and drawing On and Om to repre-

sent L and P, respectively ; then the required force Q is

represented by the line OQ which is equal and parallel

to mn.

If the fluid is a homogeneous liquid of specific weight w^

if A is the area of the plane base AB, z the depth of the

centre of area of AB below the free surface, and V is the

volume of the closed surface,

P Azw, and L = Vw.

Hence if 6 is the inclination of the plane base AB to the

horizon.

Q = w V r*+2,f'Az cos 6 + A* z*
;

horizontal component of Q,
= Azw sin 9,

vertical component of Q = (
Az cos V) w.

G 2
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EXAMPLES.

VOL. I

1. Suppose a right cone whose axis is vertical and vertex

downwards to be filled with a liquid; find the resultant

pressure on one-half of the curved surface determined by any

plane containing the axis.

Let ACB, Fig. 42, be the vertical plane of section, and
ACDB the half of the curved surface on

which we desire to find the resultant

liquid pressure.
Consider the separate equilibrium of

the fluid contained between this curved

surface and the triangle ACS. It is

kept at rest by its weight, the pressure
of the remaining fluid on the area ACB
acting at 7, the centre of pressure on

this triangle, and by the pressure of the

curved surface ACDB. The weight acts

through G, the centre of gravity of the

semi-cone
;
and if on the diameter, OD,

which is perpendicular to AS, we take the point n such that

On = , where r is the radius of the base, this point n is the
3^

centre of area of the semicircle ADS, so that G lies on nC and

Gn = \Cn (Statics, vol. i, Art. 163). The point / is half-way
down OC (Art. 14). If P is the pressure on the triangle ACB,
h = height of cone,

Fig. 42.

P = and W =
where W = weight of liquid. The lines of action of P and W
meet in a point c, whose position is thus completely known;
and by drawing cP and cW to represent P and W on any scale,

the diagonal through c of the rectangle thus determined will

represent Q, the resultant pressure of the curved surface on the

fluid in the semi-cone. The line cQ is drawn to represent this

pressure, and this force reversed is the pressure of the fluid on
the surface.

2. If the cone is closed by a base, and the axis is held hori-

zontal, find the resultant pressure on the lower half of the

curved surface.
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Result. If X and Y are the horizontal and vertical com-

ponents of the resultant pressure,

and the line of action of the pressure passes through a point
whose distances from the base and the axis of the cone are

h 7T + 8 , r 37r+ 16
and -

4 7T + 6 4 377 + 4

3. If a hollow cylinder is filled with liquid and held with its

axis vertical, determine the magnitude and line of action of the

resultant pressure on one half of the curved surface cut off by a

vertical plane through the axis.

It is a horizontal force equal to r^hw acting in a line

- from the base.
3

. 4. If the cylinder is closed at both ends and held with its

axis horizontal, find the resultant pressure on the lower half of

the curved surface.

A vertical force ^ ( 2 H )

5. In example 2 find the magnitude and line ot action

of the resultant pressure on the upper half of the curved
surface.

If X and Y are the horizontal and vertical components
of the pressure,

and the line of action of the resultant passes through a point
whose distances from the base and the axis of the cone are

h S TT r 16 377- and ^

4 6 TT 4 3714
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6. A spherical shell is filled with liquid ;
find the magni-

tude and line of action of the resultant pressure on the curved

surface of either hemisphere cut off by any vertical central

plane.

The line of action passes through the centre of the sphere ;

the horizontal component is TII^W, and the vertical ^-nr'w.

7. A spherical shell is filled with liquid ;
find the magnitude

and line of action of the resultant pressure on each of the

hemispheres into which the sphere is divided by any diametral

plane.

If 6 is the inclination of the plane section to the hori-

zon, the pressure on one hemisphere is the resultant of two
forces Ttr

5w and Trr
s

w, respectively perpendicular to the plane
section and vertical, the lines of action of these forces including
an angle 9, while the pressure on the other curved surface is the

resultant of the same forces including an angle TT
;
and both

pass through the centre.

8. If a hole is made in the top of the shell and fitted with a

funnel, find the height to which the funnel must be filled with

the liquid in order that the resultant pressure on one of the

hemispheres shall be a horizontal force,

The height = r (f sec 0- i
).

When the unclosed curved surface which is exposed to

water pressure cannot be closed by a plane base i. e. when

its bounding edge is not a plane curve the total vertical

component of pressure on one side of the surface is easily

found. Thus, in Fig. 43, suppose AS to represent an

unclosed surface, and consider the pressures (represented

by the arrows) exerted on one side by the water. At the

various points of the bounding edge draw vertical lines

terminated by the free surface, PQ, of the water, and con-

sider the separate equilibrium of the cylindrical column,

PASQ, of the liquid. This column is kept in equilibrium

by (i) its weight, (a) the horizontal pressures exerted all
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round its vertical surface, and (3) the pressures on its under

side which are represented by the arrows in the figure

reversed in direction.

Resolving- forces vertically, we see that the vertical com-

ponent of these latter forces is equal to the weight of the

column standing on AB commonly called the weight of
the superincumbent fluid.

The curved surface may be such that some of the pressures

on one and the same side of it have a downward and others

an upward component, as in Fig. 44. In this case a portion

of the above cylinder will be formed by lines, such as BQ,

Fig- 43-

which are tangents to the given surface AEC
;
and on the

corresponding part of the surface, AS, the pressures have a

downward vertical component equal to the weight of the

column ABQ ;
while the pressures on the remainder, EC.f

have an upward component equat(by the same reasoning) to

the weight of the column RCJ3Q. The resultant upward

component is equal to

weight of DBC-weight of PADR
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If in Fig. 44 the point C either coincides with A or is

vertically under A i. e. if the surface ABC is either a

perfectly closed surface or one which can be closed by a

vertical plane base the column PADR vanishes, and the

upward thrust is equal to the weight of the liquid enclosed

by the surface ABC. Thus we are brought back to the

principle of buoyancy. Art. 20.

In both Fig. 43 and Fig. 44 the pressures have also a

horizontal component, but this cannot be obtained in the

same simple manner ; for, the term vertical is perfectly

definite, while the term horizontal is not so : vertical means

parallel to a line, whereas horizontal means merely parallel

to a plane only one vertical line can be drawn through
a given point, but an injinite number of horizontal lines can

be drawn through it.

To find the total horizontal component of the pressures on

one side of an unclosed curved surface along a given hori-

zontal line, project the bounding edge of the surface on

a vertical plane perpendicular to the given horizontal direc-

tion, by horizontal lines drawn through the points of the

bounding edge ;
then find the magnitude of the pressure

exerted on the (plane) area thus obtained. This pressure,

calculated by Art. 12, is the required horizontal component.
23. Moulds. The vertical thrust of a fluid is well

illustrated in the case of a mould for producing a metal

casting.

Suppose that it is, desired to make a thin hollow cone of

metal. Take a solid cone, ABC, of clay, plaster of Paris, or

other substance, fastened to a horizontal base ; and over it

place a mould, PQRS, containing a hollow, similar, and

slightly larger conical cavity, EFGH, with a narrow vertical

aperture, DEH, the mould being fastened in position by

weights or bolts. If the molten metal is poured in at D, it

will fill the space between the cone and the mould, and
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solidify into a thin cone of metal. Now, while the metal

is in the liquid state, the mould will be acted upon by pres-

sure all over the conical shoulder FENG, and the resultant

vertical upward thrust of the liquid is equal to the weight
of the column of the liquid

standing on FENG with

vertical sides reaching up
to the level, PQ, of the

free surface. This column

is cylindrical in shape, and

is represented in section by
mFEHGn, deducting the

volume of the aperture
DEH.

If H is the height, QR,
of the mould, li the height
of the cone FEHG, r the

radius of the base of this cone, and w the specific weight
of the metal, the vertical upward thrust tending to lift

the mould off its base is, approximately

Fig. 45-

In the same way a hemispherical bowl may be cast if the

solid JJACis replaced by a hemispherical body, and the space

FEHG is also hemispherical.

EXAMPLES.

1. A hemispherical bowl of metal 2 feet in radius is cast

with a mould whose height in 3 feet ; the mass of the metal per
cubic foot is 480 pounds ; prove that the lifting force on the

mould is about 4^ tons' weight.

2. Two hollow cones, of the same vertical angle, are joined

together at their vertices so that their axes are in the same
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vertical line, forming a figure like an hour-glass (Fig. 46).

The vessel is closed at one end with

a plane base and rests on a hori-

zontal plane with the axis vertical.

Find the height to which it must be

filled with water so that the total

vertical water thrust on the curved

surface shall be zero. /

Result. Ifh is the height of the

_
lower cone and H the height of the

upper cone of water,

which gives H = zh.

3. A hollow frustum of a cone, 6 feet high, is placed on the

ground with its base (8 feet in diameter) cemented, water-tight,
to the ground ; the upper extremity of the frustum has a

diameter of 2 feet and is connected with a vertical tube i o feet

high which is rigidly joined all round to the frustum. If the

compound vessel is filled to the top with water, what is the

force tending to tear the vessel from the ground ?

Ans. The weight of 20477 cubic feet of water, i. e. 17-88 tons'

weight.

4. A thin spherical shell of radius r and negligible weight has

a small hole into which a tube is fitted ; the tube is placed

vertically and filled with water to a height h above the centre

of the sphere, the system being kept in equilibrium in any way.
Show that the whole force with which the upper hemisphere of

the shell tends to separate from the lower is

A very striking illustration of the principle of buoyancy
is furnished by the following experiment. Take a straight

glass tube ; insert into it at A (Fig. 47) another glass tube,

Av, at right angles ;
bend the first tube at m and n at

opposite sides of Av, making two constrictions at m and 11.

the branches of the tube being mB and nC
; through the

open ends
,
C insert a ball c of cork soaked in paraffin and

a solid marble, y, of glass or metal
;
close the ends and C
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of the branches. If the system is held with Av vertical the

cork and the marble will fall to m and n and be stopped by
the constrictions. Now pour in water through u, filling

both branches. The cork will rise to B and the marble will

remain at n. Let a clamp be fixed at A to the tube, and

attach this clamp to a whirling- apparatus so that the whole

can be rotated rapidly about the vertical line Av. As the

rotation increases, the cork will come down from B and try
to reach A, while the marble will ascend towards C.

Let <o be the angular velocity of the tube, and suppose the

cork to be at c
; let r be the distance of c from the vertical

axis of rotation, and let W^ be

the weight of the cork.

Suppose the cork to be tied

to the point IB by a thread,

whose tension is T, while the

system is rotating about Av
with angular velocity o>

;
then

the forces acting on the cork

are T, Wlt
N (the normal reac-

tion of the tube) and the pres-

sure of the surrounding liquid. This last is exactly the same

as it would be on a sphere of the liquid itself which might

replace the cork. Let H and V be the horizontal and

vertical components of this pressure, and letW be the weight
of the liquid that would occupy the place of the cork. Now
since the sphere of liquid goes round in a horizontal circle

without the aid of a thread but with the aid of a pressure

N1 from the tube (unless the sphere is so small that it

is not in contact with the tube), its equation of horizontal

motion is Mvr

Fig. 47-

H= (i)
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and also for vertical equilibrium,

Y- H+N'cosa...... (2)

The equation of horizontal motion of the cork is

r,^= H-Nsina-Tcoaa,
9

= W -(N- N') sin a- T cos a,
9

by (i) ;
while vertical equilibrium gives

T = W
1 + NCOSaT sin a

= JT+^'cosa.
Hence we have

o

(r-r])-p
= (JV--JV

7

')
sina + 7'cosa, . . (3)

W-W
l =(N-N')cosa-Tsina.. . (4)

Eliminating N N', we have

. . . (5)

This equation shows that T is negative so long as

co
2 < - tan a,

r

and therefore the cork would require a push towards m

to keep it in position ;
but when o>

2 = - tan a, no force along

the tube is required ;
and when or increases beyond this

value, T becomes positive that is, the cork tries to go
down the tube.

The case of the marble is similarly discussed
;

let W
z

be the weight of the marble, then for the tension of the

constraining cord we have

T= _r-
2

= (r2-r)(sina-
-cos

a),
... (6)
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which shows that when o> increases beyond the above-named

value, T becomes negative that is, a push downwards along
Cn is required, or, in other words, the marble ascends the

tube.

24. Work of Immersion. When a body displaces liquid,

a certain amount of work is done against the force of

buoyancy. Suppose, for example, that a solid cylinder

is allowed to sink into water until it finds its position

of equilibrium. Then the principle of work and energy
shows that the work done on the cylinder by gravity
is equal to the work which the cylinder does against

buoyancy from the first

to the second position.

Suppose Fig. 48 to

represent a body of

any form displacing a

liquid contained in any

given vessel. Let AB
be the level of the

liquid before the body
was immersed, and let

PQ be the level to Fig. 48.

which the liquid rises

when the body is immersed. [We are not assuming that the

body \sfloating in equilibrium : we assume merely that by some

means it is now in the position represented.] Now it is

quite clear that the volume LCN of the liquid is taken up
and spread into the layer whose section in the plane of the

figure is represented by LAPR and NJ3QS ;
so that the

work done against buoyancy is the work of raising the

volume LCN into the position of the layer. This work is

the same as that done by raising the volume ELCNS into

the position of the volume PRSQ,BNLA,smcQ by this process

the volume RSNL would be undisturbed.
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Let (f be the centre of gravity of the volume RLCNS,
supposed filled with the liquid, and let g be the centre

of gravity of the layer PASQ ; then the work done against

buoyancy is the weight of the layer PAJ3Q multiplied by
the difference of level of the points g and g' .

For clearness, let us take a numerical case.

To find the work which must be done to submerge com-

pletely a cylinder of weight W> 1- eight /<, and specific gravity

| in a cylindrical vessel of water, the area of the cross-section

of this vessel being twice that of the body.
Let Fig. (i) represent the body just touching the surface

of the water ; Fig. (a) the body in its equilibrium position

A -

G'
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these volumes is on the plane AJ3, and the centre of gravity

of the second is -? above this plane, the weight of the volume

pmnq being
1

equal to //'
,
the required work against buoyancy

from (i) to (2) is -|
Wli. Denote this work by 12 ; also

denote the work against buoyancy from (i) to (3) by Bly

Now the volumes rmns and RABS are equal ;
. . AR = % h,

and the centre of gravity, 6r'3 , of rmns is on the plane AB ;

also the weight of this volume of liquid = f W\ hence

.RO = I JT.- = | JF. k.

4

If J9
23 denotes the work against buoyancy from (2) to (3),

we have = S S
;

This, however, is more than the work which we should have

to do to sink the body from (2) to
(3), because we are assisted

by the work done on the body by gravity from (2) to (3).

This work is Wx diff. of level of G2 and G
3 ;

that is | Wk
;

hence, deducting this from S
2S)

we have

hW.h
for the work which, in addition to that contributed by

gravity, is required to sink the cylinder.

As a further exercise on this same question, take this

problem : the cylinder leing held ly the hand in the position (i)

and allowed to drop into the liquid, find how far it will sink

before comingfor an instant to rest.

Applying the principle of work and energy to the body,

since the kinetic energy in the first position = o, and also

that in the second position = o, the work done by gravity

on the body must be numerically equal to the work done by

buoyancy on it. Suppose the body to sink until AP = x
;
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then, since vol. pmnq vol. PAHQ, we see that;;? = 2#, and
n/t

the work against buoyancy from (i) to (2) is \ S. ix . w .
-

,

"2f

since the centre of gravity of pmnq is on the plane AB ;

this work is J Sro . x*. To get the work done on the body

by gravity, observe that, measuring all distances from the-

fixed plane AB, the centre of gravity, G, of the body is, in

the first position, at a height of ^ h above AB
y
and in the

second at a height \h~x above AB\ and, the weight of

the body being \ S/nv, the work done by gravity from (i) to

(2) is | Shw (% h \ h + x), or ^ Shxw. Equating this to the

work against buoyancy, we have x = f /$,
a result which

shows that the cylinder disappears below the liquid ; but

the result cannot be relied upon as expressing the final

position, since we have assumed in the work that p is not

above the top of the cylinder. (See a similar case, p. 77.)

We must make a fresh calculation assuming that the top of

the cylinder disappears to a distance z above the plane AB.

The work of gravity will be W(Ji z),
and the work against

buoyancy \ Shw (| li z\ or f W (f k z). Equating these we

have _ i 7
z ? ">

in other words, three-fourths of the cylinder goes below the

original level of the liquid.

If the vessel, or tank, in which the body floats is of un-

limited cross-sectional area a lake or a river as represented
in Fig. 50, the work of buoyancy is calculated very simply.

Thus, let the body be immersed so that pqmn is under the

liquid ;
then the work done against buoyancy in reaching

this position is simply the work of raising the volume pqmn
of liquid and spreading it out along the unlimited surface

AB of the liquid as an infinitely thin horizontal layer. If

pm = x and A = area of cross-section of the cylinder, the

volume raised is Ax, and the height through which its
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centre of gravity is raised is-|#; so that the work done

against buoyancy is \ Ax
2w

; and the work done against

buoyancy in submerging it to the position in whichpm = x'

is \Ax'*w ; therefore the work done between these two

positions is \A (x'
2

w.

~m

Fig. 5-

G

-B

G \U=T
M

Let the first position be the freely floating one, and the

second the position of complete submergence ;
then if w'

w
is the specific weight of the cylinder, as = h , and x' = h

;

therefore the work against buoyancy from the one to the

other is

The weight of the body itself has assisted in the sub-

mergence and done the amount Akw' (of x), or

so that the work required to be done by an external agent

to submerge the body from the floating position is
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W W W'

where W\& the weight of the cylinder.

EXAMPLES.

1 . A solid homogeneous cylinder of height A, cross-section B,
and specific weight w' floats with its axis vertical in a liquid
of specific weight w contained in a tank of cross-section A ;

find the work required to submerge it.

2 A W

2. A solid body of weight W, specific gravity s, and given

figure rests on the bottom of a river of depth h
;
find the work

necessary to raise it just clear of the water.

Let G be the centre of gravity of the body, Fig. 50, and let

the height of G above the base be k
; then the work of buoyancy,

which assists in the raising is that done by the falling of a

superficial layer of water into the position of the body. The
W

volume of this layer = vol. of body = ,
where w =

sp.w
W

weight of body, .-. the weight of the layer = ,
and the

S

original and final heights of the centre of gravity of the layer
above the bottom, LM, are h and k

;
therefore the work of

W
buoyancy = (h k) the centre of gravity, G, of the body is

8

raised through h', .'. the required work is

Wh - -(h-k).
s

x

3. Calculate the work required to submerge a homogeneous
sphere of specific weight \w in a tank of given cross-section

containing a liquid of specific weight w.

If V = vol. of sphere, r = radius, A = area of section of

tank, the work is
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[Taking the three positions of Fig. 49,

V V

and we have

= i fw
(l-r

-

Deduct the work done on the sphere by gravity from (2) to

(3), which is Vw (r ),
and we get the result.]

4. If this sphere is held in the position (i) and allowed to drop
into the liquid, how far will it descend before being brought
for an instant to rest ?

Ans. It will just reach the position (3) of complete sub-

mergence.

5. A solid homogeneous cone of weight W, height h, and

specific gravity -fa floats in water of indefinite horizontal

extent
;
find the amount of work required to submerge it.

I^JF.A. [Work against buoyancy = ff W. h; work of

gravity = ^ W. h.]

6. A solid homogeneous cone of weight W, height h, and

specific weight w floats, vertex down, in an indefinite mass of

liquid of specific weight w ;
find the work required to sub-

merge it.

Work against buoyancy = 1 W. h \j ( Y* (

|_ (w \ tv ' y

work of gravity = W , h < i (
)

(

7. If this cone is held with its axis vertical and its vertex

just touching the liquid, and is allowed to drop into the liquid,

H 1
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how much of it will be submerged in the position of tem-

porary rest ?

Ans. Four times the volume submerged when the cone is

floating freely in equilibrium provided that this volume does

not exceed the whole volume of the cone. If, however, w'> ^w,
let the base of the cone disappear to a depth x below the

surface; then the work done against buoyancy

and the work done by gravity on the cone

= V

equating these, we have

tp-frM,
fc*/ ^~ ft-.

to 10

8. A solid sphere of radius r and specific gravity s lies on the

bottom of a cylindrical vessel of radius a and height h which is

filled to the top with water
; prove that the work required to

raise the sphere just clear of the water is

f 4-r* i / 2r
I* r

;
3 a

2
s V sa

TF

(When the sphere is just clear, the height, x, of the water is

41*
h ; Now take the mass-moment of the system in the

3
first and in the second position with respect to the base. For
the first consider the sphere to consist of a body of sp. gr.

equal to i and a sphere of sp. gr. equal to s i. Hence if

w = weight, per unit volume, of water, the first mass-moment
is TTW [^

2
A* + f (s i ) "*],

and the mass-moment in the second is

nw[%a
i
x'

>+ s(x + r) r3

].
The excess of the second over the

first is the work required.)

9. A solid cone of volume V, height h, and specific weight w
floats with its vertex down in a liquid of specific weight w con-

tained in a tank of uniform horizontal section A
;
find the

amount of work necessary to submerge the cone.

*Vhw ( > / w \ /w'\5 ) V2

(w w')
z

Result. ^ *(-/ x
) + ( ) if

-
4 (

v r / ^w' ) 2 Aw

(Take mass-moments about the surface of the liquid in the

freely floating position.)
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10. A solid homogeneous body of weight W, volume F, and

specific gravity 3 rests on the bottom of a tank of uniform cross-

section A, the height of the centre of gravity of the body above

the base being z
;
the tank contains water to a height h when

the body is immersed. Prove that the work required to raise

the body clear of the water is

A



CHAPTER V

GASES

25. Definition of a Perfect Gas. A gas may be

described roughly as a fluid which can be easily compressed.
A more precise mathematical definition will be given

subsequently ;
for the present, we shall define a perfect gas

as a fluid which obeys the law of Boyle and Mariotte.

This law is as follows : the temperature remaining constant,

the volume of a given mass of gas varies

inversely as its intensity of pressure.

This law is proved experimentally as

follows. Let HABK (Fig. 51) be a bent

glass tube of uniform section at least in

the leg AH which is closed at the top.

Let the gas to be experimented upon be

enclosed in the branch AH by means of a

column, ALB, of mercury, the branch LBK
of the tube being open to the atmosphere.

Suppose matters arranged so that when the

gas in AH is in equilibrium of temperature
with the surrounding air, after the pouring

in of the mercury has ceased, the surfaces A and B of the

mercury are at the same level in both branches. Then the

intensity of pressure at any point in the surface A is equal
to that at any point in B

;
so that if JJQ

is the atmospheric

intensity of pressure, p is also the intensity of pressure of

the gas in AH.
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For simplicity denote p by the height of the barometer

at the time of the experiment.
Let thia height be h (inches or millimetres), and let

t' (cubic inches or cubic millimetres) be the volume of the

gas AH. If 10 is the weight of a unit volume (cubic inch

or cubic millimetre) of the mercury, we have j9
= w .h.

Let us now, by pouring mercury slowly into the open
branch at K, reduce the volume of the gas in AH to half

its value. If CH = AH, the mercury is to be poured in

until its level in the closed branch stands at C after all

disturbance and heating effect due to the pouring in of the

mercury have subsided. If we now read the difference

of level between C and the surface of the mercury in the

branch LK, we shall find it exactly equal to //, the height

of the barometer. Equating the intensity of pressure at C
due to the imprisoned gas to the intensity of pressure due

to the mercury and the atmosphere, we see that the former

must be equal to j) + wh, i. e. the new intensity of pressure
=

2/? ,
while the new volume is ^r .

Again, let EH = % AH, and let us pour mercury in at K
until the volume of the imprisoned gas is EH, i. e. ^ v .

We shall then find that the difference of level between E
and the surface, F, of the mercury (not represented in the

figure) in the open branch is 3 times the height of the

barometer, i. e. 3 h, so that the intensity of pressure of the

gas in EH is pQ + 3 w/i, or 4p .

Hence we have the following succession of volumes and

pressure intensities for the gas, its temperature being
the same all through,

If, in the same way, the volume is reduced to -v
,
the

difference of level of the mercury in the two branches is

found to be (n i) ft, so that the new intensity of pressure
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is npQ ;
and from these results we see that in each case the

volume of the gas is inversely proportional to its intensity

of pressure, as stated in the law.

The law of Boyle and Mariotte may also be verified in

the following- simple manner by means of a single straight

tube, about 2 mm. in diameter.

Let AD be a tube of uniform section closed at the end A
and open at D

; let a portion, AB, of the tube be filled with

air or other gas, and let a thread of mercury, C, of length

I, separate this gas
D A" from the external air.

When the tube is

held horizontal and all

disturbance has sub-

B" sided, let the volume,

t'
, of the gas AB be

read
;

its intensity of

pressure is the same

as that at C, i.e. p0t

the atmospheric in-

tensity. Now let the tube be held in a vertical position

with the closed end A' downwards and let the gas occupy
the volume A'B', or v'. Its intensity of pressure is now

equal to that at B' due to everything above B', i. e. pQ + wl,

where w = weight of unit volume of mercury. If li is the

height of the barometer during the experiment, p = wh,

and ifp' is the intensity of pressure in A'B
',

p' = to(h + l).

Finally, let the tube be held vertically with the closed

end A" uppermost, and let the volume of the gas be A"B"
',

or v". If its intensity of pressure is p", the intensity
at (? is p" + wl due to everything above C"

;
but p is

also the intensity of pressure at C" since that is a point in

the external air. Hence p" = w (h l).

53.
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Hence, as regards volume and intensity of pressure, we have

the succession of states

and we find on trial that

according to the requirements of Boyle's law.

This law is not accurately obeyed by any known gas, but

the approximation is very close in the case of all gases

when they are not near the state in which, either by
increase of pressure or by diminution of temperature, lique-

faction begins. When any gas is near the state of

liquefaction, its volume decreases more rapidly with in-

creased pressure than it would if it followed Boyle's law.
' When it is actually at the point of condensation, the

slightest increase of pressure condenses the whole of it into

a liquid.' (Clerk Maxwell's Theory of Heat, chap, i.)

26. Graphic Representa-
tion. We can graphically

represent its various states as

expressed in the fundamental

equation (/8),
thus : draw any

two rectangular axes, Ov, Op,

and let the volumes assumed

by the gas be measured, on

any scale, along Or, while

the intensities of pressure are

measured on any scale along
OP.

If, on these scales, OM and

0j\rrepresent respectively any
volume and the correspond-

ing intensity of pressure, the point, P, whose co-ordinates

are OM and ON will graphically represent the state of

o NI

Fig- 53-
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the gas ;
and all points, such as P, whose co-ordinates

satisfy () will be found on a rectangular hyperbola

passing through P and having the axes Ov and Op for

asymptotes.

Thus, then, the curve of transformation of a given mass of

gas at constant temperature is a rectangular hyperbola. Such

transformation is called an isothermal transformation.

The figure exhibits the fact that when the intensity of

pressure is infinitely increased the volume of the gas
becomes infinitely small, and that when the intensity

of pressure is infinitely reduced, the volume becomes

infinitely great.

The first result would be strictly true for a substance

whose transformations . strictly follow the law for all

values of p ; but it will be readily understood that there

exists no gas for which Boyle's law holds indefinitely, and

that when the intensity of pressure is greatly increased

the gas may approximate to, and actually become, a liquid.

27. Law of Dalton and Gay-Lussac. The volume of

a given mass of gas may be altered by heat as well as

by pressure. The law relating to this change was dis-

covered, independently by Dalton in 1801 and by Gay-
Lussac in 1802

; and, apparently, it was discovered fifteen

years previously by M. Charles, although not published

by him. It is this

The intensity of pressure being constant, the volume of a

given mass of yets, when its temperature is raised from Hie

freezing to the boiling point of water, increases ly afraction of
the volume at the first temperature, whichfraction is the same

foi' all gases.

In short, the law is that all gases have the same coeffi-

cient of expansion, and that this is independent of the

magnitude of the (constant) intensity of pressure under

which they expand.
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The fraction in question is, with certain reservations

to be mentioned presently,

3665>

so that if we measure degrees of heat by the Centigrade

thermometer, this is the fractional increase of volume for

100. The rate of expansion per degree is also found

to be uniform, and is -003665, which we shall use in

the form

Hence if V
Q denotes the volume of a given mass of any

gas at o C., and v its volume at t C., we have

v=sv (i+~] (i)

273''

whatever be the intensity of pressure (supposed constant) ;

and if v' is its volume at if, we have

v v' , .

273 + 1

~
273 + 1'

'

If the point from which the temperature is reckoned on

the Centigrade thermometer is removed 273 below the

ordinary zero, i. e. the point at which water freezes when
its surface intensity of pressure is that due to a standard

atmosphere (indicated by a mercurial column 760 mm. in

height), the expression 273 + 1 indicates the newly measured

temperature, and is always denoted by T, and called the

absolute temperature of the substance, the new point of

reckoning being called the absolute zero of temperature.
If it were possible to have T = o, that is t = 273, for

the gas supposing the substance to remain a gas at

* The fraction is more accurately r-
, but the above is usually taken

272-85
for simplicity. Clerk Maxwell {Theory of Heat} gives various values;

thus, and ,
the latter deduced from experiments of Thomson

273s 273-7
and Joule.
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all temperatures with constant coefficient of expansion,
--

T equation (i) would give

i. e. the gas would be reduced to zero volume. As the

substance does not satisfy the above supposition, but alters

its state in the process of lowering the temperature, the

consequence is not realized, and it would thus appear that

the notion of an absolute zero of temperature at 273 C. is

a gratuitous error. Indeed, if the conception of absolute

temperature rested on no other foundation, we might simi-

larly argue from the coefficient of expansion of platinum,

for instance, that since for this body v = vn (i -I

^

nearly, where VQ is its volume at zero and v its volume

at
,
if we make t = 37699 we shall arrive at the absolute

zero of temperature.
The truth is that the measure of absolute temperature

rests on quite another basis, that it is intimately connected

with the coefficient of expansion of a perfect gas, and that

273 + 1 is properly to be regarded as measuring the absolute

temperature of a body whose temperature indicated by
a Centigrade thermometer is f.

Adopting absolute temperature, then, equation (2) gives

Of course in the expression of the law of Dalton and

Gay-Lussac it is not necessary to signalize the particular

temperature corresponding to the freezing of water as pos-

sessing any special reference to the expansion of gases.

The law may be stated thus : all gases expand, per degree,

by the same fraction of their volumes at any common tempera-

ture. This is obvious because their volumes at any tem-

perature, T, will all be the same multiple of their volumes at
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o, and a constant fraction of the latter will give a constant

fraction of the former.

In symbols, for any gas let u be the volume at r,

v that at t, v that at zero, and a the coefficient of expansion
with reference to the volume at zero ;

then

v = V (l + at) ;
n = V

Q (
l + ar) ;

, , , . l+at
and therefore v u = u

l + a T I + ar

I +ar^

where /3
=

,
so that /3 is obviously the rate of expan-

sion of the gas reckoned as a fraction of the volume u
;
and

if a is the same for all gases, so is /3.

It is remarkable that a is the same for all gases when far

removed from their condensing points, i. e. from the liquid

states, and that it is independent of the intensity of

pressure under which the expansion takes place.

Clerk Maxwell (Theory of Heat) points out that if the law

of Dalton and Gay-Lussac u true for any one intensity of

pressure, and if the law of Boyle holds, it follows that the

former law holdsfor all intensities of pressure.

This is very easily proved thus. Let v be the volume

of a given mass of gas at (o, p), i. e. p is its intensity

of pressure, and let the law of Dalton hold for this pressure

intensity ;
then if v is its volume at

(t, p)

v = v (l +at).

Now, keeping t constant, alter p to p' ; then by Boyle's
law the new volume, u, is given by the equation

--,'
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But if v at (o,p) were altered by keeping its temperature

zero and changing its intensity of pressure to />', its value,

n
M
O ,

would be VQ . , by Boyle's law
;
so that the last equa-

tion gives
u = uQ (i + at),

and therefore Dalton's law holds for p' if it holds for p.

With regard to the accuracy of the law of Dalton and

Gay-Lussac, Mi Regnault has found that, a being the

coefficient of expansion per degree Centigrade,

for Carbonic acid gas a = -003710,
Protoxide of Nitrogen = -0037 1 9,

,, Sulphurous acid gas ,,
= -003903,

Cyanogen = -003877 ;

the last two of which are notably greater than the coeffi-

cient of expansion of air
;
but these are precisely the gases

that can be most easily liquefied, while it is found that for

all gases which can be liquefied only with great difficulty,

a has very nearly the same small value, -003665, that it has

for air. Hence M. Regnault modifies the law of Dalton

and Gay-Lussac by saying that the coefficients of expansion
of all gases approach more nearly to equality as their

intensities of pressure become more feeble
;

so that it is

only when gases are in a state of great tenuity that they
have the same coefficient of expansion.

28. General Equation for the Transformation of a

Gas. Given the volume, v, of a mass of gas at the

temperature t, and pressure intensity p, find its volume

at t' and p'.

First let the temperature be altered from t to t', the

pressure intensity remaining p ; then the volume v becomes

u, where
273 + //

V

273 + t'

by equation (2) of last Art.
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Now keep the temperature constantly equal to t' and alter

p toy ;
then u becomes v', where

by Boyle's law. Hence we have

V = V p_

p
v'.p' v.p

"

or
273 + rf 273 + t

v'. p' v .n
or - -

<]}' ijl

' W
where T and T are the absolute temperatures of the gas.

Hence, whatever changes of pressure and temperature

may be made in a given mass of gas, we have the result

~- = constant (/3)

between its volume, pressure intensity, and absolute tem-

perature.

This most important result is the general equation for

the transformation of a given mass of gas.

29. Formula in English Measures. Since the freezing

point of water is marked 32 on Fahrenheit's thermometer,

and the boiling point 212, the fractional expansion of gas

per degree Fahrenheit is --rr- or about- > of the
180

volume at 32. This fraction is usually taken as 7|5 ;
and

this, as will presently be seen, would place the absolute zero

of temperature 460 Fahrenheit degrees below the zero of

the Fahrenheit scale. The experiments of Joule and

Thomson indicate 460-66 as the position of the absolute

zero
;
but for all practical purposes we can take 460.

If a given mass of gas has a volume u at 32 F., and its
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temperatnre is raised to t, we have, if the intensity of

pressure is unaltered,

/ t 32s
v u

(H '

} .

492 t

Hence v = u
; and if v' is its volume at t', we

492
have ,/

460 + 1 460 -t- 1'

'

If the intensity of pressure, estimated in any way, alters

from p to jo',

VP _ v'p' / x

460 + 2! 460 + ;!''

It thus appears that if the temperature of the gas were

reduced to 460 R, its volume would vanish, supposing
that it obeys the kws of a gas during the whole process.

If we denote by T the absolute temperature, 460 + ^,

of the gas, we have the general equation of transformation

of a given mass

y =
^p-

= constant (/3)

30. Law of Avogadro. One of the fundamental laws of

gases is known as the Law of Avogadro. It is the follow-

ing : equal volumes of all substances when in the state of

perfect gas, and at the same temperature and intensity of

pressure, contain the same number of molecules.

This law enables us to find the relative molecular weights
of all substances by converting these substances into vapours,

and then measuring the weights of known volumes of the

vapours at known temperatures and intensities of pressure.

Thus, it is found that a cubic foot of oxygen weighs 16

times as much as a cubic foot of hydrogen under like

conditions of temperature and pressure ;
hence we conclude
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that the mass of each molecule of oxygen is 16 times that

of a molecule of hydrogen.
31. Air Thermometer. A long- capillary glass tube,

AC, terminating in a bulb, ,
is filled with air, and a short

thread, m, of mercury is inserted into it, the end of the tube

(beyond C) being open. In order to fill the bulb and

portion of the tube to the left of m with air deprived of

moisture, the tube and bulb are first filled with mercury
which is boiled in the bulb. The open end is then inserted

into a cork fitting into the neck of a tube, J), filled with

chloride of calcium, which has the property of absorbing

aqueous vapour from air, a fine platinum wire having been

inserted into the stem CA through the tube D. If the

instrument is supported in a position slightly inclined to

*9?1

LL
Fig- 54-

the horizon on two stands and the platinum wire is agitated,

air enters through the chloride of calcium, and gradually

displaces the mercury from the bulb and stem, the process

being stopped when only a very short thread of mercury is

left.

The air in the instrument may now be considered to be

dry.

Detach the stem from the drying tube D, and place it in

a vertical position with the bulb B in a vessel filled with

melting ice. Suppose the barometer to stand at 760 mm.,
thus indicating the standard atmospheric pressure. Then

when the air has assumed the temperature of the melting
ice. mark o on the stem AC at the under limit of the

mercury index m.
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If then the instrument is placed vertical with the bulb

B surrounded by the steam of boiling water close to the

surface of the water, but not in it the index m will move

up towards C, and at its lower limit let 100 be marked on

the stem. Thus the two standard Centigrade temperatures

are marked on the stem, and the intervening space is to be

divided into 100 equal parts if the stem has previously been

ascertained to be of uniform bore. The graduations may be

carried then below zero and beyond 100.

If the tube of the air thermometer is made cylindrical all

through so that the bulb B is simply a uniform continua-

tion of the stem and we continue the graduations to 273

parts below the zero, we shall here reach the bottom, ,
of

the tube.

Hence the definition of the absolute temperature of a body,

which we are so far justified in giving, is simply, in the

words of Clerk Maxwell, its temperature reckoned from the

bottom of the tube of the air thermometer.

The upper end of the stem of an air thermometer neces-

sarily remains open to the atmosphere, otherwise the index,

m, would not move or would scarcely move at all : if the

end were closed and the air uniformly heated, m would not

move.

Hence the air thermometer cannot be used to indicate

temperature except in conjunction with the barometer.

If the latter stands at p instead ofpQ ,
the standard height

(which we have above supposed to be 760 mm.) and the

temperature indicated by the index m is t, the real reading
is not t but that at which the index would stand if the

intensity of pressure were altered to pQ
. To find the point

at which the index would stand in this case, let # be the

area of the cross-section of the tube, c the length of the tube

between two successive degrees, and B the volume of the

bulb and tube up to the zero mark. Then when the index
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m stands at the mark t', the volume of the gas is B + cftf .

But since at the absolute zero the volume of the gas would

vanish, B = 273 cs
;
hence

v = (273 + 1') cs,

and this is at the intensity of pressure 7;, its true tempera-
ture being t. If p were altered to pQ without any change
in the true temperature, the index would stand at t and the

volume would be (273 + ^)0?. Now since these volumes

are inversely as the intensities of pressure, we have

273 + / = (273 + 0-7'
1 o

which gives the true reading.

EXAMPLES.

1. A circular cone, hollow but of great weight, is lowered

into the sea by a rope attached to its vertex
;

find the volume
of the compressed air in the cone

when the vertex is at a given depth
below the surface.

Let Fig. 55 represent a section

of the cone ; let c be the depth of

the vertex below the surface, LN,
of the water, h = height of cone,
V = its volume, t = the tempera-
ture of the air at the surface, t'=
temperature of the water, andthere-
fore of the air in the cone; let P
be the surface of the water within

the cone, and let k be the height
of a column of sea-water in a water
barometer.

L



u6 Hydrostatics VOL. i

by a column of water is k+ c + a-. Hence the following diagrams

represent the histoiy of this mass of air as regards volume,

temperature, and intensity of pressure :

in which T and T' are absolute temperatures.
From Art. 28 or Art. 29 we have, then,

h3 T'

T'
=0,

from which x can be found.

A vessel used in this manner is called a diving-bell. The
above is a conical diving-bell.

2. If in the above position of the cone it is desired to free

the interior of water completely by pumping the air above the

surface into the cone, find the volume of this surface air that

will be required.
Let U be the volume required, and h the height of the cone ;

then suppose the cone to be wholly filled with air of the tem-

perature t' of the surrounding water, and write clown the

history of this air, thus :

V,

T'

T
~~

T'



CH. v Gases 117

(It is iiot improbable that the student will fall into the error

of supposing that U can be calculated as the volume of the

surface air which is required to occupy the lower portion of the

cone in Fig. 55, i.e. the portion occupied by water.)
Of course the result is the same whether the vessel is conical

or of any other figure.

3. If a conical diving-bell of height h feet contains a mercurial

barometer the column of which stands at p inches when the

bell is above the surface of the water, and at a height p when

below, infer the depth of the top of the bell below the surface.

4. Deduce the depth for a cylindrical or prismatic bell.

Rml,
3|96 <,-)- ^.

5. A cylindrical diving-bell 1 2 feet high is lowered into water

until the depth of the top of the bell is 60 feet
;
the height of

a mercury barometer at the surface is 30 inches and the tem-

perature of the air 76 F. ; the temperature below is 48; find

the height to which the water rises in the bell.

Result. 8-1 feet.

What volume of surface air must be forced down into the

bell to expel all the water 1

Result. 2-29 times the volume of the bell.

6. If the bell is 10 feet high and is lowered until the depth
of the top is 40 feet, find the same things when the surface

temperature is 60 and the temperature below is 50, the height
of a water barometer being 34 feet.

Result. 4- 26 feet; 1-52 x vol. of bell.

7. Find the tension of the suspending chain in a diving-bell

which occupies any position in water.

Result. The weight of the bell and its appurtenances
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diminished by the weight of the water which is displaced from

all causes.

(The water is displaced by the chain, the thickness of the bell,

and the air within the bell
; the weight of this water is the

force of buoyancy. In strictness, the weight of the contained

air should be added to that of the bell.)

8. If at the bottom of a river 40 feet deep, when the tem-

perature is 40 F., a bubble of air has the volume
^
of a cubic

inch, what will be its volume on reaching the surface where the

temperature is 50 F.. and the height of a water barometer is

34 feet?

Ans. - cubic inches.
io5

9. If an open vessel (such as a tumbler) made of a substance

whose specific gravity is greater than that of water is forced,

mouth downwards, into water, show that its equilibrium becomes
unstable after a certain depth has been reached.

(If the volume of the solid substance of the vessel is v, and
in any position of the vessel ifX is the volume of its compressed
air, the downward force, P, required to hold it in equilibrium
is given by the equation

P = Xv: v(w w\

where w = specific weight of water, wf = specific weight of

substance of vessel.

Hence when X is so far diminished by forcing the vessel

down that Xw = v(w'w), the pressure P vanishes, and after

this an upward pull would be required.)

10. If v is small (i.e., if the thickness of the vessel is small),
and if V is the volume of the interior of the vessel, prove that

when the position of instability is reached, the depth of the top
of the vessel below the surface of the water is approximately

Vw I

r
where k is the height of a water barometer at the surface.
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11. In a mercury barometer tube the height of the mercury
column is 30 inches, the area of the cross-section of the tube is

i sq. inch, and the vacant space is 4 inches long. If % of

a cubic inch of the external air is passed up into the tube, what

depression of the column will it produce ?

Ans. i inch.

12. If v cubic inches of the external air at the absolute tem-

perature T are inserted into the Torricellian vacuum of a

uniform cylindrical barometer tube, calculate the depression

produced in the column of mercury if the absolute temperature

changes to Tf
.

Let h inches be the height of the barometer at first,

a = length of Torricellian vacuum, s square inches = area

of cross-section of tube, x = length of tube finally occupied

by the air; then

r vh
x(x-a) = T

>~

13. A diving-bell of any shape occupies a given position
below the surface of water

;
the bell has a platform inside

;
if a

large block of wood falls from the platform into the water, prove
that the water will rise inside the bell, but that the bell now
contains less water than before.

Let the depth of the top be c, let h be the height of a water

barometer at the surface, put k = c+ h, let B = volume of the

block of wood, wf
its specific weight, w = specific weight of

water, V= whole volume of the interior of the bell, let * be the

depth of the water in the bell below the top of the bell, and let

X be the volume of the interior of the bell above this surface.

Then (X-B)(x+ k) = Vh....... (i)

"When the wood falls the volume of it which remains above

the surface is B ( i --) . Let x' be the new depth of the water
V w'

surface in the bell below the top of the bell, and X' the volume

of the interior of the bell above this new surface. Then

F/, . (2)

Now since X obviously increases with x, we must have x' <x,
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since in the opposite case each of the factors at the left-hand

side of (2) would be greater than the corresponding factor

in (i), and the equations would be inconsistent.

Hence the surface of the water rises.

Again, if 1 = the first volume of water in the bell, and H'
the second

IZ = r A.
,

&' = V-X'-B -;w
,,,./

... fl-ii' = *--(jr-A")..... (3)

Now from (i) and (2)

/ Vh(x-x')

n n/_ y

which shows that 1' is less than il.

32. "Weight of Gas. It is obvious that the weight of

a cubic foot of air, or any other gas, is not the same when

its temperature is 20 or 100, as when it is o, supposing
the intensity of pressure the same. In other words, the

weight of a cubic foot of air depends on the temperature
and pressure intensity at which it is taken.

Taking the units of the Metric System, let us inquire

what is the weight of v litres
(i.

e. cubic decimetres) of dry
air when its temperature is f C. and its intensity of pressure

denoted by a column of mercury j) millimetres high.

Supposing that we knew the weight of i litre of air

when its temperature is o and its intensity of pressure that

of a standard atmosphere, denoted by a column of mercury

760 mm. high, we could answer the question by finding
the number of litres which would be occupied by the given
v litres if its state were changed from

(/;, t) to (760, o).
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But by (i) or (2) of Art. 28, if we put t'= o, /= 760,
-have

r _2 73 .^7

-^6o ~T'

Now M. Regnault found that the mass of

i litre of dry air at (760, o) = 1-293187 grammes . (2)

Hence the mass of v litres at
(/;, f)

is v multiplied by
this number. Denoting the mass in grammes by IP, we
have then

,...... (a)

in which, be it remembered, T is the absolute Centigrade

temperature of the air, p its pressure intensity estimated in

millimetres of mercury, v its volume in litres, and W its

mass in grammes.
For any other gas, if its specific gravity at (760, o) is

denoted by *, the mass of a litre of it in this state is

1-293187 xsgrammes, and evidently if W \$> the mass. of v

at (p, t),
we have simply

^r*...... 03)

The specific gravity of a gas is above assumed to be the

ratio of the weight of any volume of the gas to the weight
of an equal volume of dry air at (760,0) ;

but it is easy to

see that we get exactly the same result by taking the ratio

of the weight of a volume of the gas at (p, f) to the weight
of an equal volume of air also at (p, t),

whatever the pressure

intensity, p, and the temperature, t, may be, if it be true

that all gases have the same coefficient of expansion ; for,

equal volumes, v, of the two gases at
(/?, f) will become

equal volumes, ?;
,
at (760, o) since

v .p i
~~~~

I + at 760

and a is the same for both gases.
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33. The equation p = kp. From (ft) we see that if for

W
we write p, where p is the mass, in grammes, of the gas

per litre, we have

p being measured in millimetres of mercury.
Let p be measured in grammes' weight per square

centimetre, and let p be the mass, in grammes, per cubic

centimetre
; then, if we have I cubic cm. of the gas at

(p, ),
and this becomes x cubic cm. at zero and an intensity

of pressure of 76 x 13-596 grammes' weight per sq. cm.,

we nave x x 76x1^-596 _ ix/>

273 T (2)

Now the mass of I cubic cm. at the latter temperature

and pressure being - * grammes, the mass of x cubic

cm. is obtained by multiplying this by the value of x in

(2), and this mass is p, the density of the gas at (t,p), i.e.

the mass of i cubic cm. Hence we have

T
p = 2926-9 -p, ...... (3)

o

where p is in grammes' weight per sq. cm. and p in

grammes per cub. cm. Hence if we write the relation

between p and p in the form p = kp, we see that

T
k = 2926-9- .7

*

If /; is measured in dynes per sq. cm., we must multiply
this value of k by the value of g in dynes, i.e. by 981

(about). In this case, then,

gT
P = 29rf'9 P...... (4)
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(Observe that here * is the specific gravity of the gas
referred to air.)

If v is the volume of the gas at (p, T
7

),
and w its mass, we

have, by multiplying both sides of (3) by t\

iff

pv = 2926-9 -.T. (5)
o

It is sometimes useful to express p in kilogrammes'

weight per square decimetre, v in cubic decimetres, and tv

in kilogrammes ;
in which case (5) becomes

w
pv = 292-69

-
. T. .... (6)

It is usual to write (5) or (6) in the form

pv = RwT, (7)
O Q2 6* O

where R stands for the constant~ in the first case.
s

34. Formulae in English Measures. The equation

connecting the volumes, &c., of a given mass of gas in

English measures is

_vp_ _vy_
460 + 1 460 + V

'

To obtain the formula for the mass of air, analogous

to (a), Art. 32, we may either convert the metric formula

into English measures, or deduce a formula from special

observations on the mass of a given volume of air under

standard conditions. Dr. Prout found that the mass of 100

cubic inches of dry air at the temperature 60 P. at an

intensity of pressure indicated by 30 inches of mercury in

a barometer tube is 31-01 17 grains ;
in other words,

the mass of I cubic foot at (60, 30") is -0765546 pounds, (a)

Now if we have v cubic feet of dry air at (t,p], where p
is in inches of mercury, this would, by (i), become

520 vjj

30 460 + ^
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cubic feet at (60, 30), and multiplying this by the number

(a), we have

W= 1.327!^ (2)'
460 + f

for the mass, in pounds, of the given v cubic feet at (t,p),

the intensity of pressure, p, being supposed taken in inches

of mercury.
For a gas of specific gravity # (referred to air),

*
'

460 + 1
'

Ifjo is estimated in pounds' weight per square foot, and

460 + 1 is denoted by T, we have, with sufficient accuracy,

TIT _ I Vpg=
53'3 T'

T

where p is the density of the gas in pounds per cubic foot,

p its intensity of pressure in pounds' weight per square

foot, &c.

To obtain the analogue of (6), Art. 33, multiply both

sides by v
;
then

where w is the mass of the gas in pounds ;
or

pv = RwT,

53-3where R stands for

EXAMPLES.

1. If a cubic inch of water is converted into steam at 212 F.,

find the volume of the steam.

Result. 1696 cubic inches. Hence it is roughly true that

a cubic inch of water yields a cubic foot of steam.
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2. Calculate the mass of air in a room whose dimensions are

1 8, 1 8, and 10 feet, the temperature being 6o
c

F. and the

barometer standing at 30 inches.

Result. 248 pounds.

3. If I pound of water is converted into steam at 212 F. at

an intensity of pressure of 15 pounds' weight per square inch,

find the volume of steam in cubic feet.

Result. 26-66.

4. If any volume of water is converted into steam at t F.

under a pressure of p pounds' weight per square inch, show
that the ratio of the volume of steam formed to that of the

water is about

460 + 1

""

(This is called the relative volume of steam at the tem-

perature t.)

35. Barometric Formula. We are now in a position to

deduce a formula for the height of a mountain, by assuming
the temperature of the

air to be constant

within these limits.

The latter assumption
would often be far

from the truth, but

we shall presently see

how it can be cor-

rected.

Let A, Fig. 56, be Fig. 56.

a point at the base of

the mountain where the height of the barometer is jo mm.
;

let P be a point at a height of z decimetres above A, and

at P let the barometric height be p mm.
;

let Q be a point

close to P at a height dz above P ;
let t be the temperature

of the air at P.
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Imagine a horizontal area of I square decimetre at P
;

then the atmospheric pressure on this area is the weight of

the column of air standing on it and extending to the upper
limit of the atmosphere. Hence the difference of the

pressures on this area at P and Q is the weight of the

vertical column of air of height dz standing on i square

decimetre. But if the height of the barometer at Q is

p + dp mm., the pressure on this area is also the weight of

a column of mercury dp millimetres high. Hence

weight of 10 dp c.c. of mercury = weight of dz litres of air;

that is (p. 131)

pdz-i 35-96 ^p = .4645 --_, . . . (i)

which gives the relation between dp and dz. The integral

gives, if t is constant,

z = 673-962 (273 + *)lo&10
^,

z being in decimetres. If z is taken in metres, this becomes

with sufficient accuracy

,=
18400(1+^)10^.

. . . (a)

If the variation of gravity is taken into account, let p be

measured in grammes' weight per square centimetre, since

it matters not in what units p and p are measured in (2).

Then if r denotes the radius of the Earth,

dp _ r2

~dz~
~~

p = 2926-9 Tp,
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in which again we can put

P > +
where h

Q and h are the observed barometric heights at the

z2

two stations. Neglecting^ ,
and taking z in metres, this

equation becomes

z-z, = 18400(1+ -L)ioglo (i
+a}

Assuming r = 637 x io4 metres, and observing that

approximately, this equation gives

^-^ =
18400(1

+
^l)|i +-0025

The barometric readings /? , p in these equations require

slight corrections for temperature ; for we have assumed

that the mass of a cubic centimetre is 13-596 grammes,
which is true only if the temperature is zero.

Since the coefficient of expansion of mercury per degree

C. is- , a volume which was I c.c. at o would become
5550

c.c. at t while its mass remains 13-596; hence at

555
the temperature t the mass of I c.c. would be

) grammes,

nearly, and the mass of

io dp c.c. = 135-96 (l
- -;) dp ;

so that we must regard the height p observed at the tem-

perature t as corrected, or reduced, to (i )ff,
and hence
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at the base, where the temperature is / and the observed

barometric height is ^ ,
we must replacepQ by (

i - -
)/?

.

v

and at the top similarly use
(
i--)P instead of p.

ooo
These are called the corrected barometric heiglits. In the term

i H-- which occurs in (2) it is usual to take f as the
273

mean of the temperatures at the top and bottom.

If the Fahrenheit thermometer is used, the coefficient of

expansion of mercury may be taken as- , and the
IOOOO

corrected height is f I -

) .

V JOOOO'^

The formula in English measures which corresponds to

(2) is found in the same way to be

r(feet)
= 122-73 (460 + *) Iog10

-^,
. . (3)

where t is mean Fahrenheit temperature.

EXAMPLES.

1. The height of the barometer on the ground being 30 inches

and the temperature 32 F., what height corresponds to a fall of

i inch in the barometric height t

Ans. About 890 feet.

2. The temperature of the air being assumed at o C. and the

barometric height at the base of a mountain 76 cm., if the

mountain is 4600 metres high, what will be the barometric

height at the top ?

Arw. 42-74 cm.

3. At the foot of a mountain the temperature of the air is

66 F., and the height of the barometer 29-35 inches
;
at the top

the temperature is 50 F., and the barometric height 24-81 ;
find

the height of the mountain, assuming the coefficient of expansion
of mercury to be r^^ per degree F.

About 4590 feet.
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HYDRAULIC AND PNEUMATIC MACHINES

36. Water Pumps. The Common Pump. Let DB, Fig.

57, represent a vertical section of an iron cylinder termin-

ating in a much narrower cylinder

or pipe, BA, which dips into a well

from which water is to be raised.

In the cylinder DB, or barrel, works

a piston having a valve, v, which

opens upwards, the piston rod, r,

being connected at c with a lever,

fH, working about the fulcrum f.
At the top, ,

of the suction pipe

is a valve which also opens upwards.
Let the piston be at the bottom

of the barrel, the level of the water

in the well being A, and the pipe

and barrel both completely filled

with air.

When the piston is raised by
means of the handle, H, of the lever,

the valve v remains closed, and the

pressure of the air in the pipe opens Pig< ,^
the valve at B, the air in AB rising

and partly filling the barrel, its intensity of pressure also

diminishing. As a result of this diminution of pressure
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below its original (atmospheric) value, the atmospheric

pressure on the water forces some of the liquid into the

pipe. Let P be the level of the water in the pipe at the end

of the upward stroke of the piston. On the downwai'd

stroke of the piston the valve B closes and v opens allowing
the air in the barrel which the downward motion of

the piston tends to compress to escape through the piston

into the atmosphere, until the piston again reaches the

bottom of the barrel. On again raising the piston, the

valve v closes and that at B opens, thus allowing the air in

BP to expand and to diminish its intensity of pressure ;

and, in consequence, more water is forced up into the pipe,

and perhaps into the barrel. This process being continued,

the water ultimately reaches the level of the spout and

is thus driven out.

To find the height to which the water is raised in the pipe

by the first stroke of the piston, let A = area of cross-section

of barrel, a = area of cross-section of pipe, I = length of stroke

of piston, c = length BA, h = height of a water barometer, and
AP = x. The volume of air in the suction-pipe before the

stroke is ac, and its intensity of pressure is represented by h. At
the end of the stroke the volume of this mass is a(c x)+ lA,
and its intensity of pressure is represented by hx. Hence

(h x) [a(c x)+ lA} = ach,

= o,

which determines x.

When the water is flowing out of the spout, there will

be a tension in the piston rod on an upward stroke, which

is found thus. Let z be the vertical height of the piston above

the level A, and let z
f
be the height of the column of water

(which we may suppose to reach to any point, D, of the barrel)
above the piston. The valve at B being open, there is a contin-

uous water communication between A and the bottom of the

piston. Hence if w is the weight of a unit volume of water,
the intensity of the upward pressure exerted by the water on

the bottom of the piston is w (h z) ;
and the intensity of down-
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ward pressure exerted on the top of the piston is w(h+ z');

therefore the total downward pressure on the piston is w(z + z')A.
This is equal to T, the tension of the rod, if we neglect any
acceleration of the piston. Hence, approximately,

T = w.A.DA,
which shows that the tension of the rod is the weight of a

vertical column of water having the piston for base, and for

height the difference of level of the water in the barrel and that

in the well.

On the downward stroke there is a pressure in the rod,

which is approximately equal to the weight of the column
of water above the piston.
When the water is flowing out, the force required at //

fc
to work the piston on the upward stroke is T x

jj\>
where T

has the above value.

It is obvious that, for the working of the pump, the length
AB of the suction-pipe above the well must be less than

the height of a water barometer, i.e., about 34 feet
; and, owing

to imperfect fittings, AB must be considerably less than this

say about 25 feet.

In the middle ages a curious modification of the common

pump, called the bellowsjmmp, was employed in Europe. Instead

of a piston worked by a lever, fff(Fig. 57), a large bellows was
attached firmly to the top of the barrel, and the nozzle of

the bellows was the spout through which the water was forced.

The top of the barrel fitted into the interior of the bellows

through a hole in the lower board of the bellows
;
there was no

valve in the top board, but there was one opening outwards fixed

in the nozzle. The action was, of course, the same as that in

our modern pump.

The Forcing Pump. This is an instrument for raising

water to a great height. It differs from the previous pump
in having a completely solid piston.

To the barrel of the pump is attached the pipe through
which the water is to be raised. This delivery pipe is pro-

vided with a valve at D, Fig. 58, opening upwards, and

this pipe is represented as being provided with a spout and

K 2
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stop-cock by means of which the machine can be made to

act as a Common pump.
The action is the same as

in the previous. case.

On the downward stroke

of the piston, the valve at

B closes and that at D
opens, and through this

latter the water is forced

out of the barrel into the

delivery pipe, DV.
There is then a pressure

in the piston-rod, r, equal

to the weight of a column

of water having the piston

for base, and for height the

difference of level between

the piston and the water,

F, in the delivery tube.

On the upward stroke

Fig. 58. there is a tension in the

rod, whose value is the same

as in the previous pump.
The Fire Engine. This is simply a double forcing pump.

The figure (Fig. 59) represents the two barrels, P and Q,

as immersed in a tank, DEI, full of water
;
and from this

tank the pumps, which are both worked by the lever AB,
force the water through a hose connected with the chamber

C at Ji. The water is forced through this hose to the place

where the fire is to be extinguished. The action of the

valves is obvious in the figure. Such would be the arrange-

ment in a small fire engine, the tank DEI being filled

by buckets of water brought by hand.

When large fires have to be dealt with, a supply thus
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derived would be of no use, and the water which is pumped
through the hose must be derived from a well or other

reservoir by means of a suction pipe. The figure represents

at c the place where such a pipe can be attached to the

engine.
The chamber C is partly filled with water and partly

with air, and is called an air chamber. Such a chamber

may be, and often is, fitted to forcing and other pumps,
the object being to render the stream of water from the

delivery pipe at h continuous instead of intermittent ;

and this result is evidently secured by means of the

compressed air at the top of the chamber
; for, since

this air was originally at the atmospheric pressure (when
it filled the whole of the chamber), its intensity of pressure

after the chamber is partly filled with water is greater than

this value. This increased pressure is therefore continuously

exerted on the top of the water in the chamber and helps

to drive the stream through the hose.

The Hydraulic Screw. This is one of the most ancient

machines for raising water,, and is still employed in some
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countries. It is often called the Screw of Archimedes, be-

cause its invention is supposed to be due to the philosopher

of Syracuse. There is, however, reason to think that it

was first employed in Egypt.
As represented in Fig. 60, it consists of a pipe wound

spirally on an axis which is fixed in a position inclined to

the vertical, its extremities fitting into two solid supports,

Fig. 60.

A, B, the axis (and, with it, the screw) being able to revolve

freely. Both ends of the spiral pipe are open, and the

lower is immersed in the water which is to be raised to the

level 2).

The revolution of the screw can be effected in various

ways : in the figure it is represented as produced by the

revolution of a shaft C fitted with a toothed wheel which

gears with another fitted to the top of the axis of the screw.
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When the screw is made to revolve so that the lower

end comes towards us in the figure, water entering- at this

end continually drops to the lowest point of each part
of the spiral, and is thus carried continuously up to the top
where it is discharged.

There is a certain condition that must be satisfied by the

inclination of the axis of the screw to the vertical and the angle
of the spiral in order that the machine may be able to raise the

water. The condition is this : the inclination of the axis of the

screw to the horizon must be less than the inclination of the tangent
line of the spiral to the axis of the screw. To prove this, we may
put the matter thus : the axis of the screw must be so much
inclined to tJie vertical that it is possible to draw a horizontal

tangent to the spiral. This is obvious, because if we imagine a

single particle (suppose a small marble) entering the lower end
of the pipe, it would not drop down farther through the opening
unless there were in the pipe a place in which the particle
could rest under the action of its own weight and the reaction of

the pipe on it ; and at such a place the tangent to the spiral
must be horizontal.

The Hydraulic Screw is capable of a differential form. Suppose
the screw in Fig. 60 not to dip into water at its lower extremity,
but to receive into the upper end of the pipe at A a stream of

water from any source. Then the screw, being fixed exactly as

represented, would be driven by this stream in the direction

opposite to that in which it was caused to rotate under the

previous circumstances.

Now suppose that it is, as before, desired to raise water from

a well at the extremity B to a position D, and suppose that

there is available a stream of water at some lower level, repre-
sented by the arrow L. Let a second pipe be spirally wound
round the axis BA outside the tube represented in the figure and
in tJie reverse sense, its upper end terminating at the level L. If

the stream L is led into the upper end of this second pipe, it will

cause the whole machine to rotate in the sense required to raise

the water from the well by means of the internal spiral pipe.
The idea of the Differential Hydraulic Screw appears to

be due to the ingenious Marquis of Worcester, who published
his notions on this machine and on many others in a work called

A Century of Inventions, in the reign of Charles II.
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The Hydraulic Ham. This is a machine in which the

momentum of a stream of water is suddenly stopped, with

the result that a portion of the water is forced up to

a considerable height.
Let AB, Fig. 61, be a stout iron chamber to which

is attached a pipe P which admits a flow of water from

a stream or reservoir the level of which may be only

slightly higher than that of AB. The vessel AB is fitted

with a support, E, for a valve, v, which can move freely up
and down. When this valve falls, there is a free communi-
cation between the interior of AB and the atmosphere, and
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if AB is full of water, some of this water flows away through
the opening at v, and is wasted.

To the top of the vessel AB is screwed a chamber, C,

which has a valve c opening upwards, and also a valve

opening inwards. This latter valve is attached to a rather

weak spring fixed to a side pipe opening into the chamber

C. Finally, a supply pipe, S, is attached to the chamber C.

Imagine the whole machine free of water, so that

the valves c and v are down
;
and then let the stream flow

in at P. At first the water will rush through the opening
at v

;
but soon the rush of water will close this valve, and

at this instant, the water being suddenly checked, some

will be forced through the opening at c. This valve will

then close and v will drop, allowing an outflow again from

the vessel AB. The same process will be again and again

repeated until the water forced into C rises in the pipe

S. The upper part of the chamber C contains imprisoned

air, the pressure of which serves to keep the flow up the

pipe S continuous. The valve v falling and rising thus

regularly, the machine is self-acting. After a long time

the air in the air chamber C would be absorbed by the

water, and thus the advantage of an air chamber C would

be lost. The object of the snifting valve s is to prevent this,

and the air is renewed as follows. When the valve v drops,

the intensity of pressure immediately under it is that of the

atmosphere, and therefore the intensity of pressure of the

water at s is less than that of the outside air, so that

(as the spring which closes s is a weak one) this valve s is

forced inwards, thus allowing some air to enter the water ;

and this air when the valve c is next opened will rise to

the top of C and replace the air absorbed by the water.

(It must not be supposed that the forcing of water

by this self-acting machine to a height vastly greater than

that of the source whence the water was derived involves
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any contradiction of the principle of Work and Energy ;

for, it is by means of the kinetic energy generated by

gravity in the very large mass of water which flows into

and out of the ram that the comparatively small mass

of water is raised in the pipe.)

The Hydraulic Ram was invented in 1772 by Whitehurst

of Derby, his machine, however, not being self-acting.

With him, instead of the self-acting valve v, there was a

stop-cock through which the water flowed
;
and it was on

the sudden closing of this stop-cock that the water was

forced through the valve c.

37. Air Pumps. The Common Air Pump. In Fig. 62,

B is a cylinder or barrel in

which works a piston with

a valve, c, opening upwards.
The barrel is screwed, or

otherwise firmly attached, to

a plate, D, through which

x^ =::

^\ runs a groove which com-

II \\ 1
B municates with the interior

of the barrel through an

opening which can be closed

by a valve a
;
the other end,

n, of this groove opens up

through a large plate PQ,
the upper surface of which

is perfectly flat. On this

plate is placed a large glass

vessel, A, called the receiver,

the mouth of which rests oc the plate PQ, ; the rim of the

receiver is ground, and it fits the plate so accurately that

the junction is air-tight, especially as a layer of grease is

rubbed on the rim before it is placed on the plate.

The object is to remove the air, partially or completely.

Fig. 62.
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from the receiver, and therefore from any body or vessel

that may be placed under it.

The manner in which this is effected is obvious from

the figure. Suppose the piston in the lowest position in

the barrel
;
then when it is raised, a vacuum tends to form

above a, so that the air of the receiver raises this valve

and fills the barrel at the end of the stroke. On the

descent of the piston, a closes and c opens, and the air in

the barrel is thus expelled into the atmosphere. This pro-

cess is repeated many times, with the result that the air in

A is greatly diminished in mass.

To calculate the degree of exhaustion after n strokes of

the piston, let the volumes of the receiver and barrel be A
and B

;
let the original intensity of pressure of the air in A

be^? ,
and Iet'j)1 ,p2 , pz ... be the intensities after i, 2, 3, ...

strokes.

Then after the piston has been raised the first time the

mass of air whose volume and intensity of pressure were

(A, p )
becomes (A + B, p^ ;

hence

(A + B) Pl = Ap ...... (i)

When the down stroke is ended there is a different mass

of air in A, and it is denoted by (A,pj) ;
and this same

mass of air is denoted by (A + ,j)^) at the end of the

second upward stroke
;
hence

(A + 3)pt = Ap l
...... (2)

Similarly

(A + B)p3 =Jptt
.... (3)

Hence, by multiplication,
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which gives the final intensity of pressure. If Wn is the

weight of the air finally left, and W^ the original weight,
we have from (a) of Art. 32,

and a similar relation between the final density, pn,
and the

original p .

For the very high exhaustions required in the globes of

incandescent electric lamps, and in the interior of vacuum

tubes, an air pump of this kind would be quite insufficient,

because, after the exhaustion has reached a certain limit,

the pressure of the gas is insufficient to raise the valve a.

Condensiny Air Pump. When
it is desired to fill a vessel, A,

Fig. 63, with air or any other

gas at a given intensity of

pressure, a condensing pump
is employed. This machine

consists of a cylinder or barrel,

fitted with a solid piston, and

having a valve, c, opening
downwards. At the side of

the barrel there is attached a

pipe having a valve, a, opening
inwards. When any other gas
than air is to be forced into

A, the vessel supplying this

gas is attached to the pipe at

a. The valve at a opens while

the piston is raised, and the

p. 6
barrel is filled with the gas.

When the piston is lowered,

a closes, c is forced open, and if the stop-cock, s, fitted to

the vessel A is properly turned, the gas enters A. On the
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upward stroke of the piston, c closes, a opens, and the

process is repeated.

Let A and B denote the volumes of the chamber A and
the barrel, and consider the gas which fills A after n strokes

of the piston. Let p be its intensity of pressure, and letpQ

be the intensity of pressure of the gas which fills the

barrel : if A is being filled with atmospheric air,^ is the

atmospheric intensity.

Then the gas whose volume and intensity of pressure are

(A, p) was once represented by

(A + n 13, p ),

supposing that A contained the gas originally. Then

The Geissler Pump. When very high exhaustions are

required, air pumps with valves and pistons are replaced by

pumps in which a column of mercury plays the part of a

piston. Of the latter kind is that represented in Fig. 64.

To a certain extent, all air pumps are identical in

principle. In each of them a given mass of gas occupying
a volume V is made to occupy a larger volume, F+ U, and

then the portion occupying U is mechanically expelled. If

this process could be repeated indefinitely, an exhaustion of

any degree desired could be obtained ;
but we have seen

that the raising of valves in the common air pumps puts a

limit to the process.

The mercury pumps of Geissler and Sprengel are free

from this drawback.

AB is a glass tube of greater length than the height of

the mercury barometer, having part of the Torricellian

vacuum enlarged into a chamber, A, of large capacity.
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Above A is inserted a two-way stop-cock, , which
in the position represented establishes a communication
between the chamber A and a side tube, /, fitted to the

Fig. 64.

tube BAd. This tube/ has a stop-cock, c, which in the

position represented closes / ;
but if c is turned through

a right angle it will establish a communication between

/and the external atmosphere at v. If a is turned through
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a right angle from its present position, it will close the

communication of A with y, and open one between A and

a vessel J to which the portion d is joined as represented.

The vessel / contains some sulphuric acid the object of

which is to remove aqueous vapour from air which may pass

over it
; and, by means of a stop-cock, t, J communicates

with a very stout indiarubber tube, np, which is connected

with the vessel G which is to be exhausted.

To the vessel / is connected a truncated manometer,
that is, a bent glass tube, mr, containing mercury which

when the air in / is at atmospheric pressure quite tills the

leg m. If the air in / is completely removed, the columns

of mercury in the legs m and r will assume exactly the

same level.

To the end B of the tube BA is attached a stout flexible

tube T, which is also fixed to a large reservoir, C, of

mercury.

Suppose now that c is turned so as to establish com-

munication betweenf and the atmosphere at v, and that a

is in the position represented (i. e., closing communication

of A with d) ;
and let C be raised until the surface of the

mercury in BA reaches the stop-cock a, thus expelling all

the air from A through fv. Then turn a and t so as to

admit air from G through / and f/, and lower C to its

original position. The air of G now occupies the volume

G -f A together with the volumes of the communicating
tubes.

Turn t so as to break communication with the rarefied

air in G, and then turn a so as to establish communication

between A and the atmosphere at v. Again, raise C until

the mercury in BA drives out the gas from A into the

atmosphere ;
and repeat the process of establishing com-

munication with G, &c. In this way, by repeated operations,

the air in G is exhausted almost completely. By this
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pump the air left in G can be reduced to an intensity

of pressure represented by only ^ of a millimetre of

mercury.
The Sprengel Pump. Fig. 65 represents this pump,

in which, as in the Geissler,

the vessel, G, to be ex-

hausted is made part of the

Torricellian vacuum of a

barometer tube, H.

A funnel, F, prolonged
into a narrow tube fitted

with a stop-cock, f, is

supported in a vertical

position (support not repre-

sented in figure) and dips

into a wide tube, B, also

supported. is connected

by indiarubber tubing with

a narrow vertical tube, C,

above which is a large

chamber, A, open at the

top, and fitted with a

stopper, s, the tube D
being, like C, connected

with the chamber. D is

connected by indiarubber

tubing with the vertical

tube /, which communi-

F} 6
cates freely with the very
narrow tube H, the top of

which is connected with the vessel G, and the bottom

of which, curved up a little, dips into a vessel V full of

mercury. There is an overflow from V to a trough T, as

represented ; and there is a clamp, c, by means of which
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communication between D and / can be established or

broken. The vessel G is provided with a stop-cock, y.

The order of operations is as follows. The tubes being-

all completely occupied by air, fix the clamp c, remove the

stopper *, lower the system of tubes D, C, and pour mercury
into F and through its tube into B, until this mercury

completely fills the tubes C, D and the chamber A. Close

A with the stopper s, and raise the system C, D to its

original position ; open the clamp c, and let the mercury
run from B, C, D into / up to the top, expelling air from 11

through the mercury in V. The mercury coming over at a

into H will occupy a certain portion of H. Now let the

stop-cock, ff, be turned so that G is connected with the upper

part of //. Mercury may be poured into F to keep up the

flow from a through H, and the rate of supply of this mercury
can be regulated by turning the stop-cock/"more or less.

Now as each drop of mercury falls down through 77, it

forces the air in front of it down through the end ofH
;
and

hence the gas of G which keeps flowing into the upper part

ofH is perpetually driven down and out by the successive

drops of mercury which fall over from #. If the mercury
in A has fallen down through D into /, //, and F, the

chamber A is a vacuum.

When the exhaustion of G has not been carried very far,

the successive threads of mercury falling down H (and

represented in the figure) succeed each other comparatively

slowly, and they can be seen forcing the gas which reacts

against their fall
;
but when the exhaustion is nearly com-

plete, these drops fall much more freely through the now
exhausted space ;

and when there is only a very small

quantity of gas left in
,
the drops falling from a on the

top of the mercury surface, H, produce a sharp metallic

sound, like that of a water hammer. This sound is an

indication of a high degree of exhaustion.
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When the exhaustion is complete the surface of the

mercury in H will be at the barometric height above the

level in V, and the difference of the level of the mercury in

B and C will also be the barometric height.

The object of allowing the tube from F to dip into a

much wider tube, Bt is, partly, to let any air that may be

carried down with the mercury from F escape into the

atmosphere through the mercury in the wide tube, and

partly to avoid filling F a very great number of times ;

this incessant filling will hot be necessary if the tube B is

very much wider than the other tubes.

The object of turning up the end of the tube H in the

mercury in V is to allow the gas (whatever it may be) that

is expelled from G through this end to be collected in

another vessel, a tube from which is led to the point at the

end of H.

The object of having the tubes C, D and the chamber A
is (when A is vacant of mercury) to catch in this chamber

any air that may have been carried over by the mercury
from F, so that the exhaustion in the tube H shall be

performed by mercury devoid of air. Hence the chamber

A is called an air trap. So far as the principle of the

Sprengel pump is concerned, we might dispense with the

tubes C, D and the air trap, A, and connect B directly with

/ and the Sprengel pump is, in fact, usually so represented.

38. Manometers. A manometer is an instrument for

measuring the intensity of pressure of a condensed or an

exhausted gas. The instrument has various forms, and the

principle of all will be easily understood from that repre-

sented in Fig. 66.

Let HFED be a vertical bent glass tube, having a portion,

ED, of one leg enlarged into a capacious reservoir, and let

two necks C, D, project from this reservoir so that vessels

may be connected with the reservoir by means of india-
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rubber tubes fitting on C and D, The leg- IIF is closed at

the top.

Suppose the cross-section of this leg- to be uniform, as

also that of the reservoir except near its ends. Let mercury
be poured into the instrument, and when the air thus

imprisoned in HF assumes the temperature and pressure of

the surrounding atmosphere (which enters at C and D] let

AB be the level of the mercury in both legs, and let the

number i be marked on the leg HF where the surface of

the mercury stands, this point being, of course, in the

prolongation of BA. The number indicates that when the

air in HF occupies the length ///, at a

given temperature, its intensity of pressure
is i atmosphere. Let c be the length ///.

Now suppose that it is desired to fill a

globe, or other vessel, with air at a great

pressure and to measure the intensity of

the pressure. Let the vessel be connected

with the neck (?, and let D be connected

with a condensing pump. When this pump
forces air in through D, and therefore

through C into the vessel, the surface of

the mercury falls in the reservoir ED and

rises in the tube HF. After the pump has

been working for any time, let n atmo-

spheres be the intensity of pressure of the air in the

reservoir (and therefore in the vessel which was to be

filled) ;
let PQ be the depressed surface in the reservoir,

and let the surface of the mercury in HF be at x, which is

as inches or millimetres above the level AB. If the

intensity of pressure of the air in the reservoir is n atmo-

spheres, the number n is to be marked at the level x on the

tube HF. Let the depth of PQ, below AB be y inches or

millimetres
;
a = area of cross-section of HF, A = that of

L a

Fig. 66.
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the reservoir
;
and let h inches or millimetres represent

an intensity of pressure of I atmosphere. Then the dif-

ference of level between the point x and the surface PQ
being- x +y, and the volume of the air in HF being- now
a (c x) with an intensity of pressure denoted by nh xy,
we have by Boyle's law

a(c x] (nk xy] ac/i.

But evidently Ay = ax ; hence

a(c x] j
nil

(i +-j)# \ ach = o,

which determines the number, n, to be marked on any

part of the tube.

39. Hydrometers. These are instruments for the deter-

mination of the specific gravities of

liquids and solids. We shall describe

two only.

The Common Hydrometer, Fig-. 67, is

used for finding the specific gravities of

liquids. It consists of a glass bulb, or

cylinder, A, terminating at one end in

a long- narrow graduated stem, and at

the other end in a small bulb, , which

contains a little mercury, the object of

which is to keep the instrument vertical

when it is immersed in a liquid.

Ifwhen immersed in one liquid it floats with a volume v

immersed, and in another with a volume v', the specific

weights of these liquids being w and w', respectively ;
and

if W is the weight of the instrument itself, we have

v . w = W
;

v
f
. w' = W,
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so that the specific weights arc inversely as the volumes

immersed.

The volume of the portion Aft irrespective of the stem

can be found by graduating- the stem (supposed of uniform

bore) into any number of equal parts, and then observing
the weight, W, of the instrument. Let masses ji, p' be

successively attached to the top of the stem, and with

these let the instrument float in water up to the nth and

w'th division, respectively. Then if V is the volume A ft,

and a the volume per division of the stem,

( F+ no) w = W+p ; (V+ na} = W'+p',

which determine V and a.

If when the hydrometer is immersed in two different

liquids the readings on the stem are n and n', we have

from (i)
w V + n'a

which shows that if a is very small, n and n must be very

widely different, i. e., the instrument is exceedingly sen-

sitive to small differences of specific weight.
Sikes's Hydrometer is a form of the above in which

the stem is a very thin flat strip of metal, for which,

of course, a is very small.

Nicholsons Hydrometer. This hydrometer is employed to

measure the specific gravities of both solids and liquids.

It consists of a hollow metallic cylinder, A, Fig. 68, having
a very fine stem on which there is a fixed mark, P ; the

lower end of the cylinder is connected by a wire with a

closed cone, D, which is heavy enough to keep the stem

vertical ; the base, C, of this cone serves as a platform on

which a solid body can be placed ; the stem terminates in a

cup, ft, in which solids can be placed.
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To find the specific gravity of a solid, place masses in B
until the mark P is just sunk to the surface of the water

;

then place the given body in B : this will cause P to sink

lower
;
remove weight from B until P again reaches the

surface ;
if the weight removed is W,

then W is the weight of the given

body. Now remove the body from

B to the platform C, and add weight,

W, to B until P sinks to the surface
;

then W is the weight of a volume

of water equal to the volume of the

W
body ;

and =-, is the required specific

gravity.

To find the specific gravity of a

liquid, let H be the weight of the

hydrometer itself; let the instrument

be immersed in the given liquid ;
add

weight, p, to B until P sinks to the

the weight which must be added

to sink to the surface when the

Fig. 68.

surface ;
let pQ

to B to cause

be

P
instrument is immersed in water

;

specific gravity of the given liquid is

then evidently the

H+p



CHAPTER VII

STEADY MOTION UNDER THE ACTION OF GRAVITY

40. Steady Motion. "When a fluid is in motion and

we confine our attention to any point, P, in the space

through which the fluid moves, it will be readily under-

stood that the magnitude and direction of the velocity

of the molecule which is passing through P at any instant

may not be the same as the magnitude and direction of the

velocity of the molecule which is passing through P at any
other instant. If these should be the same at all instants,

and if a like state of affairs prevails at all other points,

the motion is said to be steady.

It is obvious, for example, that if a vessel is filled from

a large reservoir of water, so that it is kept constantly full,

while the liquid is allowed to flow out from an aperture

made anywhere in the vessel, the motion at any fixed point
in the vessel will be the same at all times.

41. Methods of Euler and Lagrange. It is at once

obvious that the problem of the motion of a fluid acted

upon by given forces may be attacked by two different

methods. For, firstly, we may make it our aim to discover

the condition of things i.e., the magnitude and direction

of the resultant velocity, and the pressure intensity at

each point, P, in space at all times, and thus, as it were, to

obtain a map of the whole region or a series of maps, if the

motion is not steady exhibiting the circumstances at each

point as regards velocity and pressure.
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Or, secondly, we may make it our aim to trace the

path, and other circumstances, of each individual molecule

throughout its whole motion.

The second object is much more difficult of attainment

than the first, and, moreover, is not generally so desirable.

The first method is sometimes called the statistical, or the

method of Euler ; the second the historical, or the method

of Lag-range.
42. Flow through a tube

;
work of gravity. Suppose

a column of water to occupy at any instant a length AB of

Bl=

Fig. 69.

a straight vertical tube of uniform cross-section, and let the

end B of the tube be open.

If in a small element, At, of time a mass, Am, of water

flows out, what is the work done by gravity on the water

during this interval ?

Divide the tube by a series of very close horizontal planes,

P, Q,R,... into sections such that the mass included between

each adjacent pair is A m. If A $ is the distance between the

middle points of successive layers, PQ, QR, &c., while Am
flows out the middle point of each layer will fall through
the height A s, and the work done by the weight of this

layer will be
Am . As or gAm . As,
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according as we use gravitation or absolute measure of force.

(If mass is measured in pounds and length in feet, the first

expression gives the work in foot-pounds' weight, the second

in foot-poundals.) If we use the first, the work is 2A m . A ?,

which can be written in either of the forms

Am (As + A/ + A*-" + ...),

(Am + Am' + Am" + ...) A*,

in which, of course, the successive distances A*, A*', A *"..

are all equal, and the successive weights AM, Am', Am",...

are also all equal.

Hence the work is

Am x AS,

where J/ is the weight of the whole column.

The first expression shows that the work done is the same

as if the mass Am which flows out at B fell through the

height AB of the column.

Precisely the same result holds if the shape of the tube

is that represented in the right-hand figure. Let it be

divided by close horizontal planes in the same manner
as before. If now Az is the vertical distance between the

middle point of the layer, PQ, and the middle point of

the next layer, QR, the work done in the descent of the

first layer into the position of the second is Am . Az, so

that the work done by gravity on the whole tube of liquid

while the quantity Am flows out at D is

Amx. z

in gravitation units, where z is the difference of level of the

ends C and D.t
This is again the same as the work of carrying Am from

Cto 1).
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N H

43. Stream Lines. The actual path of a particle of

a moving fluid is called a stream line. If at any point, A,

Fig. 70, we describe a very small closed curve and at each

point on the contour of this

curve we draw the stream line,

such as AP, and produce it in-

definitely, we obtain a stream

tube. When the fluid is a liquid,

the mass contained between the

normal sections of a tube at any
two points, A, P, must always
be the same

;
and therefore the

same mass of fluid crosses every

normal section of the tube per
Fig. 70.

unit of time. Hence if v is the resultant velocity of the

liquid at P and a- the area of the cross-section of the tube,

the product V(r

is constant all along the tube.

44. Theorem of Daniel Bernoulli. Consider at any
instant the liquid contained in the stream tube between the

normal sections at A and P, and suppose this liquid to

occupy the volume A'P at the end of an infinitesimal

element of time
;

let VQ , p ,
<TO be the velocity, pressure

intensity, and cross-section of the tube at A
;

let v, j),
or be

the same things at P
;
let Z

Q
and z be the depths of A and P

below any fixed horizontal plane; let A^ be the distance

between the cross-sections at A and A',, A being that

between those at P- and P'
;
and let w weight per unit

volume of the liquid.

Now apply the equation of work and kinetic energy to

the mass of liquid between A and P in the tube. The gain
of kinetic energy in the small motion considered is

kinetic energy of A'P' kinetic energy of AP,
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in which, as the motion is steady, the kinetic energy of

the portion A'P is common to the two terms, and therefore

disappears. Hence the gain of kinetic energy is

thatofPP'-thatofJ//',

v*~ v 2

or Am- > . . (i)
iff

where A m = weight of PP* = weight of AA'

.

The external forces doing work on the column of liquid

considered are

gravity, the pressure at A, the pressure at P.

The work of gravity is

Am.(z-zQ}, ...... (2)

by Art. 42.

The pressure at A is j) <T
O , and its work = j? <r . As

;
the

pressure at P is p <r, and its work = pa- . A s. Hence the

work of the pressure is

Am . . . .

-'(JP-M ...... (3)

since o- . A* = <r . A#
,

i. e., the volume PP = the volume

w

Equating (i) to the sum of (2) and (3), we have

+ _, = 5 + 5 _, . ... (4)

2,ff
w ig w

in other words, since A and P are any two points along

the stream line,

+ -* = C ...... (5)

at every point ,of the stream line, C being a constant for

the stream line chosen ;
but this constant may have

different values as we pass from one stream line to another.
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If, however, the liquid has a plane surface, such as DC
(Fig. 70), at each point of which v is practically zero and p
is constant, the constant C is the same for all stream lines.

The equation (5) holds all along a stream line even if in its

course the liquid flows along any number of fixed smooth

surfaces
;
but if it meets surfaces which it sets in motion

(as in a turbine) to the left-hand side must be added a

term depending, on the energy which it communicates to

them at the point to which v belongs.

This result is the theorem of D. Bernoulli.

If at P we draw a vertical line, PQ, of such length that

p=w.PQ,
the height PQ is called the pressure head at P. If also QR
is drawn vertically of such length that

v* = 2ff . QR,

QR is called the velocity head at P. Let AB be the pressure

head and BN the velocity head at A. Then (4) gives

PR =

where AL z Z
Q and is the perpendicular from A on the

horizontal plane through P.

Since PL is horizontal, it follows that RN is horizontal.

Hence the theorem of Bernoulli may be expressed in these

words : if at each point along a stream line there le drawn a

vertical line whose length = the pressure head + the velocity

head at the point, the extremities of all these vertical lines lie

in the same horizontal plane.

If the liquid has a horizontal surface, CD, at rest at

all points of which the intensity of pressure is constant

(e. g., that of the atmosphere), the extremities of these lines

drawn at all points of the liquid, and not merely along the

same stream line, will all lie in the same horizontal plane.

If CH is the pressure head on the surface CD (about 34 feet
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if CD supports the atmospheric pressure), the extremities

R, . . . of the vertical lines drawn at all points P, . . . lie in the

horizontal plane through //.

For a liquid in equilibrium, Q coincides with JR, since

QR = o, and it has already been shown that the extremities

of all vertical lines representing- pressure heads lie in the

same horizontal plane. The theorem of Bernoulli is the

generalization of this result for a liquid in steady motion.

An approximate method of indicating the value of p, the

pressure intensity at any point P in a moving liquid

consists in inserting a vertical glass tube, open at both

ends, into the liquid, one extremity of the tube being placed

at P. The liquid will rise to a certain height in this tube

and remain at rest. Thus, if the tube is so long that the

upper end is above the free surface CD, the liquid would

rise in it to the height PQ, the remainder of the tube being

occupied by air. Such a tube is called a pressure gauge ;

but it is evident that it does not strictly measure the pres-

sure, since the glass must, to some extent, alter the motion

of the liquid.

45. Flow through a small

orifice. Let Fig. 71 repre-

sent a vessel containing a

liquid whose level is LM
which flows out through a

small aperture made any-
where in the side of the

vessel, and let the thickness

of the side be so small that

the liquid touches the inner

edge, AB, of the orifice and Fig. 71.

thence passes out without

touching the outer edge or any intervening part of the

aperture.
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The curved lines in the figure represent the stream lines,

or paths of particles, the forms and positions of which cannot,

however, be determined mathematically.
We are obliged to have recourse to experiment for certain

facts concerning the issuing jet. Firstly, it is found that

after leaving the orifice AB, this jet contracts to a minimum
cross-section, CD, beyond which, of course, the jet widens

out again. This minimum cross-section is called the vena

contracta.

The ratio of the area of the vena contracta to that of the

orifice AB is called the coefficient of contraction.

For a circular orifice whose diameter is AB, if CD is

the diameter of the vena contracta, it has been found

experimentally that

CD
IB

=
'79'

so that if S is the area of the orifice and <r that of the

vena contracta,

It has also been found that the distance, 10, between the

orifice and the vein is somewhere between -39 x AB and

5 x AB, where, as before, AB is the diameter of the orifice
;

the uncertainty arising from the fact that in the neighbour-
hood of the minimum section the diameter of the jet varies

very little. All the streams which pass through the vena

contracta cut its plane perpendicularly. By consideration

of the general equations of motion, it will follow from this

fact that the intensity of pressure is the same at all points

in the vena contracta. At all points on the outer surface,

ACE, BDF, of the jet the pressure intensity is, of course,

the same as that of the atmosphere, if the jet flows into the

atmosphere ;
also the velocities at all points of the vein are
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equal ;
but in the interior of the jet this pressure intensity

does not exist, except at points in the plane of the vena

contracta.

Of course at the orifice AB the directions of motion are

not all perpendicular to the cross-section of the jet, neither

are the velocities all the same at points in this section.

46. Theorem of Torricelli. In the case of a jet escaping
into the air, the velocities of particles in the vena contracta

are expressed by a very simple formula.

In (4) of Art. 44, let p and z refer to a point, 0, in the

vena contracta while pot z refer to the point, TV, of the

stream line through which is on the free surface of

the liquid. Then p =j ,
as we have said above, and as

the velocities at the surface LNM are all very small, we

may consider v = o.

Hence 2

= W&,........ (a)

where A, or z z
,
is the vertical depth of the vena contracta

below the free surface LNM.
Hence when the particles reach the vena contracta, they

have the same velocity as if they fell directly from the free

surface. This is known as Torricelli's Theorem. Obviously
it holds with considerable exactness in the case of a small

orifice only.

If a liquid devoid of friction escapes from a small orifice

in a vessel in which the free surface is maintained at a con-

stant level, the velocity in the vena contracta is theoretically

given by the equation (a).

In the case of water, however, it is found that the velocity

is not quite equal to this amount, but is very nearly a con-

stant fraction, //, of the value given by (a). The fraction

p. is nearly equal to unity (about -97). We may therefore

Put
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Again, if S is the area of the aperture, and c denotes the

coefficient of contraction (Art. 45), the area of the cross-

section of the vena contracta is cS
;
so that the volume of

water issuing- from the vessel per unit of time is

cfj.S V iff/i.

If the unit of length is a foot and the unit of time

a second, this is the discharge in cubic feet per second, and

multiplying it by w, the mass per unit volume (in the case

of water 62 1 lb.), we obtain the mass discharged per second.

The product c^ may be taken as -62.

To find the time in which a vessel of any form, ACS,
filled originally to a level AS,

Fig. 72, with water will be emptied

through a small orifice at a point V,

let PQ be the level at any time /,

let z be the vertical distance between

PQ, and AB, let x be the depth of

V below PQ, S = area of orifice,

and A area of the section PQ of

the vessel.

Then in the time dt the volume

of the liquid discharged is that

between PQ and FQ', i.e., Mz\
but in this time the volume discharged at V is

62, S </zgx . dt,

if we can regard the velocity at each point of PQ as

practically zero. Also dz = dx, so that

62 S Vigx . dt = Adx.

Now A is known in terms of # from the shape of the vessel
;

hence if the depth of V below AS is A,

62 V 2-ff

[
h Adx

_____ , i

2,0 Jo ->/x
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EXAMPLES.

1. A cylindrical barrel, the area of whose cross-section is 12

square feet, and whose axis is vertical, is filled to a height of

4 feet with water ;
in what time will it be emptied through a

hole whose area is half a square inch placed in the bottom of

the barrel t (Take g = 32.)

Result. 46 27".

2. In what time will a cylinder of radius a feet be emptied
through a hole of radius r inches in the bottom, if the cylinder
was filled to a height h feet 1

7
1800 a2 I

Result. - h2
seconds.

3i ^
3. Show that if the level of the water had been kept for this

time at its original height, twice as much water would have
been discharged.

4. Find the time in which a vertical hollow cone of volume
V filled with water to a height h will be emptied through a

small orifice of area or at its vertex.

6 V
Result. - --- seconds.

3*x X<r .

5. If the level had been kept constant for this time, how
much water would have been discharged ?

Result, f F.

6. Find the time taken by a hollow sphere of radius r filled

with water to empty itself through a small orifice at the lowest

point.

Result. If V = volume of sphere, <r = area of orifice,

4F

3-1 xcrzgrr

47. Plow through a large orifice. The determination

of the discharge through a large orifice cannot be satis-

factorily accomplished by theory.
1424 M
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Suppose, for example, that the oriHce is a rectangle,

ABCD, with vertical and horizontal sides, and that LM
(Fig. 73) represents the level of the free surface in the

vessel, the flow being supposed to take place through the

orifice towards us as we look at the

t-%- figure.

Divide the area of the aperture

into an indefinitely great number

of narrow horizontal strips, ofwhich

that between the horizontal lines

m and n is the type.

Fig. 73- Let the depths below LM of

the lines AD and BC be h^ and

^
2 , respectively, those of the lines m and n being z and

z + dz. Let AD = d
; then, supposing that the aperture

between m and n alone existed, the volume of the discharge

would be given by (3) of last Article, in which S = bdz.

Denoting the product cp. by k, and by dQ the mass dis-

charged per unit time through the strip, we have

dQ = klw */ igz .dz...... (i)

Now the assumption that k is constant for all the strips

enables us to find Q, the total discharge ;
but clearly this

assumption cannot be strictly correct, for each strip does

not discharge as if it alone existed as an aperture.

Assuming k to be constant, we integrate (i) from

z = h^ to z ^
2 ,
and obtain

q = kbw Jw(k$-k$..... (2)

To calculate the energy per second which flows through
the orifice, if v is the velocity of the portion clQ, its

kinetic energy is

v2
. dQ, i.e. zdQ.
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Energy per unit time is called Power. Hence if dP
is the power of this flow,

dP = kbw

-Afi. . . . (3)

If in this expression length is measured in feet, time in

seconds, and w in pounds, since the unit of power called

a Horse-Power is 550 foot-pounds' weight per second, we

get the Horse-Power of the discharge equal to the right-

hand side of (3) divided by 550.

If AB is small compared with the depth /t
l} and if

h is the depth of the centre of area of the orifice, we can

easily find from (2) that

Q = kwS </~2gb, (a)

where S = the area of the orifice. For if AB = 2 a, we

have /
2
= h

(
i +

j)
> /^

= h(ij}, and expanding in

powers of
j ,

we see that the term ^ disappears, and (a) is

az

true if we neglect the small fraction r?
It/

As another example of the same kind, suppose the orifice

T
to be circular (Fig. 73), and that powers of

j beyond the

second are negligible. Then it will be found that

r2

q = Tiki* w Vzgh (
x -

r^p)
>

where h is the depth of the centre O.

EXAMPLES.

1. The Syphon. We now take a few common practical illus-

trations of the application of equation (4), Art. 44, which

applies to the motion of a liquid acted upon by gravity. The

si 2
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first of the simple examples is furnished by the common syphon
which is employed for the purpose of raising a liquid out of

a vessel and lowering it into another vessel. The operation

might, of course, in many cases be directly performed by taking
the first vessel in the hand and pouring out the liquid bodily
into the second

;
but if, as often happens, the liquid is

Sulphuric or Nitric Acid, which it would be most undesirable

to pour out with splashing, this method would not answer, and
a syphon is used. The syphon is a bent tube (usually of glass)

open at both ends, and with unequal branches.

Suppose M (Fig. 74) to be the vessel which it is desired to

empty into another (not represented in the figure), and suppose
the liquid to be water.

A bent tube, DABC, (the syphon) whose branch BC is longer
than the branch BD is first filled with water, and the apertures

at D and C held closely by the fingers.

The end D is then inserted into the liquid
in the vessel M, the fingers removed from

D and C, and the tube held in the hand.

The result will be a flow of the liquid

through C until, if D is kept close to the

bottom of the vessel, nearly all the liquid
is removed.

Let pQ
be the atmospheric intensity of

'g- 74*
pressure, which exists on the surface of

the liquid at A and also at C\ v
,
the

velocity of liquid on the surface A ,is nearly zero; if v= velocity of

efflux at C, z = depth of C below A, equation (4) of Art. 44

gives, since A DBG may be taken as a simple stream line.

2<7 W W
.. v = A/ 2gz,

so that the flow will continue all through if C is at a lower

level than D, Of course there will be a small residue of liquid

in M, because when nearly all has flowed out, air will enter the

syphon at D.

If the liquid to be removed is an acid, as sulphuric or nitric,

the syphon must be filled with it at the beginning by first

inserting the end D into the vessel and then sucking the air

out through C until the liquid rises in the syphon and falls in
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the leg BC to a lower level than A
;

and this suction may
be effected by joining another tube to the end C by means of a

short piece of indiarubber tubing which can be subsequently
removed.

2. Hero's Fountain. Hero of Alexandria (120 B.C.) con-

structed a fountain, which is represented in Fig. 75. It consists

of two glass globes, M and N, and a dish, DD. Each globe is

partly filled with water and partly with air at the atmospheric

pressure. The globes are fitted with

necks and are held together by two glass

tubes, A, B, each open at both ends, ////''"*$''""
which pass through necks fitted to the

globes. The extremities of A are in the

air in the globes ;
the lower extremity

of B dips nearly to the bottom of the

liquid in M, while its upper end barely

projects into the dish DD. A third tube,

C, open at both ends, passes through the

neck of N, its lower end dipping nearly
to the bottom of the liquid in N, while

its upper end projects beyond the upper
surface of the dish.

In this state of affairs the water is at

rest in both vessels, the intensity of

pressure on both water surfaces being

2>Q ,
that of the atmosphere.

If now water is poured into the dish,

it will fall through B into M and drive

some of the air into N where the surface

pressure on the water becomes greater
than p ,

and as a result the water from
N is forced up through the tube C into

the air.

To calculate the height to which it rises, let z be the

difference of level between the water in M and that in N
;

let

c = difference of level between that in D and that in iV; and
let h = the height of the top of the jet above the water in D.

Then, since the pressure intensity of the air in N = that in

M = w (z + c)+p ;
since the velocity of the water at the

surface in N is nearly zero, and is also zero at H, where the

pressure intensity ispQ ,
we have from (4) of Art. 44

Fig. 75-
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M

to

.. h = z,

i.e., the height of the jet above the water in D is equal to the

difference of level in M and N.

3. Mariettas Bottle. It is sometimes desired to produce
a narrow jet of water flowing for a considerable time with
constant velocity. Of course a very large reservoir with a very
small aperture made in the side would produce the result

;
but

such a reservoir is not always at hand. The result can also be

produced by means of a broad flask fitted with a stop-cock near

the bottom. Fig. 76 represents the flask.

The stop-cock (not represented) is fitted

at C, and the aperture is supposed to

be very small compared with the cross-

section of the flask. The flask is first

quite filled with water, the stop-cock

being closed. In the top of the flask

there is a neck fitted with a cork, and
into this is inserted a tube, IID, open at

both ends, the tube also being quite filled

with water.

Now let the stop-cock be opened, and

Fig. 76. water will flow out, because the atmo-

sphere presses at H and at the outside of

(7, and between C andH there is a column of water. The water
that first flows out comes from the tube HD alone, the flask re-

maining filled to its upper surface
; and, moreover, the velocity

of efflux will be variable as the level sinks in HD. But when
the tube is emptied of water, some air will be forced through D
by superior atmospheric pressure, and it will rise to the upper
part of the flask, and will begin to force down the water of

the flask.

This being the case, the intensity of pressure at D in the

water is^? ,
the atmospheric intensity, and we may assume that

pt is also the intensity all over the horizontal plane, LM,
through D, because the motion of particles in this plane is

very slow. The air at the top aided by the water above LM
will keep the pressure intensity approximately equal to p {)

at

points in LM other than D.
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Now let z = CM = vertical distance of orifice below D, the
lower extremity of the tube

;
let V

Q , pQ in (4) of Art. 86 refer

to D, while v is the velocity at C. Then, since p is also the

pressure intensity at C,

zg

which shows that the velocity is constant whatever the position
of the upper surface, AB, of the water in the flask.

The tube must, of course, have such a position that D is

above the aperture. If the water, instead of escaping into the

atmosphere, escapes into a medium (gaseous or liquid) in which
the pressure intensity at G is p, we shall have

*-*(+*?)
This vessel is known as Mariotte's Bottle.

4. Thomsons Jet Pump. If water flows with steady motion

through a horizontal pipe of variable cross-section (Fig. 77), the

Fig. 77.

pressure intensity at a narrow part of the pipe is less than it is

at a broad part. Let A be a part at which the section is broad

and B a part at which it is narrow
;

let v and p be velocity
and pressure intensity at A, and i/, p' those at B

;
let S and tf

be the cross-sections at A and B
;
in a small interval of time,

At, let the water at A come to A' and that at B come to B'.

Employing the equation of work and energy to the mass of

water in the pipe between A and B in occupying the space
between A' and B', the work done on it is pSAx p'&Ax',
where A a? is the distance between the sections at A and A', and

Ax' the distance between those at B and B'. Also, as at p. 155,
v'

2 v2

the gain of kinetic energy is wtfAaf, wSAx .
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Hence
^2 2

pS&x-p'ff&af = w&'Ax' .
--- wSAx .

.

2 <7 iff

Now, since the liquid is incompressible, S'&xr = SAx; hence

But Aa; = v Af, and Arc' = v'A<, .. ? = V, .*. r'>v,
and (a) shows that p <p-

On this principle is founded Professor James Thomson's jet

pump which can be employed for draining marshy land.

ABC (Fig-. 78) is a horizontal pipe with a narrow

cross-section at 7?, into

which is fitted a ver-

tical pipe, D, which

is plunged into the

marshy soil. This pipe

D ends inside the pipe
ABC in a nozzle situ-

?8 - ated near B. A steady

flow of water from a

reservoir enters at A under atmospheric, or nearly atmo-

spheric, pressure. At B the pressure is much less
;
and

if D dips into water at atmospheric pressure, this water

will rise and, passing- through the nozzle (if the pipe D is

not very long), will be carried through B and discharged

through the mouth C wherever desired.

The difference between the water pressures at A and B
(Fig. 78) can be exhibited by inserting vertical glass tubes

into the pipe at A and B. The water will then ascend

from the pipe into these tubes and will stand at a higher
level in the tube at A than in the tube at B. If the water

in the tube inserted at A reaches to a point 77 in the tube
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and the water in the tube at B reaches to H' t and if we
VL

prolong AH to K so that HK =
,
v being the velocity

iff v '2

at A, and similarly prolong BH' to A' so that H'K' = >

v' being the velocity at B, the points K and A'' will stand

at the same level, which will be that of the water in the

reservoir from which the pipe AB is supplied. This follows

from equation (a).

48. Theory of Turbines. In connexion with the

motion of water along surfaces which are themselves in

motion, the following result in elementary dynamics is

useful:, if a particle moves under the influence offorce from
one position to another, the change in its moment of momentum

about anyfixed axis is equal to the time-integral of the moment

of theforce about the axisfrom the one position to the other.

Let a particle of mass m (pounds,

suppose) at the point P, Fig. 79, have 0'

at the time t a velocity v represented

by PQ ;
at the end of an extremely

small interval dt let its velocity be

represented by the vector PR
;
then the

vector QR, or PS which is equal and

parallel to QR, is a . dt, where a denotes

the resultant acceleration of the particle

at P. Then by Newton's Second Axiom PS is the direction

of the resultant force acting on the particle,
and this

force, in gravitation units (pounds' weight) is -
/

Now by the principle of moments, since the vector PR is

the resultant of PQ and PS, the moment of PR about any

axis, represented by 0, is equal to the sum of the moments

of PQ and PS about that axis;

.. moment of PR moment of PQ = moment of PS.
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Now m x PR and w x PQ are the momenta of m at the

beginning and end of the interval dt
; therefore the change

of moment of momentum = moment of madt = moment
of ff. Pdt, if P is the resultant force acting on the particle.

Hence if the initial and final moments of momentum of

the particle are M2 and Mlt and L denotes at any instant

the moment of the resultant force about the axis, we have

the integral being taken throughout the whole time interval.

Let AB, Fig. 80, be a smooth plane curve rotating

with angular velocity <o about an axis

at perpendicular to its plane, and

let a particle P be moving along the

rotating curve. Then if N is the re-

action of the curve at P, acting alongPN,
and if at the end of the time dt the curve

comes to A'B' and the particle to P', the

work which the particle does on the

curve may be calculated by supposing
the particle not to move along the curve,

but to be carried with it to Q, such that

PQ = (ardt, and to move along the curve,

considered fixed, from Q to P'. In this latter displacement
N does no work, and in the former N does on the curve

the work N. u>rdt .smty, where $ = OPN, i.e., u>.Nvrdt,

where -or is the perpendicular from or N. The work

which JV does on the particle is, of course, the same with

a negative sign.

Let AB (Fig. 81) be a vane forming a part of a wheel

which is rotating about a fixed axis 0, so that u is the

velocity of the end A, this velocity being perpendicular
to OA

\
and suppose a particle of water moving with

absolute velocity V on reaching A to enter along the vane
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without shock on the vane. Then if AT is the direction of

the tangent at A to the vane, this must be the direction of

the relative velocity of the water and the vane at A ; let

AC represent u and AD
represent V

\
then applying

u reversed to the particle of

water and combining V with

u reversed, we obtain the

relative velocity. Draw AC'

equal and opposite to AC;
then the resultant ofAD and

AC must be along AT. If a

is the angle TAG and the

angle DAC,

V sin (a 6) 21 sin a.

Fie. 81.

Since there is no relative velocity normal to the vane,

there will be no sudden impulse or blow received by the

water on the vane, and therefore no sudden loss of kinetic

energy.

The velocity V of the water can be resolved into a

tangential component, F
t , along AC and a radial com-

ponent, Tri along AO.

Now suppose a channel A to be carried by a wheel D
(Fig. 82) which rotates round with angular velocity <a

;

suppose a continuous supply of water from the outside

to be given to the wheel and the water to be discharged

from the channel at its other end into a space C surrounding
the axis and to flow away continuously out of the machine

in a direction perpendicular to the plane of the figure.

Further, suppose the angular velocity of the wheel to be

always the same by making the wheel do some work,

against external resistance, at a constant rate. Then the

state of affairs inside the channel will be the same at all
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times, so that, for example, the moment of momentum about

of the water which fills the channel will always be

the same.

Imagine the channel to be divided into a very great

number of sections i, 2, 3, 4, .... all of the same volume.

Let this channel revolve into the position A' in the time cU.

We have represented a particle m of water just outside A
which is ready to enter the channel, and which actually

enters it when the channel reaches the position A'. This

particle has the velocity requisite for avoiding shock, i. e.,

it has tangential

velocity 7
1
and ra-

dial Fr ,
as above.

Now let the con-

struction of the

vanes be such that

the water ejected

into the space OC
has its absolute ve-

locity at exit di-

rected towards ;

and consider the

change of moment
of momentum, about 0, of the water in A. The section

1 moves into the compartment i' in A'; the section 2

moves to 2', and so on; the last section (5 in the figure)
is ejected radially and has no moment ofmomentum about 0.

Now let M be the moment of momentum of the water

i, 2, 3, 4, . ...
;

also M is the moment of momentum of

m', i', 2', 3', 4', .... ;
and the new moment of momentum of

the water i, 2, 3, 4, is that of i', 2', 3', 4', . ... which is

M minus the moment of momentum of m'. If dw is the

weight of m, the moment of momentum of m is dw.aVty

where a is the outer radius of the wheel, i. e., the distance

Fig. 82.
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of m' from 0. Hence the change produced in time dt in the

moment of momentum of the water in A is

M dw . a 7\ M, or dw .aV
t \

and this is, as above proved, equal to dt multiplied by the

moment about of the normal reactions of the vane on the

elements of water I, 2, 3, 4, ....

IfN is the normal reaction per unit length of the vane at

any point P of the channel A, the total moment of force is

the integral being taken along the whole length of the

channel A. Hence

dw . aV
t

dw

= dtf N-nds.

If we denote
-j- by W, the weight of water entering the
(It

channel per unit time,

WaV
t-l-

But we have proved above that the work, dE, done in

time dt on the vane is wdtfN'erd*; hence

WaV
t _ i dE

g M dt

and since o> a is u, the circumferential velocity of the wheel

at its outer rim, we have

t _ dE

which gives the energy communicated per unit time by
the water to the wheel.

If the wheel has a large number of channels such as A,

then W is the total weight of water entering the chambers
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per unit of time. If, as is often the case, the direction of

the tangent AT (Fig. 81) to the vane is radial, V
t
= u, and

Wu2

the energy per second given to the wheel is -
.

/

The case just described is that of the Reaction Turbine,

so called because it is worked by the continuous pressure of

Fig. 83-

water flowing along curved blades, forming curved spokes
of a revolving wheel. When the water enters the wheel at

its outer rim and is ejected through the hollow axis of the

wheel the machine is called an imvardflow turbine.

Fig. 83 represents the main features of the inward flow

reaction turbine invented by Professor James Thomson.
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Water eaters a large pipe at P, flows round a chamber

QjRS, which surrounds another fixed chamber ABC. In

this latter are fixed certain curved blades, f, f,f,f, called

guide blades, the chamber ABC in which they are fixed

being- called the guide chamber. These fixed blades guide
the water to apertures on the outer rim of a wheel which

can rotate round a fixed central axis, and the spokes of this

wheel are a large number of curved blades or vanes such as

that already described in Fig. 81. The water from the

guide chamber ABC enters the wheel, of course, at apertures

all over its rim, although the ends of the guide blades reach

the rim of the wheel at only four of the apertures in the

rim. We can assume that the whole of the water flowing
into the rim at the left-hand side of any guide blade f
strikes the spoke vanes of the wheel at an angle not greatly

different from that at which the water at the end of the

bladef strikes the wheel there. Although the guide blades

/"have been said to be fixed, they are really capable of some

adjustment, each blade/"having a pivot fixed in it near the

end which is close to the wheel, and the rotation of these

blades is easily effected from the outside of the machine.

Now in the equation p. 171, since a is constructed once for

all and cannot be varied, we see that if u is to be constant

that is, if the wheel is always to be run at constant speed
while from any cause 7 varies, must be capable of being
altered ; and this is effected by slightly rotating the guide

blades/ round their pivots.

The chamber QJtS, from which the water enters the

guide chamber, is called the vortex chamber. The space
between these two chambers narrows very much up to a

point A close to the supply pipe P ;
and here the water

enters the guide chamber through an aperture at A, so

that the velocity with which it enters this chamber is

greatly increased.
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Fig. 83 represents a section, perpendicular to the axis of

the revolving- wheel, of the wheel itself and its surrounding-
chambers. The whole is, of course, boxed up in a casing

through which the axis of the wheel projects, so that none

of the interior of the machine (shown in the figure) is

visible from the outside.

To the revolving axis of the wheel is fixed on the outside

a pulley, round which is passed a belt which can be used to

drive any revolving machine, such as a dynamo, which is

to be set in motion by means of the turbine.

The efficiency of the turbine is measured by the ratio

of the useful work which it does in any time to the energy
of the water which enters it in that time. Assuming that

there is no loss by friction, the energy imparted to the

u . V
wheel by a weight W of water is W - -

(p. 173), where
/

V
t
and u are the absolute circumferential velocities of

the water at entrance to the wheel and of the wheel itself.

If the total head of the water before entering the machine

is h, the possible available energy per second is W .h, and

uV
the efficiency is ,'.

If W pounds of water are supplied per minute to the

turbine, V
t
and u being in feet per second, the horse-power

developed by the machine is

WuVt
^

33000,7
'

where g = 32, approximately.

We see the reason for arranging the blades so that the

absolute velocity of the water at exit from the wheel is

radial ;
for if the terminal section 5' (Fig. 82) had moment

of momentum about 0, the change of moment of momentum
of the water in the channel A would not be quite so great
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as dw.aV
t ,

and the energy given to the wheel would be

diminished.

If the height of the supply water above the turbine is ^,

and j is the pressure (atmospheric) on its surface, we have

by Bernoulli's theorem

,W 2ff W

where V and /; are the velocity and pressure at entrance to

the wheel, and if E is the work which the water does per

unit weight on the wheel and 7r
'

is the velocity of the

water at exit, each side of the above equation is equal to

^v

If we neglect F/, we get y

an equation which is only approximately true.

If the blades are radial at the outer circumference of the

wheel, u = V
t ,
and then we have

7? = ^,
which shows that the circumferential velocity must be that

due to half the total head of water.

There is a simple form of turbine, sometimes used when

only a small power is required, in which the guide chamber

is placed above the wheel chamber, and the water enters

through the common axis of these chambers. This is called

an axial flow turbine.

In all forms of turbines there are two conditions to be

satisfied for high efficiency, namely
i. The water must enter the wheel without normal

velocity on the blades, because normal velocity entails

shock, and this entails sudden loss of energy ;
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2. The water must leave the wheel with an absolute

velocity which is wholly radial.

Turbines are usually divided into two classes reaction

turbines and impulse turbines. These names are not accu-

rately expressive. By reaction turbines are meant those in

which the water when it reaches the wheel blades is not

only in motion but also under some pressure exceeding the

pressure of the atmosphere. If the water was originally

derived from a source having a height H above the level at

which it enters the machine, its total head at entrance

Fig. 84.

would be A + If, where ^ is the head due to the atmosphere.
When it leaves the wheel chamber its head is fiQ) and when it

is driving the wheel it has a head intermediate to liQ + //and

h>Q ;
in addition to this it has its kinetic energy when driving

the wheel. If, however, the turbine is such that when the

water begins to drive the wheel its head is simply JI
Q , i.e.,

if the excess head, H, is wholly turned into kinetic energy
before striking the blades of the wheel, the machine is

called an impulse turbine. An example of this latter kind

is the Pelton Wheel, represented roughly in Fig. 84.
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To the rim of the wheel are attached curved buckets,

.#, C, J), ... all round, only four of which are shown.

The water from a reservoir or from a stream in which a

dam is fixed issues through a sluice or through a pipe P
fitted with a nozzle, and impinges with considerable

velocity on the bucket
, running up into the interior of

the bucket. As the wheel revolves, the water falls out of

the bucket, and the bucket has a lip at its lower end over

which all the water is emptied shortly after the bucket has

left its lowest position, as at D. The buckets are not

spherical cups; their interior surfaces are more nearly

cylindrical, and each cup is divided by a partition into two

compartments separated by a diaphragm represented in

Fig. 85 by fg, which is in the direction of the radius of

the wheel.

Now, reverting to the case of a particle projected along a

smooth curve (Fig. 80) which

is moving in its own plane, let

vx and Vy be the components of

the absolute velocity of the

particle at P, while a and /3

are the components of the abso-

lute velocity of the point I of

the curve itself, parallel to two .

fixed axes of x and y. Then if

6 is the angle made with the axis of x by the tangent at P,

and w is the weight of the moving particle, the equations
of motion of the particle are

~^Tdt , r- = NCOS 0,

N 2
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Now the components of the relative velocity of the

particle and tube at P are vx a and v
v fS; and since the

resultant relative velocity is along the tube

_ A
= tan0.v-ax

Hence the above equation becomes

K~
)
fjj

fer) +K ~
/3)^ (* )

= -

So that if a and /3 do not vary with the time, we have

(tk-qja + ^-p)* = 2 _
Constant,

or, in other words, the relative velocity is constant in

magnitude.
Now in the case of the Pelton wheel the water entering

the bucket strikes the partition^, separating the two halves

of the bucket, and is directed sideways, as represented in

Fig. 86, which is a section of the bucket perpendicular

Each such section of the bucket can be considered as

a smooth blade
v-" . -,,

moving with a

velocity u in the

direction of the

water jet, and if

V is the velocity
\\
^ of the jet, V u

jj is the relative

*'
velocity of the

water and bucket

both at entrance

and exit. The absolute velocity of the water at exit in

the sense of the jet isu (V u), i.e., 2,n7; so that if

u = \7, the water will at exit drop out of the bucket
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with no velocity, and the whole of its original kinetic

F2

energy, W ,
will be abstracted from it by the wheel.

If, then, the wheel is made (by doing work in lifting, or

in driving machinery) to run with a circumferential velocity

equal to half that of the impinging water, the efficiency

would be perfect, on the supposition that no friction is

encountered in the machine.

The efficiency of the wheel for any value of u is thus

found : if W is the weight of water supplied to the wheel

in any time, the loss of energy of the water is

WV2- W^u-V}* t 4Wu(V-u] ^

2ff

'

2ff iff

and if this is wholly given to the wheel, the ratio of the

kinetic energy of the wheel to that of the water is the

ratio of this to

This is unity when u = \ V.

The water exerts a mean tangential pressure P on the

buckets which can be thus found : let s be the area of the

cross-section of the jet ; then, measuring backwards from

the wheel along the jet a length of column equal to (Fu) r,

the volume (Vu) T$ ofwater will strike the wheel in time r;

the absolute velocity of this water is changed from V to

iuV, .'. its change of momentum is, if w is the weight

per unit volume, 2togr( V- u)
z
,

and by the equation of impulse and momentum,

)
2

_.= JTT.
9

_
.1 :=

9
The Centrifugal Pump. Imagine the hollow central axis



1 82 Hydrostatics VOL. i

of the turbine wheel shown in Fig. 83 to be connected with

a vertical pipe dipping into a well at a depth of about 20

feet, or less, below the centre of the wheel, and that the

pipe P is connected with a vertical pipe bent at its upper
end over a tank. Suppose also that the whole of the pump
chambers and the pipe dipping into the well are completely
full of water. If the atmosphere is excluded from the pump
chambers, the pressure at the centre of the wheel is less

than atmospheric by the pressure due to the height of the

centre of the wheel above the well.

Now suppose the wheel to be driven by some engine

coupled with the driving pulley of the wheel in the sense

opposite to that represented in the figure. Then the water

in the chambers is set in motion, and consequently pressure

diminishes within it, and water ascends from the well.

Thus the whirlpool chamber and the pipe leading to the

elevated tank get continuous supplies of water raised from

the well, and the machine acts as a force pump for filling

the tank. A turbine driven backward in this way is called

a centrifugal pump. Such pumps are frequently used in

pumping water out of the boiler compartments of large war

ships, and also for drainage and for emptying docks.

49. Pressure of a jet on

B. a plane. Let AS, Fig. 87,

represent a column of fluid

striking a fixed plane at A,

and let v be the velocity of the

particles in the neighbourhood
of A. Then if the stream

vV;
flows continuously, the effect

A on the plane is a continuous

Fig. 87. pressure. The magnitude of

this we propose to find.

Measure backwards along the stream a length AQ equal
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to v.&t, where A is any infinitesimally small time
; then

all the particles in the column between A and Q will strike

the plane in the time A t. If 8 is the area of the cross-

section of the stream and 10 the weight per unit volume of

the fluid, the weight of the column AQ is wSv . A, and its

momentum is wSv^.Af. This momentum is destroyed by
the plane in the time A^

;
and ifP is the force, in gravita-

tion units, capable of destroying the momentum,

wSv*-- A/,

.

and -~ is the force, or pressure, per unit area on the plane.

If the velocity v is such as might be acquired in falling

p.
through a height k, and -~ is denoted by p, we have

p = zw/t,

which is the intensity of pressure that would be produced by
a statical column of the liquid of height 2/t. If the stream

is produced by a waterfall of height k, then a statical column

of double this height would produce the same effect on the

plane.

This result holds, with some modification, for the intensity

of pressure produced on the wall of a vessel containing a

gas. At each point inside the vessel the gas particles are

moving in all possible directions with very various velocities.

Now these velocities give a certain mean square of their

values, which mean square remains constant at all points of

the gas so long as the temperature remains constant. Let

v2 be the value of the mean of the squares of the velocities

of the gas particles at a point P, velocities being taken in

all directions round P. Now supposing that we fix on a
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single fixed direction, Px, at P, and consider only com-

ponents of velocities measured in that direction, what will

be the mean square of these at any instant ? Evidently
much less than v2

,
since in finding this the whole of each

velocity is taken and not merely a component of it. It is

proved in works on the kinetic theory of gases that the

mean square of components in a single direction Px is just

one-third of the total mean square, so that if we denote the

former by fB
2
, f^

2 i
$2,

The reasoning which applied to the unidirectional stream

A, Fig. 87, can now be applied to the gas, and we have

1
wv2

P---3'
g

for the intensity of pressure exerted on the wall of the vessel.

In this expression w is the weight of a unit volume of

the gas at the temperature of the gas. Suppose that we
use the C. G. S. system, and employ the formula for the

weight given in Chap. V. If k is a numerical constant,

we know that w = k-^ ,
where * and T are the specific

gravity and absolute temperature of the gas. Hence the

above equation gives

where
/tx

is a numerical constant, and v is the square root of

the mean square of the velocities of particles. This v is

called the '

velocity of mean square '. With the numbers

for the metric system, if velocity is measured in metres per
second and * is the specific gravity of the gas referred to

hydrogen (about 14-4 times that referred to air), we find

v = in '

Vf-
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EXAMPLES.

1. Water enters a horizontal pipe at an end where the area of

the cross-section is A square feet
;
the pipe contracts to a cross-

section B, and after this changes to a cross-section C at the

other end, where the water flows into the atmosphere, K cubic

feet being delivered per second
;
find the pressure intensities ut

A and B.

Result. Ifw = weight of a cubic foot of water, the pressure

wK2
/ i i \ .,

,
. wK"1

/ i i\
at A 1SA + (^- I,);

thatatlM8J + -_(_-_),

where p (per square foot) is the atmospheric pressure.

2. A turbine whose blades are radial at the outer rim receives

40,000 Ibs. of water per minute ;
the outer radius of the wheel

is i foot, and the turbine is to have a horse-power of 50 ;
how

many revolutions per minute must the wheel make 1

Result. Ifv feet per sec. is the circumferential velocity of the

40000 v* i

wheel, we have ; .
- = 50, . . v = 36-3 f/s, and

00 3 2 55 060
the number of revolutions per minute = - - x 60 = 347.

2 7T

3. A turbine whose blades are radial at the outer rim receives

W Ibs. of water per minute
;
the outer radius of the wheel is

a feet, and the machine is to develop m horse-power ;
how many

revolutions must the wheel make 1

Result.
*5 Im,
a V W

4. The inner and outer radii of a turbine wheel are b and a
;

the velocity of flow through the inner circumference is i of that

due to the head of water, and the outer circumferential velocity
is due to half the head

;
find the inclination of the vanes to the

inner circumference.

Result, tan" 1

86

5. The blades of a turbine at its outer circumference are

radial
; 500 Ibs. of water per second are supplied, with a head
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of 28 feet; find the total area of the inlet surface of the wheel
if the radial velocity at inlet is ^ of that due to the head,

taking g = 32.

Result. ^\/7~ square feet.

6. If the velocity of the ahove turbine wheel at its outer

circumference is 40 f/s, the head of water 49 feet, the radial

velocity at inlet
|-

of that due to the head, find the magnitude
and direction of the absolute velocity of the water at inlet,

Result. \/40-+ 6*, tan"1

(o- 1 5).

7. The outer radius of the wheel of a centrifugal pump is

a feet
;
a turning-moment of L foot-pounds' weight is applied

to the wheel spindle, and the pump raises W Ib. per second ;

find the tangential velocity of discharge of the water.

Result. ^ -

Wa

50. Fluid revolving about vertical axis. If a vessel,

represented in a vertical section by ACJ3, Fig-. 88, and

containing a fluid, is set rotating- round

a vertical axis, Cz, after a short time

the fluid, owing to friction between its

particles and against the surface of the

vessel, will rotate like a rigid body with

the angular velocity &>
; each particle,

P, will describe a horizontal circle with

this angular velocity, so that if PN is

the perpendicular from P on the axis of

Fig. 88. rotation, the resultant acceleration of

the particle is directed along PN from

P towards N, and is o>
2

.NP in magnitude. Denote NP
by r, and consider an indefinitely small particle of mass dm
at P

;
then the resultant mass-acceleration of this particle is

coPr.dm, ....... (i)

and this vector is directed from P towards N. [The reversed

mass-acceleration, u?rdm
t
is called the force of inertia of



CH. vii Steady Motion under Action of Gravity 187

the particle, or its resistance to acceleration. It is most

important to understand that this force of inertia is not

a force acting- on the particle, but one exerted ly it on the

surrounding- medium, or, generally, on the agent or agents

accelerating its motion. Thus, then, if a is the vector

representing the resultant acceleration of a particle, dm,

a force completely represented by

a. dm in absolute units, or

. dm in gravitation units,
t/

is the resultant force exerted ly the particle on the agents

acting upon it.

Now the fundamental principle of all Dynamics is this :

for each particle of any material system (whether rigid body,
natural solid, liquid, or gas) the resultant mass-acceleration

is in magnitude and direction the exact resultant of all the

forces acting upon the particle. These forces will, in

general, consist partly of pressures from the surrounding

particles, partly of attractions from these particles, and

partly of attractions from bodies outside the system. If we
consider the equivalence of the resultant mass-acceleration,

adm, to these forces under three separate heads, we deduce

three great principles of Dynamics. Thus, if we consider

that adm has

1. The same virtual work for any imagined displace-

ment of the particle,

2. The same moment about any axis,

3. The same component along any line,

as the whole system of forces acting on the particle, and

that this is true for every particle of the system, we have at

once the principles of

i. Kinetic Energy and Work,



1 88 Hydrostatics VOL. I

2. Time-rate of change of Moment of Momentum,

3. Motion of Centre of Mass,

for every material system. If the forces acting are

measured in gravitation units, their complete equivalent is

-
dm.~\

ff

Suppose that at any point, P, Fig. 89, we take as the

element dm a very short and thin cylinder, abed, of the fluid

having its axis along the tangent at P to

any curve AB. Let the length be = ds
;

let

<r be the area of the cross-section, ab, of the

cylinder ; let F be the external force per unit

mass exerted on the fluid at P, and there-

fore Fdm the force on the cylinder, not in-

cluding the pressure exerted on its surface by
the surrounding fluid ; let a be the resultant

acceleration of the particle ;
and let p be the intensity of

/*/73

pressure on the face al, and therefore p + -jr&*
that on cd.

Then dm = tvcrds, if w is the mass of the fluid per unit

volume at P
;
and if we resolve forces in the direction of

the tangent at P to the curve, we see that w<r^#.-has the

same component along this tangent, in the sense PB, as

di)
F.Wffds and

-j-ds.v,
the length of the arc s being

measured from A. Hence if a
s is the component of a along

the tangent at P and S is the component of F, we have

' = *-I^. (2)
g w ds

This equation connects the acceleration in any direction

with the force intensity and the rate of change of pressure

intensity in that direction.
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Now suppose the external force to be gravity. Taking
the right line NP (Fig. 88) as the direction of *, (2)

becomes toV dpw. =
-f- ; ...... (3)

ff dr

and again, taking the vertical downward direction at P
as that of #, (2) becomes

dp= fp
-,7P

....... (4)

where z is the depth of P below any fixed horizontal

plane.

Now p is a function of r and z only, so that

dp . dp ,

dp = ~dr + ~(h
dr dz

=
*>(^<lr

+ tty
..... (5)

*/

/CD
2

?'
2

\ ~

where C is a constant, which may be determined from a

knowledge ofp at some one point. If p is the value of p
at 0, the point in which the free surface cuts the axis

of rotation, and if is taken as origin, since r = z o at

0. we have C = j) ;
hence

2 .2

P=Po +w(^- +*)...... (6)

At all points on the free surface p = p^ , therefore the

equation of this surface is

showing that the z of every point on it is negative, i.e., all

these points are higher than 0. This equation denotes

nfi

a parabola whose latus rectum is r> , and the free surface is
*
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therefore a paraboloid generated by the revolution of this

surface round Oz.

If the vertical upward line Oz is taken as axis of x, and

a tangent at as axis of y, the equation of the parabola

is, in its usual form,

(8)

If the fluid contained in the vessel is a gas, equations

(2), (3), (4) still hold, and, in addition, p = Jew (Art. 33) ;

hence (5) becomes

dp i /c x

), ..... (9)P g

A ,
x

.-. p = Ae ....... (10)

where A is a constant to be determined either from a

knowledge of p at some point or from the given mass of

the fluid. Equation (10) shows that for a gas the free

surface and the surfaces of constant pressure intensity are

still paraboloids.

In the same way, if the vessel contains two fluids that

do not mix, their surface of separation is a paraboloid of

revolution. For if w, to' are their specific weights, we have

(if they are liquids)

w2
?-
2

p =w
(^

- +
z)
+ C for one,

o *

p' = w' (~--1- z] + C" for the other,v 2ff

and since at all points on the surface of separation p = p',

we have the equation of a paraboloid of revolution, as

before.
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EXAMPLES.

1. A cylinder contains a given quantity of water. If it is

rotated round its axis (held vertical), find the angular velocity
at which the water begins to overflow.

Let AOB represent the surface of the rotating liquid, the

points A and B being at the top of the cylinder ;
let r and h be

the radius and height of the cylinder, and c the height to which

the cylinder, when at rest, is filled.

Then since B is on the parabola, if is the depth of below

AB,

But the volume of the water remains unchanged, and it is the

volume of the cylinder minus the volume of the paraboloid A OB.

Tins latter is ^?.
2

. Hence
taT

^^c, ........ (2)

-12S&3
(3 )

The above is on the supposition that the water begins to over-

flow before the vertex, 0, of the parabola reaches the base, C, of

the cylinder. In this case, with any angular velocity, co, if PQ
is the level to which the water rises, and LM is the level at

which the water stands when at rest, it is easily proved that

depth of below LM = height of PQ above LM. . (4)

Take now the case in which c is so small in comparison with
/* that reaches C (or the base begins to get dry) before the

water begins to overflow. The angular velocity at which

reaches C is . Let o> = (i +n) ;
then if 0' (below

0) is the vertex of the parabola, we have

C0'=2n(i+n)c (5)
the height of PQ (the water level) above the base is 20(1 + n) ;

and if the free surface cuts the base in R, we have

RC =
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which is the radius of the dry circle on the base. The water
will begin to overflow when the height of PQ above the base is

A; i.e.,

= 7i

A,
r \l c'

(7)

which is quite different in form from (3) ; so that if c is in-

finitely small, i. e., if there is only an infinitely thin layer of

water put originally into the cylinder, it will not begin to over-

flow until co is infinitely great; and in this case CR = r, as it

should be.

2. A heavy cylinder floats with its axis vertical in a liquid
contained in a vessel which rotates uniformly round a vertical

axis
;
find the length of the portion of the cylinder immersed.

, ,
Let PQ, Fig. 90, be the level of

the liquid round the cylinder, and

PEDQ the immersed portion, the

free surface being APOQB, and
the vertex of the parabola.

Now, by the same reasoning as

that in p. 91, it is obvious that

the resultant action of the liquid
on the cylinder is the same as that

which the liquid would exert on the

liquid which would fill the volume

POQDEP; hence the weight, W,
of the cylinder must be equal to

-p-
the weight of this volume of the

liquid.
Let r be the radius of the cylinder and Om the perpendicular

from on PQ ;
then Om =

,
and the volume of the displaced

liquid

= Trr
2

. PE-vol POQ = itr*

hence if w = specific weight of liquid,

4 fJ

PE = W
T

4 y
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3. A vessel of given form containing water is set rotating
round a vertical axis, the vessel and the liquid being in relative

equilibrium; find the greatest angular velocity of the vessel

which will allow all the water to escape through a small orifice

at the lowest point of the vessel.

Let the vessel be ACS, Fig. 88, C being its lowest point ;

assume the free surface to pass through C, the latus rectum of

%9
the parabola being ^ ; then, taking C as origin, the tangent at

C as axis of y and the vertical upward line as axis of x, express
2 O

the condition that the parabola if = ~ x intersects the curve

ACB in no other point than C.

Thus, if the vessel is a sphere (with another small hole at

the top) of radius a, the parabola will be completely outside the

c 9
sphere if or = -

a

4. A cylinder whose axis is vertical is filled with a given
mass of gas and set rotating round its axis

;
if the gas is

assumed to move in relative equilibrium with the cylinder, find

the intensity of pressure at any point.
We have, measuring z from the top of the cylinder

, /w
2r2

\

dp = wd [
--

\- z ) ,v 29 '

have

..
k

Also if W is the weight of the gas put into the cylinder, we

where dl = element of volume at any point, P (Fig. 88). Now
if is the angle which the plane of P and the axis, Oz, of rota-

tion makes with any fixed vertical plane,
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Integrating with respect to r, the limits of r are o and a,

where a is the radius of the cylinder, so that the integrations in

r and z may he performed independently, the limits of z being o

and h. We easily find

which determines A.

5. If the cylinder is replaced by a spherical shell rotating
about a vertical diameter, solve the previous problem.

6. A hemispherical bowl containing a given quantity of water

is set rotating about a vertical diameter, find the angular velo-

city at which the water begins to overflow.

Result. If F is the volume of the water, a the radius of the

bowl,

7. If in the last case the angular velocity is increased beyond

the value f ) find how much of the bowl is dry.v a '

2 (1

Result. It is dry to a vertical height a above the
CO

2

lowest point.

8. If a hollow open cone with its axis vertical and vertex

downwards containing a given quantity of water is made to

revolve round a vertical axis, discuss the question as to the

possibility of emptying the cone by increasing the angular

velocity.

9. A narrow horizontal tube, BC, has two open vertical

branches BA and CD, water being poured into the continuous

tube, thus formed, to a given height. If this tube is set rotating
round a vertical axis through a point in BC, find the position
of the liquid in its state of relative equilibrium.

Result. If BO m, OC = n, the difference of level in the
2

two vei'tical branches is (m? n*).v
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10. A straight tube, AB, containing water is held inclined at

an angle to the vertical line at A
,
and the tube is set in rota-

tion with given angular velocity, co, about this vertical line ;

find the greatest length of column of liquid so that there shall

be no separation of the column anywhere.
Let x be the length of column ;

let P be a point in it such

that r and z are the distances ofP from the axis of rotation and
the horizontal line through B; then

At A we have p = wh, where h is the height of a water

barometer, and if I is used for -4,
co

2l
p = r2 2 Ir cot + 2 1 (h + x cos 6) x2

sin
2
9.

w

Now if P is zero anywhere in the column, the column breaks

there. Make it impossible for p to vanish for any value of r,

and we have

2 I (h + x cos 0) a:
2 sin

2 G > l
z
cot

2
6.

If we make these two sides equal, we have the limiting value

of x, viz.

I cos + V 2 hi sin

sin2

11. If in Q. 9 the lengths of BA and CD are each c and
the liquid reaches to their tops, and if is the middle point of

BC, prove that no liquid will overflow until the angular velocity
exceeds

V 2 y (h + c)

where h is the height of a barometer formed of the liquid, and
BC= 20,.

Taking as origin, z being measured upwards from OC,
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and since at D we have p = wh, we have

p w\h - (tf-r^-z + c .

2 J

Hence at

fi to? \
p =w [

li - a- + c
} ,

2<7

and when the liquid begins to overflow, the horizontal column

splits at 0, .'. p = o at 0. Hence the result.

12. In the last if EC alone is filled with liquid, find the

angular velocity which will cause the liquid to rise to a height k

in the vertical branches.

n 7,
Kesult. or

1 3. If in the last the upper ends of BA and CD are closed

before the motion begins, these branches containing air at

atmospheric pressure, find the speed necessary to raise the

liquid to a height k in the vertical branches.

ch

*~k
Kesult. w2 = 2y

a2 AT
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