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e [ntroduction

Fibonacci

Who was Fibonacci?

Leonardo Fibonacci, mathematical innovator of the thirteenth century,
was a solitary flame of mathematical genius during the Middle Ages. He was
born in Pisa, Italy, and because of that circumstance, he was also known as
Leonardo Pisano, or Leonardo of Pisa. While his father was a collector of
customs at Bugia on the northern coast of Africa (now Bougie in Algeria),
Fibonacci had a Moorish schoolmaster, who introduced him to the Hindu-
Arabic numeration system and computational methods.

After widespread travel and extensive study of computational systems,
Fibonacci wrote, in 1202, the Liber Abaci, in which he explained the Hindu-
Arabic numerals and how they are used in computation. This famous book
was instrumental in displacing the clumsy Roman numeration system and
introducing methods of computation similar to those used today. It also
included some geometry and algebra.

Although he wrote on a variety of mathematical topics, Fibonacci is re-
membered particularly for the sequence of numbers

1,1,2,3,5,8, 13, 21, 34, 55, . . .,

to which his name has been applied. This seéquence, even today, is the subject
of continuing research, especially by the Fibonacci Association, which pub-
lishes The Fibonacci Quarterly.

We shall study some elementary and interesting aspects of the Fibonacci
and related numbers in this booklet.



2 o Rabbits, Fibonacci Numbers,
and Lucas Numbers

Fibonacci introduced a problem in the Liber Abaci by a story that may
be summarized as follows. Suppose that

(1) there is one pair of rabbits in an enclosure on the first day of January;

(2) this pair will produce another pair of rabbits on February first and on
the first day of every month thereafter; and

(3) each new pair will mature for one month and then produce a new pair
on the first day of the third month of its life and on the first day of
every month thereafter.

The problem is to find the number of pairs of rabbits in the enclosure on the
first day of the following January after the births have taken place on that
day.

It will be helpful to make a chart to keep count of the pairs of rabbits.
Let A denote an adult pair of rabbits and let B denote a “‘baby pair™ of
rabbits. Thus, on January first, we have only an A; on February first we
have that A and a B; and on March first, we have the original A, a new B,
and the former B, which has become an A:

Number of Number of

Date Pairs A's B’s

January 1 At 1 0
/ N

February 1 A B 1 ‘ 1

March 1 A/ B \‘A 2 1

To continue the chart conveniently, we condense our notation as follows.
To get the next line of symbols, in any line we replace each A by AB and
each B by A. Thus, we have the representation shown in the table at the
top of the next page.

2
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Number of Number of

Date Pairs A’s B’s
March 1 ABA 2 |
April 1 ABAAB 3 2
May 1 ABAABABA 5 3
June 1 ABAABABAABAAB 8 5

We now see that the number of A’s on July 1 will be the sum of the
number of A’s on June 1 and the number of B’s born on that day (which
become A’s on July 1). The number of B’s on July 1 is the same as the
number of A’s on June 1. We complete the table for the year:

Number Number Total number
Month of A’s of B’s of pairs
1 January 1 0 1
After births on first of
2 February 1 | 2
3 March 2 1 3
4 April 3 2 5
5 May 5 3 8
6 June 8 5 13
7 Taly 13 8 21
8 August 21 13 34
9 September 34 21 55
10 October 55 34 89
11 November 89 55 144
12 December 144 89 233
13 January 233 144 371

Thus, we see that under the conditions of the provlem, the number of pairs of
rabbits in the enclosure one vear later would be 377.

We can draw some condlusions by studying the table. It is clear that the
number of A’s on the following February 1 is 377. Of these, 376 were orig-
inally B’s, descendants of the original A. Therefore, if we add all the numbers
in the column headed “Number of B’s,” we have

S=O+1+1+2+3+5+8+13+21+34+55+89—|— 144
= 376.
From this, we observe that the sum of the first 12 entries in the column
headed “Number of A’s” is one less than 377, which would be the 14th
entry in that column. This is a specific instance of a general result which
we shall establish later in this section.
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Further examination of the table on page 3 reveals that each entry in the
columns of numbers may be found in accordance with a pattern. For ex-
ample, the entries in each line after the second may be found as the sum of
the two preceding entries in that column. Those in line 3 are:

2=1+4+1 l=0+4+1 3=1+42
Those in line 4 are:
3=1+4+2 2=1+1 5=243

Can we describe this pattern by some kind of formula? Yes, as we shall
now show.

In general, ordered sets of numbers such as those in the columns of the
table on page 3 are called sequences. A sequence may be finite or infinite.
An infinite sequence may be designated by symbols such as

UI,Uz,u;_;,...,lln,...,

where the subscripts indicate the order of the terms, with n a positive integer.
An example of a sequence is the arithmetic progression

Uy, U uz, ..., Uy,
| 1] b
2, 5, 8, cees 24 (n—1)3,

where a formula for the nth term is
u, = 2 4+ (n — 1)3.
Another way to specify this sequence would be to state the first term,
u; = 2,
and the formula
Up = Up_1 + 3, n> 1.

Such a definition is said to be a recursive definition, and the formula is called
a recursion formula or a recurrence formula. (The words “recursive,” “‘re-
cursion,” and “recurrence” all come from a Latin verb meaning “‘to run
back.”)

We can use an extension of this idea to specify the sequences in the columns
of the table on page 3. For example, to specify the sequence in the column
headed “Number of A’s,”” we state the first two terms,

u; = 1, ug = 1,
and the recursive, or recurrence, formula

(R) Up = Uy_1 + Uy_o, n> 2.
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This gives the sequence
1,1,2,3,5,8,13,...

as we wished. For the column headed “Number of B’s,” we have u; = 0,
u, = 1, and the same recurrence formula, yielding the sequence

0,1,1,2,3,5,8,13, .. ..

For the column headed “Total number of pairs,” we have u; = 1, uy = 2,
and the sequence
1,2,3,5/8,13,....

Because of its source in Fibonacci’s rabbit problem, the sequence
1,1,2,3,5,8,13,...

is called the Fibonacci sequence, and its terms are called Fibonacci numbers.
We shall denote the nth Fibonacci number by F,; thus,

Fi=1, Fo=1, F3=2 F4=3, Fs=5, Fg=38,....
Moreover, we may write these alternative forms:
F,=F, =1, F,=F,_1+ F,_,, n>2,
or F,=Fy, =1, Foyr1 = F, + Fo_y, n>1,
or F,=Fy, =1, Foyo = Fop1 + F,, n > 1.

We can now give a more formal discussion of the Fibonacci rabbit prob-
lem. For all positive integral 11, we define for the first day of the nth month:

A, = number of A’s (adult pairs of rabbits)
B, = number of B’s (baby pairs of rabbits)
T, = total number of pairs of rabbits = A4, + B,

Only the A’s on the first day of the nth month will produce B’s on the first
day of the (n 4+ 1)st month. Thus,

B,,+1 = A", n Z 1.
In making up the table on page 3, we observed that the number of A’s on
the first day of the (n + 2)nd month is the sum of the number of A’s on the
first day of the (n + 1)st month and the number of B’s born on that day.
Thus, :

An+2 = An+1 + Bn+l’

and since B, = A,, we have

An+2 = An-}-l + An, nz 1
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We also observe from the table that 4, = 1and A, = 1. Thus, the sequence
Ay, Ay, As, ...,
is the Fibonacci sequence, and
A, = F,, n> 1.
Since B, 41 = A4, forn > 1, we have
B, = A,_1 = F,,_; forn > 2.
If we now let n = 1 in this last formula, we have
B, = F,.
If we let n = 1 in the formula F,y; = F, + F,,_, we have

Fy = F; + Fy
or
F0=F2—F1=1—1=0,
which checks with B; = 0 in the table. Thus, we have now defined F, for

n=0.
Finally, the total number of pairs-on the first day of the nth month is

T, = An + Bn = Fn + El—l = Fn-}—l'

We can now establish the following result, already suggested by the specific
instance shown at the bottom of page 3:

The sum of the first n Fibonacci numbers is one
less than the (n 4+ 2)nd Fibonacci number.

Symbolically:
F1+F2+°”+F1L=Fn+2_l9 '121-

We remember that F, 5, = A, and that 4, is the number of A’s
(adult pairs of rabbits) in the enclosure on the first day of the (7 + 2)nd

month.
Originally, we had only one A. Where did the extra A’s come from?

Each of the extra A’s was first a B.
How many more A’s do we now have? The number of extra A’s is

An-{-2 — L

Now, one month after being born, each B became an A. If we add the
number of B's from the first day of the first month to the first day of the
(n 4+ Dst month, the sum is the number of A’s other than the original pair
that we have on the first day of the (n + 2)nd month. Thus,

By + By + B3+ -+ Byy1 = Auye — L
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But, remembering that B; = 0, B, = . w—1, and A, o = F, 4o, we have
Fi+ Fo+ -+ F,=Fi2—1, nz>1

as we wished to show.
This formula is an example of a Fibonacci number identity. We shall prove
this identity again later in three different ways (Section 10).

Many different sequences may be specified by using formula (R) on page 4
and choosing different numbers for the first two terms. For example, if
we take u; = 1 and us = 3, we have

1, 3,4,7,11,18,29,47,...,

which we shall call the Lucas sequence, in honor of the nineteenth-century
French mathematician E. Lucas. Lucas did much work in recurrent sequences
and gave the Fibonacci sequence its name. The terms of the Lucas sequence
are called Lucas numbers, and we shall denote the nth Lucas number by L.
The Lucas numbers are closely related to the Fibonacci numbers, as we shall
show in this booklet.

In general, if we take the first two terms of a sequence defined by (R) as
arbitrary integers p and g, that is, u; = pand u; = ¢, then we have

p, g p+q p+2 2p+3g 3p+39 ...,

which is called a generalized Fibonacci sequence. We shall denote the nth
term of this sequence by H,. It may be shown by mathematical induction
(see Exercise 17, Section 10) that this generalized Fibonacci sequence is
related to the Fibonacci sequence by the formula

Hn+2=H2Fn+l+H1Fn’ HZO,F():O,
or, expressed in terms of the starting values, p and-q,

Hn-{—2 = an+l + pFn~

EXERCISES

1. Compute the first 20 Fibonacci numbers.
2. Compute the first 20 Lucas numbers.

3. Study the results of Exercises 1 and 2, looking for any possible relationships
or number patterns.

4. 1f Hy =1, Ho = 4, and H,,2 = Huy1 + Ha,, n > 1, compute the first 20
terms of this generalized Fibonacci sequence.
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5. Verify that:
a. Ls = Fe + F4
b. Fo = FZ + F%
.6. Verify that:

[d]

. Ly + Lg = 5Fg
. Hoo = (@)F19 + (1)F1gin Exercise 4.

Q.

a. Fg = LsFy d. F;Fy — Fg = 1
Fio . .
b. —qu is an integer. e. L3Ls — L; = -5
5

Fiz . .
€. —— 1Is an integer.
Fy

7. Verify that F{ + Fo + F3 + F4 + Fs5s + Fg = Fg — 1.
8. Verifytha@lfl 4+ Fo+ F3 4+ F4+ Fs+ Fo+ F7 + Fs + Fog + Fi10 = 11F7.
9. Show that:

a. When F3 is divided by Fg, the remainder is F3.
b. When F;5 is divided by Fg, the remainder is Fj.



3 e The Golden Section and the
Fibonacci Quadratic Equation

Suppose that we are given a line segment AB, and that we are to find a
point C on it (between A and B) such that the length of the greater part is
the mean proportional between the length of the whole segment and the
length of the lesser part; that is, in Figure 1,

AB _ AC
AC  CB
where AB # 0, AC # 0, and CB = 0.

o
~ Ne
e

.. . . AB )
We first find a positive numerical value for the ratio i For convenience,
let

AB
x——z‘é (x>0).
Then
_AB _AC+ CB _ CB _ | 1 I
x=%c="ac ~'tac~'tgze='tap='*x
B A

From

x=l—}—l

we obtain, by multiplying both members of the equation by x,

x2=x4+1, or

(F) x2—x—1=0.
The roots of this quadratic equation are (as you can verify, see Exercise 1,
page 13)

o = : +2\/5 and — _1.__—__—2_.\{§ .

(o is the Greek letter alpha, and B is the Greek letter befa.) You can verify
9
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by computation that « > 0 and 8 < 0; a = 1.618 and B8 = —.618 (Ex-
ercise 2). Thus, we take the positive root, «, as the value of the desired ratio:

AB _1++/5
AC ~ 2

We can now use this numerical value to devise
a method for locating C on AB. Draw BD D
perpendicular to AB at B, but half its length. E
Draw AD. Make DE the same length as BD,
and AC the same length as AE. Then

AB = 2BD, ED = BD

o ¢

C

N

and, by the Pythagorean theorem, Figure 2
AD = /5 BD;
hence:
AC = AE = AD — ED = (\/5 — 1)BD
AB _ 2BD  _26/5+ 1) _ 1/5+1
AC—(\/g—l)BD— S—1 - 2

This computation verifies that the construction does indeed locate C on AB
such that

AB 145
AC 2

Since « is a root of equation (F) on page 9, we have
a2 =a+ 1.

Multiplying both members of this equation by «™ (n can be any integer)
yields

(A) a"t? = gntl 4 om

Ifweletu, = o™, n> 1,thenu; = aand v, = a2, and we have the sequence
o, > =a+1, & =a’+aqa, ...,

which satisfies the recursive formula (R) on page 4. Similarly, we have

(B) gt =gt 4 pr,

and the sequence
B, B2 =B+1, B°=p2+85,

also satisfies (R).
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You can easily verify (Exercise 3) that
a+ B=1 and a— B =+5.

If we now subtract the members of equation (B) from the members
of equation (A) and divide each member of the resulting equation by
o« — B(=+/5 # 0), we find

aﬂ+2 _ Bn+2 an+1 _ Bn-{—l an _ Bn

a=f  a—B T a—8
an_Bn
If we now let u, = —— , n > 1, then we have
o —
Upny2 = Ung1 + u,
and
ul=z:g=l,
L= @—Beth) D
2 a—f a—f V5 )

Thus, this sequence u, is precisely the Fibonacci sequence defined in Sec-
tion 2, and so

F,‘=3&§-g—, n=1,23,....

This is called the Binet form for the Fibonacci numbers after the French

mathematician Jacques-Phillipe-Marie Binet (1786-1856).
Because of the relationship of the roots, « and B, of the equation (F),

x2—x—1=0,

to the Fibonacci numbers, we shall call equation (F) the Fibonacci quadratic

equation.
We shall call the positive root of (F),
_1+ V5
o = 2 9

the Golden Section. [This is often represented by ¢ (Greek letter phi) or by
some other symbol, but we shall continue to use « in this booklet.]
The point C in Figures 1 and 2, dividing AB such that

1+\/”5',
2

4B _
AC

o =

is said to divide AB in the Golden Section.
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Suppose that the rectangle ABCD in Figure 3 is such that if the square
AEFD is removed from the rectangle, the lengths of the sides of the remain-
ing rectangle, BCFE, have the same ratio as the
lengths of the sides of the rectangle ABCD. A X E y B

That is,
BC _ 4B
EB DA’ * X
Then if DA = AE = BC = x and EB =y,
we have F C
Figure 3
§=x+y’ or _)_C=1+X.
y X y x
Multiplying both members of
X147
y x
by z , we find

4 x\?  x
it —_ 1’
G) -5+

2
@ -3-1-
y y

which is in the form of equation (F), the variable now being (j—i) . Since

or

- ... x
x and y are positive, we seek the positive value of —. Thus,
y

x 1+ \/5
y T T2

That is, the ratio of the length to the width for rectangle BCFE (and also

for rectangle ABCD) is the number «, the Golden Section. Such a rectangle

is called a Golden Rectangle.

The proportions of the Golden Rectangle appear often throughout clas-
sical Greek art and architecture. As the German psychologists Gustav
Theodor Fechner (1801-1887) and Wilhelm Max Wundt (1832-1920) have
shown in a series of psychological experiments, most people do unconsciously
favor “golden dimensions” when selecting pictures, cards, mirrors, wrapped
parcels, and other rectangular objects. For some reason not fully known by
either artists or psychologists, the Golden Rectangle holds great aesthetic

appeal.
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EXERCISES

. Solve the Fibonacci quadratic equation,

x2—x—-1=0,
V5 — V5
!—+2—5 and B=1—-——\{§ as stated in

and verify that the roots are a = 2

the text.

. Verify that > 0 and 8 < 0, using /5 = 2.236. (= means “is approximately
equal t0.”)

. Verify that:
aa+pf=1 b.a —f =45 c.aff = —1

1
. Verify that o = 1 +;-

. Using @2 = a + 1, verify that:

a ad=2a+1 b. ot = 3a 4 2 c. a® = S50 + 3
. Verify that L3 = a® — %
o
1 —4
a —«

. Verify that Fy =



4 o Some Geometry Related
to the Golden Section

We shall now consider several geometric problems and their solutions.

PROBLEM 1*

Suppose that we wish to remove from a rectangle, ABCD, three right
triangles of equal area, APAQ, AQBC, and ACDP, as shown in Figure 4.
How shall we locate points P and O?

A x Q y B
w
w+2z
P
z
D xX+y C
Figure 4

Solution. Let
AQ = x, QB =y, AP = w, and PD = z.

Then, since the areas of triangles PAQ, QBC, and CDP are to be equal,

we have
3xw = 3p(w + z) = iz(x + ),

or
xXw = yw + yz = xz + yz.

* J. A. H. Hunter, “Triangle Inscribed in a Rectangle,” The Fibonacci Quarterly, Vol. 1,

No. 3 (October, 1963), page 66.
14
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From
yw+ yz = xz+ yz

we have

yw = xz,
or

w_x,

z Yy
Also, from

xw = y(w + 2)

we have

_w+z'=l+_z____l+
w

x _
y w

N |-

) w X
Since — = = > we have
z Yy

AR

or

2
<5> ~Z_1=0
v) "y

Again choosing the positive root, we have

But also
x
(A) -,
and so the points P and Q must divide sides 4D and 4B, respectively, in

the Golden Section. Thus:
A Q B
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PROBLEM 2*

If the rectangle ABCD in Problem 1 had been a Golden Rectangle, then

the additional condition +
XT )y _
(B) w-+ z o

would be imposed. Show that in this case APQC would be an isosceles
right triangle with the right angle at vertex Q.

Solution. From (A) on page 15 we have
X = ay and W= az,
and so, from (B) above, we have

xty_ap+y_(a+ 1y,
wt+z az4+z (a+ 1)z

But we had w = «az, and so

w=y; thatis, AP = QB.

Since we were given originally in Problem 1 that
zxw = gy(w + 2),
the fact that w = y implies that
=w+ z, that is, AQ =~ BC.
Therefore, right triangles PAQ and QBC are congruent. Thus,

Q=~0C and LAQP= /BCQ.

Moreover,
m°ZLBCQ + m°£LCQOB = 90.
Since '
m° LAQP + m°LPQC+ m° LCQB = 180°
and A x 0 y B
m°LAQP = m°£LBCQ,
we have w :
m°ZLPQC = 90. P | Wz
Therefore, since in APQC we now 2
have PQ =~ QC and m°ZPQC = 90, D x+yj c

APQC is an isosceles right triangle, as
pictured in Figure 5. Figure 5

* H. E. Huntley, “Fibonacci Geometry,” The Fibonacci Quarterly, Vol. 2, No. 2 (April,
1964), page 104.
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PROBLEM 3

Do two triangles exist which have measures of five of their six parts
(three angles and three sides) equal and yet are not congruent? Your first
impulsive answer may be a resounding No! However, we propose to show
that this is indeed possible.

Solution. Clearly, if among the five parts are three sides, then the triangles
must be congruent. The only possibility then is to have the three angles
of one triangle congruent to the three angles of the other triangle (thus,
the triangles are similar) and two sides of one triangle congruent to two
sides of the other. (Notice that it is not specified that these sides be corre-
sponding sides.) One example of such a pair of triangles (in this case with
integral sides) is shown in

Figure 6, where y\z /\
27 18 12
= = 18 27

18 12 8
Figure 6
Let us see how to find pairs of triangles having just five parts congruent.
First, we know that the triangles must be similar; that is, the measures of the
sides must be related as shown in Figure 7, where r is the ratio of similarity:

rb
. b ra
c rc
Figure 7
The additional conditions are
b=ra and c=rb=ra.

Thus, the measures of the sides of the two triangles will be

a, ra, r’a and ra, rla, ra,

as shown in Figure 8:

2
ra rca
/\ /\
r‘a ria

Figure 8

Ifa = 8 and r = 2, you will find the measures of the sides of the triangles
shown in Figure 6. Try other values to find other triangles having this

property.
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PROBLEM 4

If a =4 and r = 2 in Problem 3, then the measures of the sides of the
triangles would be

4, 8 16 and 8, 16, 32.
Can there be triangles with sides of these measures? No, because
44+8<16 and 8+ 16 < 32.
What restrictions must be placed on the values of r, assuming for the present

that r > 1?

Solution. If a, ra, and r2a are to be the measures of the sides of a triangle,
then the sum of each two must be greater than the third. Thus, we have
three inequalities:

(i) a4 ra>r%a or,sincea > 0, 147> r?
(i) ra4+ r’a>a  or,sincea > 0, r+r?2>1
(i) r’a+a>ra or,sincea>0, rZ4+1>r

We are looking for the solution set of these three inequalities.
On the assumption that » > 1, we have

r2>r>l,

and inequalities (ii) and (iii) hold. Thus, we need to consider inequality (i),
which we shall write as

rP<r+4+1, o rP—r—1<0.
Recall that
x*—x—1=0
is the Fibonacci quadratic equation with roots

a=1_+2i§ and g L=V5

Therefore, we can write

() (1)

For the second factor, we have

_1=~/5 1 W5
4 2 277 72

and this is positive for » > 1.
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Therefore, to have
PP—r—1<0

we must have
14 /5

r—l—4;2——\—/——§<0, or r < 5 ,

that is, » < «, and so if » > 1, we must have
I <r<a

in order to have a pair of triangles with just five parts congruent.

PROBLEM 5

Can a pair of right triangles have just five parts congruent?

Solution. Suppose that r > 1. Then r2a is the measure of the longest side.
If the triangles are to be right triangles, we have by the Pythagorean theorem
that

(r2a)? = a? + (ra)®.

Thus,

2 2

2
rta® —r?a® —a* =0

or, since a # 0,
rt—r2—1=0.

Therefore,
2

r° = a,
and so the positive value of r in this case is V.

How can we construct such a pair of right triangles? Recall that in a
right triangle, the altitude from the vertex of the right angle to the hypot-
enuse separates the given triangle into two triangles that are similar to each
other and also to the given triangle. That is, in Figure 9, where angle C
is a right angle,

AACD ~ ACBD ~ AABC. C

Notice that AACD and ACBD are similar
and have one side, CD, in common. If we
had AD congruent to BC, we would have
two right triangles that have just five parts A

congruent. These are shown as Figure 9

AA'C'D’ and ANC'B'D’

in Figure 10 on the next page.
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If we use the letters shown in Figure 10 c
to represent the measures of the sides, we
have
z
x+y_z_x w *
x woy
From
A' x D'y B
xX_X+J
y X Figure 10
we have

2
<£>—§—1=0, and so g
¥y y y

Thus, the point D’ must divide A’B’ in the Golden Section.
Let us find the ratio of similarity for AA’C’D’ and AC’B’D’, that is, the

value of

w z
== — = —-
y w X
Since x = ay, we have
w o oay w2
—_ = = or -—o =
y w 2
Therefore, since r > 0,
w P
r=Y_a,
y

as predicted by our computation on page 19.

Some of the possible shapes for triangles having just five parts congruent
are shown in Figure 11. Those sketched are right and oblique triangles. In
order for such triangles to have only acute angles, we must have

1<r<+va Va=1217

Triangles with sides of
\/& = 1.27 measures a, ar, ar® for
1 <r<aa=1.618

r =

= 1.5

N w

r =

= 1.6

W | oo

r =

ac® = a(la + 1) = 2.618a
Figure 11



Some Geometry Related to the Golden Section - 21

Triangles with sides of
measures ar, ar?, ar®, for
1 <r<a,a=1.618

\ 2

ac® = a(2a + 1) = 4.236a

Figure 11 (continued)

Up to now we have restricted ourselves to » > 1. If r > 1 is the ratio
of similarity of the larger triangle to the smaller triangle, then

r=-
-

is the ratio of similarity of the smaller triangle to the larger triangle. Thus,

in general, we may have

£<r<1 as well as 1 <r<a,

that is, approximately
618 < r <1 or 1 < r < 1618.

The triangles pictured in Figure 12 have ratios that are the reciprocals of
those for the triangles in Figure 11. Notice that each pair of triangles in
Figure 11 is similar to the pair in Figure 12 that has the reciprocal ratio
(compare Exercise 6 on page 25). (If r were 1, then the triangles would be
congruent equilateral triangles.)

a a
—=a(2 — a) = .38a — = a(2a — 3) = .24a
a? od
Triangles with sides of measures Triangles with sides of measures
| 1
a, ar, ar? forl <r< 1,-1- = 618 ar,ar*,ar’for- <r <1,- = .618
x [¢4 24 24

Figure 12
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In Section 3 we defined a Golden Rectangle. We shall now define a
Golden Triangle. In Figure 10, the ratio of the area of AA’B'C’ to the
area of AA’C’'D’ can be found as follows:

Area AA'B'C' = w(x + y)
Area AA'C'D’ = iwx
Area AA'B'C’ x+y=ay-|—y=a+1=a

— — =«

Area AA'C'D’ x ay a a

2

A triangle that has this property is called a Golden Triangle; that is, a
Golden Triangle is one such that when a triangle similar to it is removed
from it, the ratio of the area of the Golden Triangle to the area of the re-
maining triangle is a«. That is, in Figure 10 when AC’B’D’ is removed
from AA’B'C’,
Area AA'B'C’
Area AA'C'D’

= «.

We also note that
Area AA'C'D"  Jwx  x

Area ACB'D’ ~ 3wy y
and
Area AA'B'C’ _ Area AA'B'C' Area AA'C'D' _
Area AC'B'D’ ~ Area AA'C'D' Area ACBD'~ % %7~ ¢
PROBLEM 6

Show that an isosceles triangle with vertex angle measuring 36° is a
Golden Triangle.

Solution. The base angles measure 72°

each. If one of these base angles is

bisected (see Figure 13), two isosceles

triangles are formed. One triangle,

ACDB, is similar to the given triangle,

A ABC, while the other, AACD, is not.
In AABC and ACDB,

Xty _x

— 9

X y Figure 13

and again we have

and the positive result is
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To find the areas of AABC and AADC, draw altitude CE. Then:

2
(:E=,/x2—yT (CE  0)

Area AABC = 3(x + y)(CE)
Area AADC = }x(CE)
Area AABC _x+y _

Area AADC ~ x o
Thus, AABC is a Golden Triangle.
We also note that
Area AADC _ x _ N

x
Area ACDB ~ y

and
Area AABC x+y x4y x_ 2
Area ACDB y X Ty

Since the central angle of a regular decagon is 36° (see Figure 14), we
know from Problem 6 that the ratio of the radius r to the measure s of the
side of an inscribed decagon is a.

N

\_/

Figure 14 Figure 15

Also, in a regular inscribed pentagon, the angle between two adjacent
diagonals at one vertex is 36° (see Figure 15), and so the ratio of the measure
d of a diagonal to the measure s of a side is also a.

A'B’

B'C’
Thus, in each case the ratio of the measure of the longest side to the measure
of the shortest side is a.

The Golden Trianglé appears on pages 61-62 of Tobias Dantzig’s The
Bequest of the Greeks (New York: Charles Scribner’s Sons, 1955) and also
on page 42 of N. N. Vorobyov’s The F ibonacci Numbers (Boston: D. C. Heath
and Company, 1963). Also, see the article, “Golden Triangles, Rectangles,

= .

. . . AB . .
Notice that in Figure 13, EE = « and that in Figure 10,
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and Cuboids,” by Marjorie Bicknell and Verner E. Hoggatt, Jr., in The
Fibonacci Quarterly, Vol. 7, No. 1 (February, 1969), pages 73-91.

PROBLEM 7
Inscribe a square in a semicircle. M N
| N K
Solution. Figure 16 shows the completed con- |\ /1
struction where AMNB is a square. The con- ' \\ / |
struction makes use of the fact that right tri- | \ ¢ F/ :
angles I \ K I
0AM, ODC, OEF, and OBN | /LN
/
are similar. V
A D O E B
Now consider Figure 17, in which AF and FB Figure 16
have been drawn, forming similar right triangles
ABF, AFE, and FBE. Thus,
I1+s _ s ,
| s C F
from which we obtain A7 N
2 // S| N
(£> _s_ 1oy 41 s |
! ! A D E B
and so the positive result is Figure 17
s
- = a.

Thus, point E divides DB in the Golden Section.

Two articles by Marvin Holt, which give further excellent material on the
Golden Section and geometry, are “Mystery Puzzler and Phi” in The
Fibonacci Quarterly, Vol. 3, No. 2 (April, 1965), pages 135-138, and ““The
Golden Section” in the Pentagon, Spring, 1964, pages 80-104.

The Golden Cuboid is discussed in an article of that title by H. Huntley
in The Fibonacci Quarterly, Vol. 2, No. 3 (October, 1964), page 184.

Another interesting reference is Patterns in Space by Colonel R. S. Beard
(available from Brother Alfred Brousseau. St. Mary's College, California
94575). This book describes many appearances of the Golden Section in
variations of the regular solids.
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EXERCISES

. Show that there can be no triangle having three distinct Fibonacci numbers
as measures of its sides.

. Show that a pair of triangles which have the measures of five parts equal, but
which are not congruent, cannot be isosceles.

. Show that
a. if @ < b, then y = (x — a)(x — b) is negative for « < x < b and non-
negative otherwise;

b. ifa = b, theny = (x — a)> > 0 for all x.

. Using the results of Exercise 3a, show that, in general,
a. inequality (i) on page 18 holds when

r2 —r—1<0,thatis, forg <r <a.
b. inequality (ii) on page 18 holds when
r24+r—1>0,thatis, forr < —aorr > —f.

c. inequalities (i) and (ii) both hold when

1
—B <r<a, or -<r<a,
«

since o8 = —1 (Exercise 3c, page 13).

. Using the result of Exercise 3b, show that inequality (iii) on page 18 holds
for r > 0, that.s, that

r’+1>2r>r for r>0.

. The measures of the sides of one triangle are a, ar, and ar? and those of a
second triangle are «, g, and % . By suitably pairing the sides, show that the
triangles are similar and find the ratio of similarity.

. In Figure 16 extend CF to meet BN in point G. Show that rectangle DCGB is

a Golden Rectangle.

. AF
. In Figure 17 show that

FB~©
. In Figure 17 show that:
2 2 2 2
s~ + 2st T — 2st s* 4+ 4st — ¢ 3
, —— = . — —— — = ° = 5
as‘-’—l—t‘2 “« 52 4 12 b ¢ 52 4 12

Hint: Recall that o =a +lL,a4+B=1la—fB= V5.
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145 1 — 5

dg = ———
5 and 8 7 are the roots of

(F) x2—x—1=0,

Recall from Section 3 that « =

andsoa?=a+ landp?2 =8+ 1. Also,a+ 8 =1and o — B8 = V5.
Moreover,

(A) an+2 — an-{-l + o
and
(B) gt =gt 4+ g

and by using these equations, we found that the Fibonacci numbers can be
expressed in the so-called Binet form:

an — Bn _ a‘n _ Bﬂ. ,
a—p V5
Now suppose that we add the members of equation (B) to the members
of equation (A), giving
(an+2 + Bn+2) — (an+l + 6n+1) + (an + Bn)

n=12,3,...

(C) F, =

If we let u, = a™ + B", then we have

Unyo2 = Upyy + u,
and

uy =a+pg =1,
Uy =a’<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>