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Abstract

This dissertation explores the fundamental characteristics of a system of geometry and 

proportion currently used by Maya house builders and shamans to design vernacular 

architecture in indigenous Maya communities.  An extensive examination of Pre-

Columbian Maya art and architecture demonstrates how this system of geometry and 

proportion was also used by the Maya of the Classic and Post-Classic periods.  The 

dissertation concludes with a brief discussion of how Maya geometry was, and is, an 

expression of Maya cosmology and religion.
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INTRODUCTION

 

 This dissertation rests on the recognition of a simple set of repeated 

proportions found in the dimensions of Maya art and architecture. This set of 

proportions has been identifi ed through a systematic analysis of Pre-Columbian 

and modern Maya architectural and artistic forms by this author.  These proportions 

apparently were, in Pre-Columbian times, and certainly are today, intentionally 

incorporated into the designs of these artifacts.

 I begin the introduction to this dissertation with a summary of the history of 

my investigation into Maya geometry and of my academic and professional career in 

order to provide the context for the results of this investigation and to expose some 

of my personal biases as a researcher before I presume to interpret the results of the 

ethnographical investigations included in this dissertation. I discuss evidence and 

ideas as to how and why Maya geometry was, and is, intimately entwined with their 

world view and with their religious beliefs.  I present evidence here that points to 

the conclusion that the Maya developed a profound understanding of the geometry 

employed  by the “Maker and Modeler” in creating the universe.  This evidence also 

suggests that the Maya consciously emulated the shapes of the sacred space of their 

cosmos by using the very same geometry to lay out and design their own creations, 
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the architecture of their  physical environment, from the simple geometry used to lay 

out their vernacular houses, altars, and milpas to the complex geometrical formulae 

used to design the great pyramids and temples and the exquisite works of art in the 

long abandoned ruins of their magnifi cent ceremonial centers. 

 I was surreptitiously drawn into this study in 1989 during my last semester 

as an undergraduate student at the University of Arizona at Tucson.  That semester 

dramatically changed the direction of my fl edgling academic and professional career.  

My degree was in anthropology with a focus on Paleolithic archaeology.  While 

fi nishing my courses and working half time as a fi eld archaeologist for the Arizona 

State Museum, I was also moonlighting as a researcher for Dr. Jeffrey Goodman, who 

was writing a book on archaeology in the Americas.  Part of my duties as a researcher 

was to read and summarize chapters of books and articles on the Pre-Columbian 

Maya.  When I brought Dr. Goodman the results of my work I had an abundance 

of material on Maya architecture, iconography, epigraphy, cosmology, astronomy 

and mathematics.  But I had found almost no information concerning Maya geometry. 

When I explained this to Dr. Goodman, he told me not to worry about it, because he 

knew from his own research that very little was to be found on this subject.  But I 

remained bothered by this lack of information. The Maya were clearly accomplished 

mathematicians, and from my previous coursework concerning the histories of eastern 
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and western civilizations and a course I had taken called  “A Survey of Mathematical 

Thought,” I knew that any study of the history and development of sophisticated 

mathematics invariably included a study of the history and development of geometry.  

 After I fi nished my work for Dr. Goodman, I became fascinated by 

Maya history and culture.  I was particularity interested in the astronomical and 

mathematical content of the hieroglyphic inscriptions and, as a kind of hobby, I 

designed and carried out a simple strategy in an attempt to better understand Maya 

concepts of geometry. 

 I was not specifi cally searching for Maya units of measure or complex 

geometrical formulae.  Instead, I was interested in determining whether the 

dimensions of rectangular edifi ces as well as carved stone and modeled stucco art 

panels, predominant at all Mesoamerican sites, were repetitive.  If so, I would identify 

which proportions the Maya used most frequently to design public buildings and 

works of art.  

   I  started by analyzing rectangular structures published in Ruppert’s 

collection of measured drawings of the architecture at Chichen Itza (Ruppert 1952). 

These structures were chosen for two reasons: (1) The basic planar forms allowed 

statistical analysis of their relative proportions; and (2) Ruppert’s plans represent 

unreconstructed structures and thus eliminate the potential for reconstructive error.
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 First I divided the lengths by the widths of both the interior and exterior 

dimensions of the selected structures and kept track of the proportional relationships. 

From this preliminary exercise a series of repetitive proportions emerged that were 

related to one another in an intriguingly simple manner.  Beginning with a square, the 

length of each succeeding rectangle equaled the diagonal of the preceding one. These 

proportions are none other than the root rectangles (from the square roots of one to 

fi ve) that so fascinated Pythagoras and other ancient geometers and that were intrinsic 

to the early development of  planar geometry.  

 Two other rectangular proportions with ratios of 1 to 1.272 and 1 to 1.618 

also were noted as repetitive.  Although the diagonal of the fi rst was found to equal 

the length of the latter, these rectangles did not initially appear to relate to the set of 

root rectangles previously identifi ed.  However, the proportion of 1 to 1.618..., called 

the Golden Ratio, or phi, in planar geometry (1.272... being the square root of phi), 

is intrinsically related to the root fi ve rectangle.  Apparently unrelated to the square 

root and phi rectangles, the Pythagorean 3,4,5 rectangle (with a width of three units, a 

length of four units, and a diagonal of fi ve units) was also found to be repetitive (see 

Figure 1).

 By this early stage in my extracurricular investigations of  Maya geometry., 

I had completed my undergraduate program and had been invited to continue my 
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studies in Paleolithic archaeology as a graduate student at the University of Arizona 

at Tucson.  In addition to classes and fi eld work in Paleolithic archaeology, I had been 

studying Mandarin Chinese and had taken Asian Studies courses in preparation for 

conducting Paleolithic fi eld investigations in the northwestern deserts of China.  

 I was at a crossroads, but I knew that my newfound interest in the 

complexities of Maya history and culture and my virtual obsession with the initial 

results of my investigation into Maya geometry had superseded my passion for, and 

years of study of, Paleolithic archaeology.   

 I declined the offer to attend graduate school and spent the next four years 

working full time as a fi eld archaeologist for the Arizona State Museum, then as a fi eld 

supervisor with the New York State Museum, and ended up in San Francisco working 

for a private contract archaeological fi rm. 

 Between digs and during my spare time, I read widely about Maya history, 

culture, and archaeology.  My foci in these studies alternated between attempts to 

better understand the mathematical structure and astronomical content found in Maya 

hieroglyphic books and inscriptions and in continuing my investigation of  Maya 

geometry.  I began to study the Spanish language, and I collected and analyzed 

measured drawings of Maya art and architecture.

 In 1992 I decided it was time to pursue my academic interests formally by 
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applying to graduate schools that offered Maya or Mesoamerican programs.  I enjoyed  

living in San Francisco, so I applied  to U.C. Berkeley, Stanford, and U.C. Santa Cruz. 

All three rejected my applications.  I was disappointed but not surprised.   Though I 

had graduated Magna Cum Laud from the University of Arizona and my G.R.E scores 

were good, I had not taken a single course in Maya or Mesoamerican archaeology and 

I had not studied Spanish as a second language.  

 I continued with my extracurricular studies, kept my job as a fi eld 

archaeologist, and the next year applied to every university and college in the United 

States and Canada that offered a Maya or Mesoamerican Studies program.  But this 

time I included a paper I had written on Maya math and astronomy entitled, “A New 

View on the Tun Ending Calendar Round.”    

 I thought I would improve my chances of being accepted into a graduate 

program if I were to arrange interviews with the professors whom I hoped to study 

under before they made their fi nal selection of candidates.  I  had the time and 

resources to travel to only one university.  While trying to decide which university 

to visit, I was reading everything I could fi nd written by Dr. Linda Schele.  I was 

impressed with the results of her collaborative approach to research and by her 

honesty and daring to speculate where others feared to tread.  More than anyone, Dr. 

Linda Schele’s work brought the dry bones of Maya archaeology to life.
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 And so, I awoke one Friday morning in my apartment in San Francisco trying 

to remember a powerful dream I’d just had, and though I could not recall a single 

image of it, I felt strongly compelled to go to the University of Texas at Austin.  I 

reached for the phone on the night stand and made plane reservations to fl y to Austin 

at one o’clock that afternoon. (For the record, this sort of thing does not happen to me 

very often.) I then called information for the telephone number for the Anthropology 

Department at the University of Texas at Austin.  I apparently misdialed the number 

because the response to my call was, “Hello, Maya Meetings.”  I was speaking with 

Peter Keeler, the director of the annual Maya Meetings, which I had never heard of.  

He told me that Dr. Schele was giving the keynote speech that evening, to be followed 

by three days of papers presented by various researchers and a weeklong intensive 

workshop on Maya epigraphy.  I asked him to please sign me up.  He also kindly gave 

me the correct number for the Anthropology Department and Dr. Schele’s offi ce 

number at the Art History Department.  I made appointments to interview with 

Doctors Frederick Valdez and Brian Stross in the Anthropology Department and with 

Dr. Schele for later that afternoon.  At one o’clock, due to a happy accident with my 

reservation, I was fl ying fi rst class and sipping champagne on my way to Texas.

 My interviews with Doctors Valdez and Stross were brief. They both politely 

informed me that they had accepted only three candidates that year and that I had not 
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made the cut.  

 My interview with Dr. Schele was scheduled for late that afternoon. 

I did not expect much to come of it, because when I applied to the Anthropology 

Department at the University of Texas at Austin I had mistakenly assumed that Dr. 

Schele was a professor in that department.  It turned out that Dr. Schele’s 

students were either from the Art History Department or from the Institute for Latin 

American Studies.   

 I arrived early for my interview, and when Dr. Schele’s secretary announced 

my presence, I heard Dr. Schele say, “Oh, that’s the guy who wrote that astronomy 

paper,” and  I was shown into her offi ce.  I took that as a cue, and we spoke for a while 

about Maya astronomy.  Dr. Schele was immersed in the subject at the time and was 

in the middle of  writing the book Maya Cosmos, which was also the topic of her 

presentation at the Maya Meetings.  I explained what I had been reading and studying 

over the past four years, but I did not mention my interest in Maya geometry.  I also 

told her the mistake I had made by applying to the Anthropology Department and that 

I had applied to the University of Texas at Austin because I had hoped to study under 

her guidance. 

 Dr. Schele told my that I should be in the Institute for Latin American Studies 

because there I could arrange a multidisciplinary program of course work in both the 



9

Departments of Art History and Anthropology.  She made a couple of phone calls and 

had my application sent to the Institute for Latin American Studies. Then she asked 

me to rewrite my letter of intent and directed me to a Kinko’s copy shop where I could 

type it up. She told me to turn the letter in to her offi ce by 8: A.M. the next morning.  

She also told me it was a good thing that I had talked to her that day because she was 

choosing her next crop of graduate students the following day.  I asked her what my 

chances were of being accepted into the program and she told me that if  my letter of 

intent was on her desk in the morning I was in.  That letter of intent was, of course, on 

her desk at 8:00 A.M. sharp. 

 After attending the Maya Meetings, I returned to San Francisco, fi nished 

excavating at the Los Morteros site (which was to be my last Paleolithic dig), and 

moved to Austin, Texas.  My fi rst semester went well, and it was a pleasant shock 

to be immersed in course work and to be surrounded by motivated students and 

professors after studying in virtual isolation during the previous four years.   

 But I still had not shared my fi ndings concerning Maya geometry.  I had been 

taking a course on Maya epigraphy with Dr. Brian Stross, and I made an appointment 

with him to ask his opinion about my project.  He understood what I was doing 

and  approved of my approach to the subject matter.  He was (and has been over the 

years since) very supportive.  As luck would have it, his wife was an architectural 
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historian, and a conference for the Texas Chapter of Architectural Historians was 

being held that week.  Dr. Stross and his wife arranged for me to give a presentation 

to the group, which I did using hand-colored acetates and an overhead projector.  I 

received encouraging and constructive comments from Dr. Eugene George, Professor 

Emeritus of Architectural Engineering at the University of Texas at Austin.  Dr. 

George is an expert on the history of the uses of square root and phi proportions in 

architectural designs, and he seemed pleased that I was able to convince him that the 

Maya had used them as well.  When we later spoke at his offi ce, I learned that he had  

incorporated these proportions into several of the buildings he had designed over his 

long career and that he was also teaching architectural engineering students how to 

use these proportions to maximize the strength and minimize the weight of  various 

structural forms.

 Boosted by the positive responses I had received from Dr. Stross and the 

members of the Texas Chapter of Architectural Historians, I fi nally drummed up the 

courage to present my pet project to Dr. Linda Schele.  Though I greatly admired her 

work and liked her very much personally, Dr. Schele was such a powerful personality 

that, frankly, during my fi rst year as a student, I was intimidated by her.

 I made an appointment to see her, carefully prepared my presentation, and  

showed up with a thick three-ring binder full of my best examples of Maya geometry.  
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No sooner had I begun to explain my project when she told me that she did not want 

to see it or to hear about it. She told me that if I could demonstrate that what the Maya 

were doing today with their measuring cords to lay out and design their houses, altars, 

and milpas, had anything to do with what I thought they were doing in Pre-Columbian 

times, then come back and we would talk about it.

 Then she told me I might get started in that direction by tagging along with 

the Studio Mexico Program, headed by Professor Sinclair Black of the Architecture 

Department and by Logan Wagner (now Dr. Logan Wagner), an architect and a fellow 

graduate student at the Institute for Latin American Studies. They were to lead a group 

of graduate students in architectural history to the Yucatan Peninsula to document and 

produce measured drawings of early Colonial and Pre-Columbian architecture. 

 Thus, I spent my second semester as a graduate student in the Yucatan  

Peninsula, where I  helped the graduate students with their architectural 

documentation projects. They, in turn, helped me to produce measured drawings of 

two different styles of modern Maya houses.  In the Yucatan, I also had the good 

fortune to meet the director of the Fundación Cultural Yucatán, Liticia Roche (for 

whom I would end up working two years later).  She arranged for me to interview 

two Maya house builders, as well as Francis Faller, a retired engineer with an interest 

in and great knowledge of Maya house building. Liticia Roche also directed me to 
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the library at the Universidad de Arquitectura in Merida where I found and copied 

architectural studies and measured drawings of vernacular Maya architecture.  

 The results of these and subsequent ethnographical investigations of Maya 

vernacular architecture and geometry are described in some detail in Chapter 6.  From 

my initial investigation it was clear that at least some of the Maya were still using the 

square root and phi proportions to lay out and design their houses.  

 I was in the midst of what Dr. Schele used to call an “Ah ha! experience.”  I 

was thrilled to discover that the principles of geometry that I suspected had been used 

in Pre-Columbian ceremonial art and architecture had survived fi ve hundred years of 

foreign invasion, inquisitions, and religious conversion.  

 When I returned to talk with Dr. Schele, she suggested that I develop these 

fi ndingd into a Ph.D. dissertation and that I should also conduct more ethnographical 

investigations.  Which I did.

 The next ten years were so full of activity and went by so quickly that as I now 

refl ect upon them they seem more dreamlike than real.  I had arranged with Dr. Schele 

to take my course work in the fall semesters and to conduct fi eld work in the spring 

semesters and summer breaks.  In the summer of 1993, I worked as a fi eld instructor 

for the Project for Belize at Cerros, a Pre-Classic Maya ceremonial center, under the 

direction of Dr. Frederick Valdez of the Anthropology Department at the University 
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of Texas at Austin.  In 1994 I went to the Highlands of Guatemala to study Spanish 

intensively and to conduct ethnographical investigations of Maya house building 

and related ceremonies. Between 1994 and 1996 I worked for three fi eld seasons, 

supervising and conducting tunnel excavations at Copan, a Classic Maya ceremonial 

center in Honduras, for the Early Acropolis Project directed by Dr. Robert Sherer of 

the University of Pennsylvania Museum. 

 During those years, I also managed to complete my Master’s thesis on the 

mathematical and astronomical content of Maya hieroglyphic books and inscriptions, 

to fi nish my course work for my Ph.D., and to conduct six months of ethnographical 

investigations on Maya house building and house-building ceremonies as part of my 

duties during my brief stint as Director de Investigaciónes Antropologicos for the 

Fundación Cultural Yucatan. 

 In 1997 I was invited by my good friend and colleague Alfonso Morales 

Cleveland to take the position of Field Director for the Projecto Grupo de Las Cruces 

at the Classic Maya ceremonial center of Palenque, in Chiapas, Mexico. The project 

was headed up and sponsored by Merle Greene Robertson and the Pre-Columbian 

Art Research Institute and directed by Alfonso, who held the position of Principal 

Investigator.  We worked six days a week, year round, taking brief breaks each winter 

to write up the year-end fi eld reports and the proposals for the next year’s fi eld work. 
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The Projecto Grupo de Las Cruces was a lucky project from the start. We unearthed 

marvelous examples of Maya architecture, art, and hieroglyphic texts that will keep 

researchers busy for many years to come.  It was the apex of my career as a fi eld 

archaeologist. 

 I held my position as fi eld director for the project until the end of 2001 

and continued to work at Palenque for another year, supervising excavations and 

restoration efforts as an employee of the Instituto Nacional de Antropologia y Historia 

for the Projecto Espescial Palenque, directed by site archaeologist Arnoldo Gonzalez 

Cruz.  

 In 1997 I had the great fortune to meet Alejandra Merino Trujillo, a molecular 

biologist who is presently in charge of medical investigations for the State of Tabasco 

and is the editor of a professional medical journal.  We married in the year 2000, and 

by 2003, when we decided to have children together, I resigned from my position at 

Palenque and became Senior Research Associate at the Maya Exploration Center, 

a non-profi t educational and research institute, founded and directed by my good 

friend and colleague Dr. Ed Barnhart.  This is a position I still hold today, and my 

duties include instructing curriculum development courses for the National Science 

Foundation’s Chautauqua Short Course Program, as well as study abroad courses for 

the Mathematical Association of America and various universities and colleges. These 
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courses focus on Maya (and more recently Andean) history, culture, mathematics, 

geometry, astronomy and art. We also conduct archaeo-astronomical investigations 

at Maya and Andean ceremonial centers in Mexico and Central and South  America, 

write and publish reports and articles, present papers at professional conferences and 

lecture at universities, colleges, and other venues.

 My association with the Maya Exploration Center has fi nally provided me 

with the time and resources to write this dissertation and to produce the fi nal versions 

of the numerous diagrams that form the bulk of it.   

 It is now the year 2010 and I am adding the fi nal touches to this dissertation, 

including this summary of the history of my investigation.  Twenty years have passed 

since I fi rst analyzed the collection of measured drawings published in Ruppert’s 

“Architectural Notes and Plans of Chichen Itza” (Ruppert 1952).  For most of these 

years I have considered myself a fairly accomplished fi eld archaeologist with some 

interesting hobbies. In my case, the word “hobby” is a polite synonym for the word 

“obsession,” and I admit that I am, and have been, virtually obsessed with trying to 

better understand what the Maya know and knew about mathematics, astronomy, 

and geometry.  Almost all of my free time has been dedicated to theses pursuits.  It is 

fortunate that I am often insomniac. 

 To further test for the presence or absence of  the square root, phi, and 
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Pythagorean 3,4,5 proportions in Maya architecture and art, I conducted a complete 

analysis of the measured drawings of the temples, art panels, and piers at the Late 

Classic Maya site of Palenque. I obtained these measured drawings from the four 

volume series, The Art and Architecture of Palenque by Merle Greene Robertson, 

and from copies of an unpublished set of measured drawings of most of the temples 

at Palenque excavated before 1980, produced and generously given to my by the 

late George F. Andrews, Professor of Architecture at the University of Oregon, and 

his wife, Geraldine D. Andrews.  My examination of these measured drawings 

demonstrated, to my satisfaction at least, that this set of proportions was used by the 

Maya to design and lay out virtually all of the buildings and art works at Palenque.

 I have since collected, analyzed, and reanalyzed the majority of the measured 

drawings and rubbings of Maya art and architecture that have been published over the 

last 120 years, as well as a number of unpublished measured drawings, some of which 

I have produced myself.  The square root, phi, and Pythagorean 3,4,5, rectangles that 

were briefl y described above, and that are described in detail below, were found to be 

clearly expressed in almost all of them. 

 In this dissertation I present selected sets of  representative examples with a 

wide regional and temporal range, including a few examples from cultures beyond the 

Maya area.  In part, this dissertation is intended as a kind of practical handbook on the 
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basics of how Maya geometry is expressed in a wide variety of artifacts and in a wide 

variety of contexts. 

 These, and the rest of the examples that I have accumulated and have 

stored in hard copies and hard drives, contain examples from non-Maya cultures in 

Mesoamerica, a few of which are included in this dissertation, particularly in  the 

section that analyzes the layout and geometry of Pre-Columbian codices.  In the 

future I plan to analyze all of them in groups, site by site, region by region, from the 

Pre-Classic to the Post-Classic periods, in an attempt to better understand the details 

of how these physical expressions of Maya and Mesoamerican geometry developed 

and changed over time and space.  If I can fi nd the time, and if I live long enough, I 

plan to publish the results of these analyses as a series of companion articles to this 

dissertation. 

 I also recommend that a detailed regional study of the geometry of modern 

Maya and Mesoamerican vernacular architecture be conducted —  the sooner the 

better —  because traditional Maya and Mesoamerican houses are rapidly being 

replaced by cement structures. In too many cases, the knowledge that is traditionally 

passed on to the younger generations by the elders is dying when they die. 
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CHAPTER 1

METHODOLOGY

 My methodology for defi ning, evaluating, and presenting Maya geometry and 

how it is expressed in the layout and design of Maya artifacts is simple.  I begin with 

ethnographical investigations (Chapter 6) that clearly demonstrate how the Maya use 

geometry today to lay out and design their vernacular houses and altars.  I explain 

in the Introduction, and show graphically in Chapter 5 (Figure 1), how the repeated 

proportions used by the Maya today form a coherent and interrelated set of rectangular 

proportions; that is, beginning with a square, the length of each succeeding rectangle 

is equal to the diagonal of the preceding one.  I discuss the phi and Pythagorean 3,4,5 

rectangles as well, and their relationships to this basic set of rectangular proportions.  

Then I rely on numerous diagrams showing these same proportions overlaid on 

measured drawings, rubbings, and photographs of various Pre-Columbian artifacts, 

in order to demonstrate that this same set of proportions was used pervasively in Pre-

Columbian times. The Pre-Columbian artifacts examined are primarily examples of 

ceremonial architecture, bas-relief stone and stucco art panels, and stelae, as well as 

pages of Pre-Columbian codices.  
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 The methodology for my efforts to better understanding the relationships 

between Maya geometry and cosmology is not quite as simple or straightforward.  

Using a structural and comparative analytical approach, I begin, in Chapter 3, by 

examining ceremonies that include the uses of measuring cords, as described in 

Contact Period documents.  In Chapter 4 I briefl y discuss some modern Maya 

ceremonies that involve measuring cords.  In Chapter 6 I include the sparse but 

illuminating information about how the shapes of native fl owers are related to the 

geometry of houses, information that a Maya shaman shared with me during one of 

my brief sojourns as an ethnographer.  

 Near the end of this dissertation, I speculate on and discuss how the 

methods that the Maya probably used to track the rising and setting  positions of 

the sun and the moon on the horizon would have produced obvious examples of the 

regular polygons, the equilateral triangle, the square, and the pentagon, which share 

the same square root and phi proportions found in the set of rectangles used by the 

Maya today (and that are the shapes of fl owers as well).  I further speculate about 

circular Maya calendars and their subdivisions, and how they, too, would produce 

regular equilateral triangles, squares, and pentagons.  

 I conclude by discussing previous research on the cosmology expressed in 

Maya ceremonial centers and attempt to interweave the new information and ideas 
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presented in this dissertation with the existing body of theories in order to add a new 

perspective to our incomplete view of Maya cosmology.

 The methods that I used to examine and analyze the measured drawings, 

rubbings and photographs included in this dissertation and how I produced the 

diagrams that overlay them should also be discussed here.

 In the early years of this study, all measurements were made on high-quality 

Xerox copies of the measured drawings and checked against the published drawings 

with a stainless steel ruler divided into 100ths of an inch.. This same ruler was used to 

measure the width and lengths of the measured drawings of  the rectangular artifacts 

to determine their proportions, and all of the diagrams were drawn with a compass and 

a straght edge. 

  Some years later my mother, an accomplished artist and graphic artist, taught 

me to use the Adobe Illustrator program.  The Adobe Illustrator program is ideally 

suited to both measure the dimensions of scanned measured drawings, rubbings, 

or photographs and to create extremely accurate geometrical diagrams.  With this 

program, I do not draw the geometrical diagrams or formulae, I simply use a scientifi c 

calculator to input the dimensions of the rectangles, the precise angles of the diagonals 

and the lengths of radii of the arcs and circles used to create them, and the program 

magically produces these diagrams with an accuracy to the nearest thousandth of a 
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point.

 I often convert the original scans into a transparent bit-map format so that I 

can underlay them with colored shading to highlight various portions of the diagrams 

to facilitate describing them. 

 To incorporate these Adobe Illustrator images into a written document, I 

convert them into high-density bit-map images and import them into an open fi le in 

the Adobe Indesign program, which is ideally suited for writing books, particularly 

books with numerous diagrams, images, or charts.  The images stay where they are 

supposed to, and the text wraps when it is supposed to, and that is more than I can say 

for other desktop publishing programs I have tried to use in the past. 

 To share the fi nal document with others, the fi nal version is converted to PDF 

format and copied on to disks or thumb drives.
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           CHAPTER 2

A REVIEW OF THE LITERATURE ON MAYA GEOMETRY

 Several scholars, whose investigations are either mentioned or summarized 

below, contend that knowledge of geometrical concepts was widespread in 

Mesoamerica. The idea is practically commonplace, yet no one to date has discovered 

substantive evidence of a coherent system of measurement and proportion. 

 Francine Vinette concludes her superb survey of the topic, “In Search of 

Mesoamerican Geometry” (Closs 1986: 387),  by stating, “There is little doubt that 

further investigations directed toward an evaluation of Mesoamerican knowledge will 

include geometry as a part of the amalgam of Mesoamerican science and religion.”  

 Most studies concerning geometry and architecture conducted over the past 

three decades concentrate on inter-structural geometrical relationships, particularly 

in the context of archaeo-astronomical observations. These investigations are most 

valuable for the light they shed on ancient astronomy, structural alignments, and 

overall site plans. Clearly, ancient knowledge of geometric principles anticipated, or 

went hand in hand with, astronomical observations, but that knowledge is generally  

inferred from current archaeo-astronomical data. 
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 Because  this dissertation focuses on the geometry of individual structures and 

works of art, I will only briefl y mention and describe a few of these.  Scarborough 

(1982) was among the fi rst researchers to remark upon the general north-south 

alignments of ball courts.  Hartung (1977) analyzed maps of Tikal and Copan and 

found what he considered non-coincidental east-west and north-south base lines and 

right angles as well as equal-sided, right-angled isosceles triangles between prominent 

pyramids, temples, and monuments.  In the Nunnery Complex at Uxmal, right angles 

at the center of the courtyard  (centered on offset doorways) and parallel sight lines 

were suggested as a cleverly hidden site plan by Aveni (1992).  Dr. Anthony F. Aveni 

(1980, 1992), more than any other scholar, has written and compiled articles from 

dozens of other researchers to produce an enormous corpus of information concerning 

astronomical alignments at Mesoamerican ceremonial centers.

 Treatises on the relationship between geometry and art have dominated 

Western art criticism since the Renaissance, providing a rigorous language on 

perspective, composition, and symmetry that has guided the course of painting and 

sculpture for hundreds of years. 

 In comparison, research on geometric measurements in Mesoamerican 

painting and sculpture is scant.  However, studies by Arthur Miller (1973), Robertson 

(1977; 1983), and Sanders (1977) present evidence that templates were laid out in 
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advance of the fi nal execution of murals and bas-reliefs.  These scholars contend that 

a master draftsman laid out the arrangements and subdivisions of the work surfaces 

before outlining the compositional content.  Arthur Miller (1973: 42) suggests that 

“a kind of farmer’s compass” was employed for this purpose. Vinette, citing Guerra 

(1969: 43), mentions a list of Aztec construction tools, including the compass 

(tlayolloanaloni), the plumb (temetztepilolli), the level (quamniztli), and the square 

(tlanacazanimi). Similar tools, she proposes, may have been used to engrave fi fteen 

circles on the mural of substructure 3, zone 2 at Tepantitla.  Separated by 7.5 cm. 

intervals, the fi rst thirteen circles are 32 cm. in diameter.  The last two engraved 

circles are 33.5 and 34.5 cm. with a space of 11.5 cm. between them.  Once painted, 

the last two circles became 35 and 38 cm. in diameter respectively.  Commenting 

on the lack of precision in fi nal execution, Vinette (1986) concludes that after the 

masters set down the template, apprentices completed the work.  Even in the absence 

of discernible markings underneath the plaster, Miller (1973:33) states that the profi le 

fi gures in room 2 at Tepantitla show evidence of being carefully measured, “otherwise 

we cannot account for the fact that the fi gures fi t so well in the allotted space, that they 

are roughly the same size and that they have similar spacing between them” (Vinette 

1986:388). 

 Compositional symmetry also has been observed in Maya works of art. In 
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her study of the murals of Coba, Fettweis Vienot (1980) records several examples 

of intentional bilateral symmetry.  One of the examples she mentions includes a 

drop of blue paint that divides exactly in half the capital of a column at Coba.  She 

also notes that the midpoint of a number of structures is clearly defi ned by a dash 

or square.  Examples of this bilateral division were found at Paalmul, Playa Del 

Carmen; Structure IIIB of the Grupo Del Ray in Cancun; the interior doorways at the 

Castillo at Tulum; Structure 62 at Tancah; and Structure B at San Miguel de Ruz.  The 

same observation holds for other structures at Cacaxtla, in central Mexico (Fettweis 

Vienot 1973).  These intended bilateral symmetries, the author notes, lead to “a better 

understanding of the organization of the composition, and of the eventual repetitions 

of elements on both sides of a central axis” (translated from Fettweis Vienot 1980: 27-

28 by Vinette 1986: 389).

 Clancy’s unpublished analysis of the monuments at Tikal (1977), summarized 

by Vinette (1986:389-392), also suggest evidence for ancient knowledge of geometry.  

Her study posits a pre-established compositional structure that corresponds with the 

placement of various motifs on carved stelae.  This proposed structure is composed of 

intersecting and overlapping isosceles and Pythagorean triangles.  Clancy constructs 

these triangles by drawing two sets of diagonals of 54 and 67 degrees from the lower 

horizontal base of a stele. The central vertical line of the composition is determined 
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by the intersections of these diagonals.  A horizontal line across the fi fty-four-degree 

angles completes the basic compositional structure of the stelae.  Middle Classic 

stelae, Clancy observes, exhibit a simpler compositional structure than the more 

complex angles seen in Late Classic stelae. Throughout her analysis, the critical 

interstices of the triangles were determined by the positions of certain motifs, the 

frequencies of which are summarized in Table 1 published by Vinette (1986:389). 

 The criteria Clancy used to determine that her observations were intentionally 

produced by Maya artists were: 

         a) to be signifi cant, the angular and linear relationship must be found to repeat   

 on at least three different monuments; 

         b) angular relationships were considered similar when there were no more than   

 two degrees of variation between them; and 

         c) a basic repeatable structure that would maintain the above criteria must be             

            common to a least fi fty percent of the monuments tested. 

 Although Vinette considers Clancy’s criteria as “insuffi cient to infer 

conclusive results,” she concedes that Clancy’s approach is open to further 

development which may, in the future, “. . . confi rm her hypothesis of a prescribed 
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compositional structure for Maya stelae as well as Maya cognizance and application 

of Pythagorean triangles.” 
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CHAPTER 3

ETHNOHISTORICAL ACCOUNTS OF THE USES OF THE MEASURING 

CORD

 Perhaps the most telling use of the measuring cord with regard to this 

discussion is recorded in the opening passages of the Popol Vuh, which begins with a 

description of the Maya creation (Tedlock 1985:71): 

And here we shall take up the demonstration, revelation, and account 
of how things were put in shadow and brought to light by the Maker, 
Modeler, named Bearer, Begetter . . . 
It takes a long performance and account to complete the emergence of 
all the sky-earth: 
             the fourfold siding, fourfold cornering, 
             measuring, fourfold staking, 
             halving the cord, stretching the cord 
             in the sky, on the earth, 
             the four sides, the four corners, 
 as it is said, 
             by the Maker, Modeler, 
             mother-father of life . . .  

 In this passage “the Maker,  Modeler” create the cosmos by laying out a 
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square or rectangle with a measuring cord. Then the gods halve and stretch the cord 

at least one arc into the sky and onto the earth. Herein lies a geometrical formula 

for creation. Given the two-thousand-year-old oral tradition of the Popol Vuh, this 

passage represents the source or ancient distillation of geometric knowledge for both 

Pre-Columbian and modern architects.  As will be shown, these “divine instructions” 

constitute the basis for the repeated proportions deciphered in my analysis of Maya art 

and architecture as well as the formulae incorporated into the designs of modern Maya 

vernacular architecture.

 Two ceremonial uses of the measuring cord, one a “rite of passage” ritual 

and the other a Maya New Year ceremony, were recorded by Fray Diego de Landa in 

his sixteenth century Relaciónes de las Cosas de Yucatán.  Another sixteenth-century 

chronicler, Fray Diego Duran (Hayden and Horcasitus, ed. 1977:162-163), reports a 

similar use of the measuring cord in an Aztec ceremony dedicated to the god Tlaloc.  

 Fray Diego de Landa, in his Relaciónes, describes two rituals in which a 

stretched cord plays a prominent role.  In the fi rst (Tozzer 1941:104), Landa translates 

the name of the ceremony literally as “to be born anew.”  The ritual primarily served 

to mark the transition of adolescents into adulthood.  The ceremony took place in a 

newly swept courtyard and was presided over by a “priest” or shaman and four elders 

who, after three days of fasting, were designated as “Chacs.”  In this regard, Tozzer 
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(1941:104) notes that four Chacs holding a cord may be depicted on page 19 of the 

Codex Tro-Cortesianus.  He also notes that Lothrop (1936:28) illustrates a carved 

vase found at Zacualpa that depicts four seated fi gures, each holding a piece of twisted 

rope. Then, quoting Landa: 

...they placed four stools in the corners of the court, on which the four Chacs  
sat down with a long cord held from one to the other, so that the children 
remained shut up in the middle or inside the cord; after which all the fathers 
of the children who had fasted, passing over the cord had to enter inside the 
circuit. Afterwards or before, they placed in the middle another little stool on 
which the priest sat down with a brazier and with a little ground maize and 
their incense. Then the boys and girls came in order, and the priest put into 
their hands a little ground maize and incense, and they threw it into the brazier, 
and this they all did. And these censings being over, they took the brazier in 
which they made them, and the cord with which the Chacs had surrounded 
them, and they poured a little wine into a vessel, and gave the whole to an 
Indian to be carried out of the town, enjoining upon him that he should not 
drink nor look behind him as he came back.

 

 The second relevant ceremony described by Landa (Tozzer1941:151-152), 

the New Year ceremony, was considered a very solemn occasion and began with 

considerable fasting. Next, all utilitarian objects such as plates, vessels, old clothes and 

even “the stuffs with which they wrapped their idols were thrown out and renewed.”  

Again quoting Landa:
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All having come together with the presents of food and drinks, which they had 
brought, and also a great quantity of wine, which they had made, the priest 
purifi ed the temple, seating himself in the middle of the court, clothed like a 
pontiff. The Chacs seated themselves at the four corners, and stretched from 
one to the other a new cord, within which were to enter all those who had 
fasted, in order to drive out the evil spirit…Once having expelled the spirit, 
all began to pray with great devotion and the Chacs kindled a new fi re, and 
lighted the brazier for use in the feasts in which all joined in common, they 
burned incense to the idol with new fi re and the priest began to throw this 
incense into it…and this was their new year and a service very acceptable to 
their idols. 

 Fray Diego Duran (Hayden and Horcasitus, ed. 1977:162-163), describes 

the use of a measuring cord in an Aztec ceremony dedicated to the god Tlaloc. In 

this ceremony, fi ve trees, one large and four small, are carried to a court in front of a 

temple dedicated to the god Tlaloc.  The large tree is called Tota, which means “Our 

Father.”  The following is Duran’s description of this portion of the ritual: 

“Once the great tree and the four small ones had been set up in the form of a square 

with Tota in the center, from each of the small trees emerged a twisted straw rope, 

attached to the large one in the center.  From the small trees, therefore, emerged four 

ropes and all four were tied to the central tree called Tota.”   

 Neither Landa nor Duran describes a Maya ceremony that occurs at the end 

of the fi fty-two year Calendar Round cycle.  Tozzer (1941:151), however, notes that 
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among the Aztec a “renovation,” similar to that described by Landa above, did take 

place at the end of each fi fty-two-year period.  He further speculates that the same 

would be true for the Maya.  He then quotes Vaillant (1938:552):  “One such rite 

involved the destruction of old household furniture and equipment in order to make 

new utensils when the new cycle began.  A second ceremonial observance, after 

kindling the new fi re, was to embellish their temples.” 

 In each of the three ceremonies described above the most basic Mesoamerican 

cosmogram, the quincunx, is laid out with measuring cords, the centers of which are 

formed by shamans in the Maya examples and by the Tota tree in the Aztec.  The 

quincunx is the foundation of Maya cosmograms and is generally depicted as square 

or rectangular with four dots in the corners and a somewhat larger dot in the center.  

The four corners and four edges represent the four directions on the fl at plane of the 

surface of the earth.  Trees are often depicted in this quincunx arrangement, the central 

tree representing the axis mundi located at the center of the world.  This axis mundi, 

with its roots in the underworld and its branches in the sky, bridges the three levels of 

the Maya universe: the sky, the earth and the underworld.

 In support of the above interpretations is my previous structural and 

comparative analysis of ten “ordering rituals” depicted in the Mixtec Vendobonensis 

Mexicanus I  (Powell, 1993).  This codex is among the relatively small group of pre-
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Hispanic and early colonial pictorial manuscripts that have survived to the present 

from the Mixtec-speaking region of southern Mexico.  

 Most researchers agree that the obverse of this codex is a pre-Hispanic, 

Mixtec depiction of the creation and ordering of the universe (Furst 1978, Troike 

1978 and Nowotny 1948).  At some point during the codex’s history in Europe, the 

fi fty-two pages were erroneously numbered from left to right with Arabic numerals.  

The observe is correctly read from right to left, that is, from page 52 to page 1.  The 

Vendobonensis Obverse depicts ten rituals that are similar in structure and content.  

These rituals have been interpreted as prerequisites to the ordering of landforms 

and places in the Mixtec world (Furst 1978: 309; Troike 1978:555; and Nowotny 

1948:194).  Immediately preceding the ordering of earthly landscapes and places, 

two men can be seen stretching a taut cord before a series of architectural elements. 

These images are followed by a fi re-drilling ceremony.  Note that four of the 

ceremonies from the ethnohistoric accounts and all of the examples from the 

Vendobonensis Obverse involving the measuring cord were also associated with 

architecture.  In the ethnohistoric accounts, these associations include: performance 

in courts in front of temples (creating a quincunx or sacred space in front of or near 

the temple); purifi cation of temples; or refurbishing of temples.  Of these, three 

were immediately followed by a fi re drilling and/or the ritual use of fi re.  Thus, 
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even the sequence of the primary symbols of the “ordering ritual” (measuring cord, 

architecture, then fi re drilling) is identical to the ethnohistoric examples.  In the ten 

“ordering rituals” of the Vendobonensis Obverse, it is proposed that the two males are 

using a measuring cord to lay out the shapes of sacred architecture.  Assuming that 

the architecture serves as a cosmogram for sacred landforms, the males would then be 

partaking in a symbolic or perhaps actual act of creation of the natural world (i.e., the 

lienzo depictions of landforms following the “ordering rituals”). The subsequent fi re- 

drilling ceremony may in effect sanctify or give life to their creation.
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CHAPTER 4

ETHNOGRAPHICAL ACCOUNTS OF THE USES OF THE 

MEASURING CORD

 Ceremonies similar to those described during the Contact Period are practiced 

today among indigenous cultures in Mesoamerica.  Over the years, I have witnessed, 

and occasionally participated in, a variety of Maya rituals, from private ceremonies 

held in individual households to elaborate public ceremonies conducted on mountain 

tops, in caves, in cemeteries, in the atriums and interiors of Catholic churches, and in 

the central plazas of towns and villages.  Many of these ceremonies begin by using 

a measuring cord to lay out a temporary altar on the ground in the form of a square 

with its center demarcated (a quincunx).  The corners of these temporary altars are 

often aligned to the cardinal directions, and among the variety of offerings that are 

invariably placed at the corners and centers are colored candles, preferably made of 

tallow rather than wax.  Red candles are placed in the eastern corner, black candles 

to the west, white to the north, yellow to the south, and blue and green candles in the 

center; a color scheme that can be traced back to Pre-Columbian times.  

 The Cha Chac ceremony, as practiced by modern Yucatecans, displays 

geometrical constructions that are remarkably similar to those described by Landa 
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and Duran.  In this ceremony, four large posts are erected in the form of a square.  

These posts are called “the four corners of the earth” (Nikolai Grube, 1993, personal 

communication).  Placed at the center of this square is a smaller square (or double 

square) altar, consisting of a table with four legs.  Cords or ropes are attached 

diagonally along the ground from the four legs of the altar to the four larger corner 

posts.  At the four corners of the central altar stand four vertical posts.  Two arched 

boughs are attached diagonally to the tops of each post, crossing at the upper center 

of the altar.  At the center of this elaborate quincunx, on top of the altar and beneath 

the arched boughs (representing the sky and possibly the ecliptic), food and other 

offerings are laid.  This becomes the focus of the ceremony conducted by a shaman, 

the purpose of which is to bring forth rain. Sometimes young boys are tied by their 

ankles to the four corners of the altar, and they imitate the croaking of frogs to help 

bring on the rain.

 Dr. Brian Stross (1992, personal communication) once observed an interesting 

use of a measuring cord in the northern Maya Lowlands.  A cord was used to lay out 

the dimensions of a grave as well as to measure the exact placement of grave goods. 

When the burial was covered, the cord was rolled into a ball and placed “like a seed” 

at the center of the fi ll-dirt.       

 A measuring cord is also traditionally used today by many Maya people to 
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lay out and parcel their quadrangular milpas, or maize fi elds. It should be noted here 

that the Maya metaphorically compare their milpas to the surface of the four-sided 

earth (Miller and Taube 1993:83-84).  The four corners and center of milpas are still 

demarked today with stacked stones and/or buried offerings. 

 Ethnographer Dr. Duncan Earl, during his investigations in the Tzotzil Maya 

community of Chamula, in the Highlands of Chiapas, Mexico, witnessed a solemn 

annual ceremony where the male heads of households would carefully lay out their 

measuring cords side by side, not only to determine that they were of equal length, but 

also to determine that the single knot that divides these measuring cords precisely by 

a ratio of one to the square root of two, were also aligned.  Dr. Earl observed that the 

Chamulans used these cords to turn right angles and to create squares when they were 

parceling out their milpas and laying out the designs of their houses (Duncan Earl, 

1994, personal communication).  The short section of these measuring cords are used 

to determine the sides of  a square and the longer section to determine its diagonal and 

to insure a true right angle. 

 When we discussed our mutual investigations, Dr. Earl was disappointed that 

he did not record the geometry that the Chamulans used to lay out their houses.

 The following is a description of a house-building ceremony that I observed 

and documented in 1995 as part of my duties as Director of  Anthropological 
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Investigations for the non-profi t institute Fundación Cultural Yucatán.  The ceremony, 

and subsequent house building, were conducted near the town of Muna in the state of 

Yucatan, on the property of Hacienda Tabi, the oldest hacienda in the Yucatan, dating 

back to the late sixteenth century.  Don Aurelio Hernandez Mucul, also from Muna, 

conducted the ceremony with the aid of an apprentice, his eleven year-old great-great-

great-granddaughter.  Don Aurelio was born on June 12, 1904 and was 101years old. 

This was to be his last public ceremony, as he passed away six months later.  

 Because the chosen building site had been built upon, farmed, and abandoned 

over one hundred years before, Don Aurelio decided it prudent to conduct a simple 

preliminary ceremony to seek permission from the souls of ancestors and of various 

nature spirits that might still dwell in and upon the land.  Though I witnessed this 

ceremony, it was conducted in Yucatec, a Maya language that I am not 

conversant in, and I did not feel comfortable interrupting the ceremony to ask for 

regular translations into Spanish.  In summary, the ceremony lasted about 

twenty minutes, during which Don  Aurelio offered balche (a honey-based liquor), 

copal incense from a brazier, and prayers to the four cardinal directions and to the

sun. He then asked permission of the ancestors, nature spirits, and duendes (a Maya 

version of trickster elves or “little people”) to build upon and to farm the land in 

question.  Next, Don Aurelio cracked a raw chicken egg into a glass of water provided 
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by his apprentice.  He then removed a quarts crystal from a small leather pouch and 

held it up to his left eye.  Through the crystal, he peered into the glass, which was 

backlit by the sun, and studied the contents.  I do not know what he saw in that glass, 

but in the end he was pleased that the permissions he had asked for were granted. 

 The master builder of the future house, Don Lucio Gonzales Kan Te, his 

apprentice, Jose Conteras, and I spent the next several days clearing the trees, roots, 

and brush from a plot extending approximately thirty meters around the house- 

building site, which had been determined by Don Aurelio during the preliminary 

ceremony described above.  Upon completion of this task, Don Aurelio and his 

apprentice returned to the cleared land, briefl y consulted with Don Lucio, and 

promptly staked out a square on the ground with a measuring cord.  The corners of 

the square were approximately aligned to the cardinal directions, with the proposed 

doorways facing north/east and south/west. It was important, according to Don 

Aurelio, not to align the doorways due east/west.  I failed to ask why this was so.     

  As is common to most of the Maya houses I have examined, the sides of 

this initial square are two uinics in length.  The Yucatecan word “uinic” translates as 

“human being” and is also a unit of measure roughly equal to the height of a human 

being.  The Maya are aware that when a person stretches his arms perpendicular to his 

body the distance between extended fi ngertips is virtually equal to his height.  Thus, 
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the uinic unit of measure is accomplished by grasping the end of a measuring cord 

with one hand, the length of the cord with the other, stretching it perpendicular to the 

body, and grasping the long end of the cord with the fi ngertips.  The arms are actually 

bowed behind the back a bit so that the uinic is slightly longer than the individual’s 

height.  This is done because the height of the spring line of the house, and thus the 

height of the doorway, are measured as one half the width of the house and should be 

slightly taller than the height of the individual measuring it, so that he, at least, does 

not have to bow his head when entering the doorway.  

 The four sides of the square were laid out by dead reckoning at fi rst and then 

lightly staked into place at the four corners.  Then a second measuring cord was used 

to measure the diagonals of the square, and the lightly staked corners were adjusted 

until the diagonals were of equal length, thus assuring true right angles at the four 

corners of the square.  Then two cords were stretched diagonally from the corners 

of the square and where they crossed, a fi fth stake was pounded into the ground to 

demarcate the center of the square.  

 Don Aurelio then instructed us to excavate post holes at the four corners of

the square, approximately forty centimeters in diameter by eighty centimeters deep, 

and to excavate a hole in the center of the square some sixty centimeters wide 

by eighty centimeters deep.  Because the soils in this area were less than twenty 
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centimeters deep and were underlaid by solid limestone bedrock, this task required the 

use of heavy, sharpened iron bars, some two meters long, and a day’s worth of labor.  

 We spent the following day preparing for the principal house-building  

ceremony.  A pip, or cooking pit, was excavated approximately ten meters east of the 

house site, fi rewood was gathered, cut, and stacked, and many items to be used in 

the ceremony were purchased at the market in Muna.  These items included: a large 

ceramic jar of balche, two live white turkeys, corn meal, sugar, sewing needles, safety 

pins, nopal cactus pads, copal incense, a large aluminum pot, and a dozen jicara 

bowls made from the dried, gourd-like fruits of the calabash tree.  

 On the day of the ceremony, about an hour before sunrise, Don Aurelio, his 

apprentice, and some forty to fi fty men, women, and children from surrounding 

farms and hamlets arrived at the house-building site.  Working together, they placed 

stones at the bottom of the pip and laid a fi re on top of them.  Three hearthstones 

were set west of the house-building site, and a fi re was lit there as well.  One of the 

turkeys was killed, plucked, chopped into pieces, and then set to boil in a large 

aluminum  pot over this cooking fi re.  Dozens of plain corn tamales, decorated with 

equal-sided crosses made of cut corn husks, were wrapped in banana leaves and 

placed on the hot stones inside the pip.  The tamales were covered with fragrant leaves 

and buried under earth and stone.
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 Meanwhile, Don Aurelio and his apprentice made a small altar on a plank 

of wood, which rested on several fl at stones just to the southwest of the house-building 

site.  Long, fl exible branches were tied together and anchored into the earth, forming 

an arch running lengthwise over the altar.  Above the wooden plank, the eleven-

year-old apprentice carefully placed the items to be used in the ceremony, including 

equal-sided crosses made of nopal cactus pads, fi ve jicara bowls fi lled with balche, 

the sewing needles, safety pins, corn meal, etc., and a lit brazier for the copal incense.   

After speaking and praying before this makeshift altar, pouring a bit of balche to the 

earth in front of it, and adding copal incense to the coals in the brazier, Don Aurelio 

placed a perfectly square, four-legged plastic table, with a round Coca Cola logo in the 

center of it, directly over the excavated hole in the center of, and parallel to, the square 

that was laid out two days before.  

 The ceremony then began. The sun had risen over the tree line and was 

shining above the altars, and the men, women, and children were arrayed to the 

northeast of the excavated corners of the square that was to be the focal point of the 

ceremony. 

The ceremony was, of course, conducted in Yucatecan Maya,  most of which I was 

unable to understand.  As a result, the following is a summary of what I witnessed.  

 Don Aurelio’s apprentice placed a bowl of balche and the fragrantly smoking 
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brazier onto the plastic table that had now become the central altar and principal 

focus of the ceremony.  Don Aurelio held the brazier toward the rising sun and spoke 

briefl y.  He then censed each of the holes at the corners of the square, beginning 

with the eastern corner and moving clockwise to the southern, western, and northern 

corners.  He returned to the center of the square, and falling to his knees, he censed 

the excavated hole underneath the plastic square altar.  I was able to understand the 

Yucatec words for “red tree” while he was speaking or praying in the eastern corner, 

“yellow tree” in the southern corner, “black tree” in the western corner, “white tree” 

in the northern corner and “blue/green tree” in the center.  In the same order, Don 

Aurelio poured balche and sprayed balche from his mouth into the corner holes and 

center hole of the square.  Next, he poured balche into twelve jicara bowls, and all of 

the participants drank.  

 With great emotion and animation, Don Aurelio then narrated a dramatic story.  

He sang songs and chanted and spoke some more.  Occasionally the participants sang 

and chanted along with him.  It was a long and elaborate performance, lasting well 

past midday, at the end of which he took the chicken egg, the safety pins and

sewing needles, the crosses made of nopal cactus, and a few items that I was unable 

to recognize from his leather pouch and placced them into the center hole of the 

square.  Finally, he retrieved the live turkey that had been tied to a stake near the 
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hearth.  Facing east, he held the turkey above his head and said a few words.  He then 

kneeled, held the turkey between his legs, removed a pocketknife from his trousers, 

and quickly slit its throat. Immediately he clamped one hand across the wound while 

wiping the blood from the knife onto the feathers of the turkey with his free hand and 

then returning the knife to his pocket.   He carried the turkey to the eastern corner of 

the square, removed his hand from the neck wound, and poured blood from the still 

living turkey into the hole.  In this manner, he offered blood to each of the corner 

holes, again moving clockwise from east to north and terminating with a blood 

offering to the center.  He then placed the turkey into the center hole, wiped his bloody 

hands on a piece of red cloth, and placed the cloth into the center hole.  Then he stood 

up and declared a two-hour siesta. For some reason, he asked me to move the plastic 

table to one side and to bury the offerings in the center hole using the original soil 

excavated from it. 

  Some of the participants who lived nearby returned to their homes, others 

rested under the shade trees nearby.  A few women tended the boiling turkey soup, 

adding corn meal to thicken it to the consistency of gruel.  A few men and boys 

uncovered the pip, removed the cooked tamales, and placed them on a folding table 

that had been placed adjacent to the pip.

 I had fi nished burying the offerings and was sitting under a tree, scribbling 
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notes, when I noticed a small commotion.  Don Aurelio had collapsed to the ground 

and was unconscious.  Two women, his apprentice, and myself carried him to the 

shade of a tree and laid his head in the lap of one of the women, who began to speak 

or pray to him.  His apprentice brought a bowl of water and a cloth and began to bathe 

his face.  Don Aurelio soon regained consciousness, but he appeared delirious and 

scared.  He was speaking with the voice a frightened, agitated child.  He was weeping 

too. He went on like this for fi fteen or twenty minutes, then he just cried, bitter, bitter 

tears.  Then he slept for about an hour. 

 While he slept, one of the women told me that Don Aurelio had been reliving 

a horrifi c incident from his childhood.  When Don Aurelio was a boy, near the turn of 

the twentieth century, a series of bloody Maya rebellions, the Caste Wars, were raging 

across the entire Yucatan Peninsula.  The Maya were rebelling against the brutal 

slavery imposed upon them by the Spanish hacienda owners who controlled and 

dominated most of the farmland and most of the Maya farmers and families in the 

region.  Soldiers were brought in from the Valley of Mexico to quell these rebellions. 

By all accounts, the Maya, armed mainly with machetes, knives, and farming tools, 

fought bravely against well-armed troops, cavalry, and cannons.  By all accounts, they 

were brutally slaughtered in great numbers.

 The incident that Don Aurelio was reliving occurred during these turbulent 
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times.  Early one morning Don Aurelio’s mother was bathing him some distance from 

the family compound that housed his brothers and sisters, his aunt, uncle and cousins, 

his grandparents, parents, and himself.  Soldiers suddenly attacked the compound, 

and his mother told him to hide in the forest while she returned to the compound. 

He watched as the soldiers killed his entire family.  He ran naked into the forest and 

eventually walked from the state of Yucatan to the Highlands of Chiapas.  A family 

there took him in, and he apprenticed with a shaman.  Years later he returned to 

Yucatan. 

 When Don Aurelio awoke, he drank three bowls of water and stood up.  He 

composed himself and spoke softly to his apprentice and the women who had looked 

after him. 

  The rest of the afternoon resembled a fi esta more than a formal ceremony.  

The participants returned, Don Aurelio spoke some words over the turkey soup and 

tamales, and offered a bit of each to the earth in front of the pip and the cooking pot. 

Everyone consumed the food and chatted casually.  Some folks drank water and others 

were tipping the jar of balche.  When the sun was again above the tree line, but 

now setting in the west, Don Aurelio delivered a fi nal short oration and the ceremony

ended. 

 The next day Don Lucio, Jose, and I began to build the house. The wood 
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from six different species of trees and the guano (palm thatch) had been cut at or near 

the full moon and stacked and dried for approximately three weeks.  Most Maya 

house builders cut the wood and thatch for houses at, or a few days after, the full 

moon, because they believe that the sap rises in these plants at this time of the month 

and that the increased sap content serves as both an insect repellent (mostly to ward 

off termites) and to help prevent these materials from rotting.  

 Early that morning, as we were hauling the wood to the building site, Don 

Aurelio showed up (unexpectedly to me at least) to complete the ground plan of the 

house.  With the help of Don Lucio, he stretched his measuring cord between the east 

and south corners of the house, then folded his cord in half to mark its center point.  

He asked me to hold my thumb and forefi nger on the cord to mark the center as they 

re-stretched the cord to the east and south corners.  I placed my thumb on the ground 

to mark the center point between the corners while Don Lucio cut a sharpened stake 

to mark this spot.  We repeated this process on the opposite side of the square.  Don 

Aurelio then tied his measuring cord to this central stake and pulled it taut to the 

eastern corner of the square, at which point he tied a short, sharpened stick.  He then 

used this sharpened stick to etch an arc in the soil from the east corner to the south 

corner and repeated the process, etching an arc between the north and west corners.  

While we placed stakes at approximately thirty-centimeter intervals along these arcs 
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to demarcate them permanently, Don Aurelio left us.  

 The following chapter entitled, “How It Works,” describes and diagrams 

in detail the square root, phi, and Pythagorean 3,4,5 rectangles and their dynamic 

subdivisions.  This chapter is intended as a compendium of Maya geometrical 

formulae, geometry that is incorporated into various Maya vernacular house designs, 

and apparently incorporated into Pre-Columbian art and architecture as well.
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CHAPTER 5

HOW IT WORKS: DYNAMIC PROPORTIONS AND THEIR PERFECT AND 

VIRTUALLY PERFECT SUBDIVISIONS 

 The square root and phi proportions in this study of Maya art and architecture 

have been considered a formal set of proportions for thousands of years.  The 

unique and dynamic attributes of these proportions were examined and puzzled out 

by the great geometers and mathematicians of old, from Pythagoras to Da Vinci, 

and continue to intrigue modern geometers and mathematicians.  They are called 

dynamic proportions in modern vernacular in part because of their unique capacity to 

subdivide and combine into smaller and larger but similar forms.  (The word “similar” 

in this context means identically proportioned but larger or smaller than).  Another 

dynamic aspect of this set of rectangles is that they are the rectangular expressions 

of the proportions inherent in regular polygons.  These relationships are made clear 

by examining the most elementary set of regular polygons, the equilateral triangle, 

the square, and the pentagon and all other regular polygons that may be derived from 

these three; for example, the hexagon, octagon, decagon, etcetera (see Figure 2). 

The heptagon and nonagon are not included in this set of dynamic forms. In fact, the 
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heptagon is not included in planar geometry at all.  Unlike other regular polygons, 

there is no geometrical formula for creating a regular heptagon, and it cannot be drawn 

with a compass and a straight edge.  It can only be approximated, its angles expressed 

in fractions of degrees. Though a regular nonagon can be drawn with a compass and 

a straight edge, its formula is complex, and the resulting proportions do not relate to 

the square root or phi proportions as do the regular equilateral triangle, square, and 

pentagon.

 Thus, the repetitive proportions discovered in my analysis form a coherent and 

interrelated system of measurement and proportion.  Because root and phi proportions 

are irrational, they cannot be divided into even units.  (This in itself might help to 

explain why they have remained elusive to previous researchers.)  As mentioned 

earlier, the root rectangles (from the square root of one through fi ve) are created by 

fi rst laying out a square and then using a compass and a straight edge (or a cord that 

can function as both a compass and a straight edge).  The length of each succeeding 

root rectangle is derived from the diagonal of the preceding rectangle.    

 The phi rectangle is created by laying out a square and halving a measuring 

cord at the base of the square to determine its midpoint.  Then a cord is stretched from 

this midpoint at the base of the square to either of the upper corners of the square and 

swung downwards until it is parallel to the base of the square to determine the length 
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of the rectangle.  If this procedure is performed from both upper corners of the square, 

a square root of fi ve rectangle is produced (see Figure 1).   

  It should be noted that the terms “square root” and “phi,” and the irrational 

numbers they represent, are western terms and mathematical concepts.  The use of  

these proportions by the Maya in no way implies, nor requires, Maya knowledge of 

square root or irrational numbers.

 My fi ndings do support the hypothesis that the Maya developed and applied a 

sophisticated system of planar geometry, which, by defi nition, does not require the use 

of mathematics.  Planar geometry can be defi ned as any shape that can be drawn with 

a straight edge and a compass (or more simply, any shape that can be drawn using a 

cord).  

 With the aid of fairly simple mathematical equations that require the use of 

irrational numbers, the dynamic subdivisions referred to above (and that are drawn 

and diagramed below) can be shown to be mathematically perfect subdivisions.  But 

along with these “perfect” subdivisions, I have found a handful of virtually perfect 

subdivisions that are expressed repeatedly in the designs of Maya art and architecture.  

I call these subdivisions “virtually perfect” because the extremely slight inaccuracies 

of these subdivisions would be virtually impossible to detect without the use of 

mathematical equations that utilize irrational numbers.  
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 Maya mathematics apparently consisted of equations, theorems, and ratios that 

relied exclusively on the use of whole numbers.  Because the margin of error of these 

virtually perfect subdivisions are too small to detect using the common tools of planar 

geometry — the straight edge, the compass, or the measuring cord — and because 

the Maya did not have the mathematical tools to prove these slight inaccuracies, these 

virtually perfect subdivisions, would have appeared to be, for all practical purposes, 

perfect subdivisions.  Thus, the dynamic subdivisions of the square root and phi 

probably seemed even more dynamic to a Maya geometer.

 The Pythagorean 3,4,5 rectangle can also be virtually perfectly subdivided 

by the root and phi rectangles and thus was probably considered an integral part of 

this coherent and interrelated system of measurement and proportion.  These perfect 

and virtually perfect dynamic subdivisions of the square root, phi, and Pythagorean 

rectangles are drawn and diagramed below, beginning with the square.  I present only 

the examples of dynamic subdivisions that the Maya appear to have intentionally 

incorporated into the layout and designs of their art and architecture.  

 An equiangular spiral can also be easily drawn from the subdivisions of a phi 

rectangle (or a phi triangle). Chapter 7 will present evidence that the Maya 

understood these formulae for drawing equiangular spirals of phi proportions and that 

they used them in the layout and designs of various works of Pre-Columbian art.
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 The diagrams included in this chapter are, in my opinion, the nuts and bolts of 

Maya geometry, and though I probably have yet to detect some of the virtually perfect 

subdivisions, I believe these diagrams represent a nearly complete collection of  Maya 

rectangular proportions and their subdivisions.  The diagrams and formulae below will 

be repeatedly referred to throughout the rest of this dissertation.

 Though some of the formulae may seem complex, their constituent parts are 

remarkably simple.  All of the Maya geometry described in this dissertation consist of 

various combinations of only fi ve rectangles: the square, the root two, the root three, 

the phi and the Pythagorean 3,4,5 rectangles (six, if you include the root phi rectangle 

that must be derived from the phi rectangle).  A few examples of concentric circles 

with root and phi proportions and a few examples of phi equiangular spirals are also 

noted and examined.
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Figure 1 

The Square Root, Phi, and Pythagorean 3,4,5 Rectangles
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Figure 2 

The Square Root and Phi Proportions and Regular Polygons
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Figure 3 

The Square Root of Two, the Square Root of Three, Phi
 and the Shapes of Flowers and Shells
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Figure 4  

Formula Square-1

Formula Square-1 diagrams the subdivisions of a square by root two rectangles shaded in yellow 
and the remaining squares in white.  The lower diagram illustrates the relationship of the root two 
subdivisions to a regular octagon (in bold black lines) inscribed in the principle square.
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Figure 5 

Formula Square-2

Formula Square-2 diagrams the subdivisions of a square by phi rectangles (shaded blue) and the 
remaining squares are in white. The lower diagram illustrates how these phi subdivisions also 
divide a square into a phi rectangle with the same length as the square (shaded blue) and a phi 
squared rectangle (shaded yellow). 
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Figure 6 

Formula Square-3

Formula Square-3 diagrams the subdivisions of a square by root three rectangles (shaded 
blue) and root four rectangles (in white). The highlighted diagonals of the larger paired root 
three rectangles are the radii for the arc that terminates at the center of the base of the square. 
The remaining space at the base of the square is subdivided by root three and root four. 
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Figure 7

 Formula Square-4

Diagram A shows a root phi rectangle (shaded yellow) inscribed within a circle that is inscribed 
within a square. Diagram B shows a root phi rectangle (a.,b,e,f) whose width is equal to the length 
of the root phi rectangle in diagram A and whose height is equal to that of the square. Diagram C 
shows a phi rectangle (shaded blue) (c,d,g,h) whose length is equal to that of the square and whose 
height equals that of the root phi rectangle in diagram A.

A B

C
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Figure 8 

Formulae Square Root of Two-1and 2

Formula Square Root of Two-1 (a) diagrams the subdivision of a root two rectangle by two squares 
(in white) and a remaining root two rectangle (shaded yellow).  The diagonal of the larger square 
is the radius that determines the length of the base rectangle.
Formula Square Root of Two-2 (b) diagrams the subdivision of a horizontal  root two rectangle by 
two vertical root two rectangles. (Note that the root two rectangle is its own gnomon.)

a

b
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Figure 9

Formulae Square Root of Two-3 and 4

Formula Square Root of Two-3 (a) diagrams the subdivision of a root two rectangle by squares (in 
white) and root two rectangles (shaded yellow). The highlighted diagonal is 45 degrees and is the 
radius for the arc that forms the root two rectangle.
Formula Square Root of Two-4 (b) is a virtually perfect subdivision of a root two rectangle by a 
three Pythagorean 3,4,5, rectangle.  (The margin of error for this formula is  0.0024.)

a

b



63

Figure 10

Formulae Square Root of Three-1 and 2

Formula Square Root of Three-1 (a) diagrams the subdivision of a root three rectangle by two root 
two rectangles and a root three rectangle.  The diagonal of the larger root two rectangle is the radius 
of the arc that determines the length of root three rectangle (highlighted in yellow).
Formula Square Root of Three-2 (b) diagrams the subdivision of a horizontal root three rectangle 
by three vertical root three rectangles.

a

b
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Figure 11

Formulae Square Root of Three-3 and 4

Formula Square Root of Three-3 (a) is a virtually perfect formula that subdivides a root three rect-
angle by two phi rectangles (shaded blue) and a root four rectangle (in white). The diagonals of 
the root four rectangle are the radii of the arcs that form the adjacent phi rectangles. (The margin 
of error is 0.0040)
Formula Square Root of Three-4 (b) is a virtually perfect formula that subdivides a root three rect-
angle by two root two rectangles (shaded yellow) and two root fi ve rectangles (shaded blue). (The 
margin of error is 0.0005).

a

b
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Figure 12

Formulae Square Root of Three-5 and 6

Formula Square Root of Three-5 (a) is a virtually perfect formula that subdivides a root three 
rectangle by a root three rectangle (in white) and a root fi ve rectangle (shaded blue) and a root two 
rectangle (shaded yellow. (The margin of error is 0.0005)
Formula Square Root of Three-6 (b) is a virtually perfect formula that subdivides a root three rect-
angle by two root two rectangles (shaded yellow) and two squares (in white), a root phi rectangle 
(shaded blue) and a root four rectangle (shaded grey). (The margin of error is 0.0038).

a

b
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Figure 13

Formulae Two Over Square Root of Three-1 and 2

Formula Two Over Square Root of Three-1 (a) can be viewed as paired root three rectangles. This 
rectangle also inscribes an equilateral triangle (in blue lines).
Formula Two Over Square Root of Three-2 (b) is a two over root three rectangle subdivided by 
three root three rectangles

a

b
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Figure 14

Formulae Two Over Square Root of Three-3 and 4

Formula Two Over Square Root of Three-3 (a) is a virtually perfect formula that subdivides a two 
over square root of three rectangle by a phi rectangle (shaded blue) and two root four rectangles 
(shaded yellow). (The margin of error is 0.0026).
Formula Two Over Square Root of Three-4 (b) is a virtually perfect formula that subdivides a two 
over square root of three rectangle by a root four rectangle (shaded yellow), two root phi rectangles 
(in white) and two root 3 rectangles (shaded grey) (The margin of error is 0.0009).

a

b
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Figure 15

Formulae Two Over Square Root of Three-5 and 6

Formula Two Over Square Root of Three-5 (a) is a virtually perfect formula that subdivides a two 
over square root of three rectangle by a root two rectangle (shaded yellow) and a root fi ve rectangle 
(shaded blue). (The margin of error is 0.0003).
Formula Two Over Square Root of Three-6 (b) is a virtually perfect formula that subdivides a two 
over square root of three rectangle by a root phi rectangle (shaded yellow), two Pythagorean 3,4,5, 
rectangles (shaded blue). (The margin of error is 0.0068).

a

b
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Figure 16

Formulae Square Root of Four-1 and 2

Formula Square Root of Four-1 (a) diagrams the subdivision of a root four rectangle by two root 
three rectangles and a root four rectangle.  The diagonal of the larger root three rectangle is the 
radius of the arc that determines the length of root four rectangle (highlighted in yellow).
Formula Square Root of Four-2 (b) diagrams the subdivision of a horizontal root four rectangle by 
four vertical root four rectangles. 

a

b
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Figure 17

Formulae Square Root of Four-3 and 4

Formula Square Root of Four-3 (a) subdivides a root four rectangle by a phi rectangle (in white) 
and a phi squared rectangle (shaded yellow).
Formula Square Root of Four-4 (b) is a virtually perfect formula that subdivides a root four rect-
angle by a root two rectangle (shaded yellow) and a root three rectangle (shaded blue). (The mar-
gin of error is 0.0082.)

a

b
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Figure 18

Formulae Square Root of Five-1 and 2

Formula Square Root of Five-1 (a) diagrams the subdivision of a root fi ve rectangle by two root   
four rectangles and a root fi ve rectangle.  The diagonal of the larger root four rectangle is the radius 
of the arc that determines the length of root fi ve rectangle (highlighted in yellow).
Formula Square Root of Five-2 (b) diagrams the subdivision of a horizontal  root fi ve rectangle by 
fi ve vertical root fi ve rectangles.

a

b
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Figure 19

Formulae Square Root of Five-3 and 4

Formula Square Root of Five-3 (a) diagrams the subdivisions of the root fi ve rectangle into a 
square (in white) and two phi rectangles (shaded blue). The highlighted diagonal from the center 
base of the square, to its upper corner, is the radius for the arc that forms the phi rectangles.  Be-
cause the square is the gnomon of the phi rectangle, the square and either of the phi rectangles in 
blue form a larger, horizontal phi rectangle.
Formula Square Root of Five-4 (b) is a virtually perfect formula that subdivides a root fi ve rectan-
gle by a root three rectangle (shaded blue) and a root four rectangle (shaded yellow). (The margin 
of error is 0.0040.)

a

b
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Figure 20

Formulae Phi-1 and  2

Formula Phi-1 (a) diagrams the subdivisions of a phi rectangle into a square (in white) and a 
smaller phi rectangle (shaded blue). The highlighted diagonal from the center base of the square, 
to its upper corner, is the radius for the arc that forms the phi rectangle.  

Formula Phi-2 (b) subdivides a phi rectangle into squares (in white) and smaller phi rectangles 
(shaded blue).

a

b
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Figure 21

Formulae Phi-3 and 4

Formula Phi-3 (a) is a virtually perfect formula that subdivides a phi rectangle into two squares (in 
white), two root two rectangles (shaded yellow) and a root of fi ve rectangle (shaded blue). (The 
margin of error is 0.0007).
Formula Phi-4 (b) is a virtually perfect formula that subdivides a phi rectangle into one square (in 
white) and four root two rectangles (shaded yellow). (The margin of error is 0.0086.)

a

b
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Figure 22

Formula Square Root of Phi-1

Diagram a illustrates the only simple way I know of to create a root phi rectangle. First, lay out a 
phi rectangle then stretch a cord or place the points of a compass across the length of the phi rect-
angle and use this segment as a radius to form an arc to the opposite side of the phi rectangle. The 
resulting rectangle (shaded yellow) has a length of root phi (1,272...) and a diagonal (a,b) of phi.
Formula Square Root of Phi-1 (b) is a root phi rectangle subdivided into three smaller root phi 
rectangles. The diagonal of the smallest is equal to the height of the next largest, whose diagonal 
is equal to the width of the largest.

a

b
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Figure 23

Formulae Square Root of Phi-3 and 4

Formula Square Root of Phi-3 (a) is a virtually perfect formula that subdivides a root phi rectangle 
by a root four rectangle (shown as paired squares and shaded yellow) and two root three rectangles 
(shaded blue). (The margin of error is 0.0040.)
Formula Square Root of Phi-4 (b) is a virtually perfect root phi rectangle  that is eleven units wide 
and fourteen units long. (The margin of error for the length is -0.0007, and the diagonal (a,b) 
equals phi -0.0005.)

a

b
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Figure 24

Formulae Phi Squared-1 and 2

Formula Phi Squared-1 (a) subdivides a phi squared rectangle by a square (in white) and a hori-
zontal phi rectangle (shaded blue), a horizontal phi rectangle (in white) and a vertical phi squared 
rectangle (shaded yellow).
Formula Phi Squared-2 (b) subdivides a phi squared rectangle by a root four rectangle (shaded 
yellow) and a vertical phi rectangle (shaded blue).

a

b
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Figure 25

Formulae Phi Squared-3 and 4

Formula Phi Squared-3 (a) subdivides a phi squared rectangle by a vertical phi rectangle (shaded 
blue), a horizontal phi rectangle (in white), and a vertical phi squared rectangle (shaded yellow). 
The two phi rectangles form a root fi ve rectangle, and the horizontal phi rectangle and the verti-
cal phi squared rectangle form a root four rectangle. (A unique aspect of the phi ratio is that phi 
squared  (2.618...) equals phi plus one.)  
Virtually perfect subdivisions of the phi squared rectangle can by created by substituting virtually 
perfect formulae for the root four and root fi ve rectangles diagrammed previously. Formula Phi 
Squared 4 (b) is one example.

a

b
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Figure 26

Formulae Pythagorean 3,4,5-1 and 2

Formula Pythagorean 3,4,5-1 (a) diagrams the relationship of the whole number subdivisions of 
the sides of this rectangle and its diagonal. Only Pythagorean rectangles have a diagonal that can 
be divided into even units relative to its sides.
Formula Pythagorean 3,4,5-2 (b) is a virtually perfect formula that subdivides a Pythagorean 3,4,5 
rectangle by a root two rectangle (shaded yellow) and a phi rectangle (shaded blue). (The margin 
of error is 0.0081.)

a

b
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Figure 27

Formulae Pythagorean 3,4,5-3 and 4

Formula Pythagorean 3,4,5-3 (a) is a virtually perfect formula that subdivides a Pythagorean 3.4.5 
rectangle by a vertical Pythagorean 3,4,5 rectangle (shaded yellow) and a root three rectangle 
(shaded blue). (The margin of error is 0.0059.)

Formula Pythagorean 3,4,5-4 (b) is an elaboration of formula Pythagorean 3,4,5-3. The root three 
rectangle is subdivided by a root two rectangle (highlighted yellow diagonal) and the base of this 
root two rectangle is extended across the length of the entire rectangle and produces a virtually 
perfect phi rectangle with a margin of error of +0.0017...

a

b
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Figure 28

Formulae 3/2-1 and 2

Formula 3/2-1 (a) subdivides a 3/2 rectangle by six equal sided squares or three root four rect-
angles.
Formula 3/2-2 (b) divides a 3/2 rectangle in half to produce two Pythagorean 3,4,5 rectangles.

a

b
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Figure 29

Formula 3/2-3

Formula 3/2-3 subdivides a 3/2 rectangle by vertical root 4, phi, and a phi squared rectangle and 
demonstrates an intrinsic relationship between the 3/2 rectangle (or paired Pythagorean 3,4,5 rect-
angles) and the phi and root fi ve rectangles.  This true formula is derived very simply.  Place a 
compass or cord at the base of the length of the 3/2 rectangle and swing an arc upwards, pivoting 
at (a) until it crosses at the top of the rectangle at point (b) (highlighted yellow lines).  The width 
of the rectangle is two units, its length is three units, and diagonal a,b is also three units.
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Figure 30

Formula 3/2-4

Formula 3/2-3 subdivides a 3/2 rectangle by three horizontal root three rectangles (shaded blue) 
and a square (in white).  This is a true formula and demonstrates an intrinsic relationship between 
the 3/2 rectangle (or paired Pythagorean 3,4,5 rectangles) and the square root of three proportion. 
This formula is also derived very simply.  First divide the 3/2 rectangle in half laterally and place 
a compass or cord at the corners of the side of the rectangle (a,b) and swing an arc (not shown) 
from either a,b or b,a until it crosses the center line at point c.  Points a,b,c, form an equilateral 
triangle.  The remaining portion of the 3/2 rectangle divides precisely into a square and root three 
rectangle.

a

b

c
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Figure 31

Formula Concentric Circles-1

Formula Concentric Circles-1 diagrams two concentric circles, the diameter of the inner circle 
being one, and the diameter of the outer circle is square root two. Two simple methods for creat-
ing concentric circles with these proportions are shown:  Above, a square is drawn and a circle is 
inscribed within it and another circle is drawn that inscribes the square. Below, a root two rectangle 
is drawn with concentric circles inscribing its height and width.
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Figure 32

Formula Concentric Circles-2

Formula Concentric Circles-2 diagrams two concentric circles, the diameter of the inner circle be-
ing one, and the diameter of the outer circle is square root of phi. This formula is easily created by 
drawing concentric circles inscribing the height and width of a root phi rectangle. Circular monu-
ments of ten display this formula (particularly at Tonina) and, whether the Maya knew it or not, 
the perimeter of the square that inscribes the inner circle (a, shaded gray) is virtually equal to the 
circumference of the outer circle (with a margin of error of 0.0153), and the area of the root phi 
rectangle used to create both circles (b, shaded gray) is virtually equal to the area of the outer circle 
(with a margin of error of -0.0012).

a

b
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Formula Phi Equiangular Spiral-1 diagrams how a phi rectangle can be subdivided into smaller 
squares and phi rectangles add infi nitum. Add a square (a,b,c,f) to a phi rectangle (a,b,d,f) and the 
remainder (c,d,f,g) is a similar phi rectangle. Add a square to this smaller rectangle (c,d,e,h) and 
the remainder (c,d,g,h,) is also a smaller phi rectangle and so on.  These squares also provide  the 
radii for the arcs of the equiangular spiral highlighted in yellow. Radii g,a and g,c are used to form 
the arc a,c; radii h,c and h,e to form arc c,e, etcetera.

Figure 33

Formula Phi Equiangular Spiral-1
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Formula Phi Equiangular Spiral-2.  Begin with a triangle whose base (b,c) equals one and the 
slope (a,b) equals phi.  Place a compass or cord at b,c, and make an arc pivoting from b until 
b,c,crosses the slope a,c (at position d). Draw the line d,b, and c,d,b is a similar triangle to a,b,c at 
a ratio of one to phi. Place your compass or cord at c,d and pivot from c until c,d crosses line d,b 
at e and draw line e,c, creating another similar triangle, etcetera.  These divisions of a phi triangle 
also provide the radii to form the equiangular spiral highlighted in yellow.  Radii d,a and d,b form 
arc a,b; radii e,c and e,b form arc b,c; radii f,c and f,d form arc d,c, etcetera.

Figure 34

Formula Phi Equiangular Spiral-2
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Formula Phi Equiangular Spiral-3 (a) is Formula Phi Equiangular Spiral-1 doubled and mirrored.
Formula Phi Equiangular Spiral-4 (b) is essentially the equiangular spiral of Phi Equiangular Spi-
ral-2 created on both sides of the original phi triangle and shows the intrinsic relationship of this 
formula to the pentagram.

a

b

Figure 35

Formulae Phi Equiangular Spiral-3 and 4
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CHAPTER 6

GEOMETRY IN MAYA VERNACULAR ARCHITECTURE

             The  basic designs of vernacular Maya structures, often called “Casas 

Mayas” in the Yucatán, are extremely conservative and have not changed 

signifi cantly since at least the early 1800s.  Archaeological and ethnohistorical 

evidence suggests that these designs can be traced back to Pre-Columbian times 

(Wauchope et al. 1940).             

             Two basic styles of vernacular houses exist in Mesoamerica today: the 

apsidal and the rectangular.  Traditionally, the frames are constructed entirely 

of wood beams and poles lashed together with vines (bejuco) and the roofs 

are thatched with palm fronds or grasses.  Walls are most often made of wattle 

and daub, though in some cases they are made of rough stone masonry, adobe 

bricks, or`wooden poles or planks.  Sometimes, too, the walls are fi nished with 

a coating of stucco.  The following diagram and photographs (Figures 36-39)  

show a few of the different styles of Maya vernacular houses:
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Figure 36

Diagram A and Photograph 1 of Maya Vernacular Houses

a

b

Diagram a, of a Maya house being built, shows some of the principal components of Maya houses: 
The low stone wall that is often built around the roof support posts to protect the walls from moisture 
and rot, the hard packed earth or sascob (deteriorated limestone) fl oor, the roof frame, and rafters, the 
bijuco lashings and thatch.
Photograph 1 (b) shows apsidal houses, with bare wattle and daub walls, from the Yucatan penin-
sula.
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Figure 37
Photographs 2 and 3, Two Styles of Maya Vernacular Houses, 

Yucatan Peninsula, Mexico

Photograph 2 (a) is of a rectangular Maya house with bare wattle and daub walls.
Photograph 3 (b) is of an apsidal Maya house with stuccoed and painted wattle and daub walls.

a

b
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Figure 38

Photographs 4 and 5, Two Styles of Maya Vernacular Houses, Chiapas, Mexico 

Photograph 4 (a) is of a rectangular Maya house with a porch and wood plank walls.
Photograph 5 (b) is of an apsidal Maya house with wattle and daub walls and a stuccoed door-
way.

a

b
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Figure 39

Photographs 6 and 7, Two Styles of Maya Vernacular Houses, Chiapas, Mexico

Photograph 6 (a) is of an apsidal Maya house with wattle and heavily daubed walls. 
Photograph 7 (b) is of an apsidal house with stuccoed masonry walls.

a

b
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             Sadly, the most complete source for descriptions of construction 

materials and techniques remains Wauchope’s 1938 monograph on “modern 

Maya houses” (also see Wauchope 1940).  A few more recent additions to 

Wauchope’s detailed study include Anderson (1994), Breedlove and Laughlin 

(1993) and Laughlin (1996).  Some localized ethnoarchaeological studies 

include Fauvet-Berthelot (1986: 235–263), Lee and Hayden (1988), and Smyth 

(1991).

             Most of the following descriptions of how these vernacular houses 

are designed or laid out with measuring cords are the results of my own 

intermittent interviews with Maya shamans and house builders in the Yucatan 

peninsula, in the Highlands of Chiapas and Guatemala, and in Honduras 

between the years 1993 and 2001, and from similar interviews conducted 

by archaeologist Alfonso Morales in Honduras during 1995.  Most of the 

measured drawings used to demonstrate the geometry incorporated into the 

designs of these houses were produced by myself.  Others were produced by 

Wauchope (1938), Pivaral (1989), and Pierrebourg (2003).

             Sometimes the ground plans of these vernacular houses are laid out 

with measuring cords as part of elaborate house-building ceremonies conducted 

by shamans.  Often though, the same ground plans are laid out by house- 
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building specialists after offering simple prayers or without any apparent 

ceremonies at all.  The degree of ceremony involved is evidently determined by 

the religious proclivities of the house owners.

 My fi rst interview with a Maya house-building specialist was conducted 

in 1993 in the town of Izamal, in the state of Yucatan.  Through an introduction by 

an acquaintance who lived in Izamal, I was received into the home of Don Pedro, 

a master house builder whose house was sparsely furnished, fastidiously clean and 

orderly, and beautifully built.  The bejuco lashings of the principal support beams 

and rafters were snug and perfectly tied.  The thatch roof was laid out in an unusual 

herringbone pattern that was pleasing to the eye. 

 Don Pedro used his own house as an example to respond to my questions 

about how he designed it.  He began by pointing out that the principal vertical roof 

support posts formed an equal-sided square, and he told me that he used a cord to lay  

out this initial square.  (I failed to ask him how he determined the right angles of the 

square, a mistake I would not repeat in subsequent interviews.)  He then showed me 

how he stretched a cord from the corners of one side of the square, folded the cord in 

half to determine its center point, and re-stretched the cord to mark and stake a point 

midway between the corners.  He then stretched his cord from this center point to both 

corners of the square, forming a half circle.  He repeated this process on the opposite 



96

side of the square.  The length of each side of this central square, which is also the 

width of the house, was measured as two “uinics” — twice the measure of the 

distance between his outstretched fi ngertips — in exactly the same manner as 

described in the house-building ceremony conducted by Don Aurelio.  The height 

of the spring line of this particular house design is equal to one half of the width of the 

house, or one uinic.  The height of the roof is also equal to one half the width of the 

house, so that the distance between the peak of the roof and the spring line is equal to 

1.414…  uinics (the square root of two).  The slope of the roof forms a forty-fi ve 

degree angle and the height of the house is equal to its width.  This ratio of one to one, 

height to width, divided equally at the spring line, is common to most of the Maya 

houses I have examined.  An interesting aspect of utilizing this particular formula 

of equal height to width is that whatever proportion is used to design the plan of the 

house will be identically refl ected in the front elevation of the house (see Figures 40 

and 41). 

 After kindly describing to me in detail how he designed his own house, Don 

Pedro suggested that I examine a recently abandoned traditional house of a different 

design, which was made by a friend whom Don Pedro described as a master house 

builder from the Caribbean coast.  It was a well-constructed house of lashed wood 

beams and posts with wattle and daub walls and a palm-thatched roof.  It was 
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rectangular in plan and in good condition.  With the help of a few graduate students, 

I produced a measured drawing. The exterior dimensions of the plan formed a nearly 

perfect phi rectangle and the interior posts used to support the roof were arranged as a 

Pythagorean 3,4,5 rectangle (see Figures 42 and 43).
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Figure 40

Plan of Maya Vernacular House 1, Don Pedro’s House,
Izamal, Yucatan, Mexico

Maya Vernacular House 1 is probably the most common style of Maya vernacular house in the 
Yucatan Peninsula.  The parallel sides of the apsidal plan and the four principle roof support posts 
form a square (shaded yellow). The center of the right and left-hand sides of this square, to the 
corners, are the radii for the half circle arcs that form the apsis. The width to length of the plan is 
one to two (square root of four).

Altar
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Figure 41

Elevations of Maya Vernacular House 1, Don Pedro’s House, 
Izamal, Yucatan, Mexico

The side elevation (a) is of equal height and width and is inscribed by a quartered square. The 
spring line and roof are of equal height.
The front elevation (b) has a height of one to a length of two and the pitch of the roof in both eleva-
tions is forty-fi ve degrees. 

a

b
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Figure 42

Plan of Maya Vernacular House 2, House of the “Master Builder from the Caribbean,” 

Izamal, Yucatan, Mexico

The plan of Maya Vernacular House 2 has a width to length ratio of one to phi. The interior support 
beams form a Pythagorean 3,4,5 rectangle whose length is equal to the width of the house.

B
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Figure 43

Elevations of Maya Vernacular House 2, House of the “Master Builder from the 
Caribbean,” Izamal, Yucatan, Mexico

The side elevation (a) is of equal height and width and is inscribed by a quartered 
square. The spring line and roof are of equal height. The pitch of the roof is forty-
fi ve degrees.
The front elevation (b) has a height of one to a length of phi. The width of the prin-
cipal support beams to the height of the roof form a square bisected laterally at the 
spring line (shaded yellow), and the remaining space to either side of this square 
is inscribed by phi rectangles (shaded blue).  The pitch of the roof is the diagonal 
of a phi rectangle (approximately 57.5 degrees).

a

b
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 In 1995 I returned to Yucatan, sponsored by the Fundación Cultural Yucatan, 

to continue my ethnographical investigations of Maya vernacular houses.  After 

documenting the house-building ceremony described in Chapter 3, I went on to 

help build three houses with Don Lucio Gonzales Kan Te and his apprentice, Jose 

Conteras.  These houses were of identical design as Don Pedro’s house, depicted 

above in Figures 40 and 41.

 In response to questions I asked about house designs, Don Lucio told me 

that nearly all of the houses he built shared these same proportions.  There were a 

couple of exceptions, however.` At times, he said,  he preferred to construct the roof 

with beams that were the same length as the width of the house.  With this method, 

the slope of the roof is sixty degrees and the ratio of the spring line to the height of 

the roof is one to the square root of three (see Figure 45).  When I asked him why he 

sometimes chose this design over the forty-fi ve degree roof, he told me that if he had 

“good wood,” meaning very long, straight beams, he preferred this larger roof because 

there was more room to store food in the rafters.  This was a practical answer to my 

question.  Another example of Don Lucio’s practical bent was that, unless a shaman 

was called for by the house owner, no ceremony at all was involved in his house- 

building activities.  His  particular method for laying out the initial square for the 
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central supports of the house was also practical.  He simply cut four straight beams, 

each measured with a cord to a length slightly longer than two uinics, and arranged 

them end-to-end to form a square.  The inner corners of this square were marked with 

stakes, and postholes were dug at these locations for the principal vertical support 

beams of the house.  The four beams that were used to lay out the square were then 

lashed to the tops of these forked, vertical supports to become the spring line and the 

principal support beams for the roof.  

 Don Lucio also recounted that he had built, per instructions of the house 

owners, houses that were identically proportioned to the houses we had built together 

but with rectangular plans instead of apsidal.  He had also recently built a house, again 

per instruction of the house owner, whose principal vertical support beams were laid 

out in a ratio of three to four instead of the more common square.  He was aware that 

the diagonal of this three-to four-sided rectangle was equal to fi ve of the same units.  

He described the units as metros, or meters, but Don Lucio did not use a measuring 

tape, and “one metro” in his lexicon is equal to one-half  a uinic.  Figures 44-47 

diagram the plans and elevations of these houses.
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Figure 44

Plan of Maya Vernacular Houses 3, House Built by Don Lucio, 
Yucatan, Mexico

The width to length of the plan of Maya Vernacular House 3 is one to two (root four).  The princi-
pal roof support posts form a central square (shaded yellow).
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Figure 45

Alternate Elevations of Maya Vernacular Houses 1 and 3, Houses Built by 
Don Lucio, Yucatan, Mexico

These elevations (a and b) share the same plan designs as Maya Vernacular Houses 1 and 3.
The height of the spring line of the side elevation (a) to the width of the house is a ratio of one to 
two. The roof forms an equilateral triangle. The pitch of the roof in both elevations and all of the 
diagonal red lines are sixty degrees.
The height of the spring line of the front elevation (b) to the length of the house is a ratio of one to 
four. The height of the spring line to the height of the roof is one to root three. 

a

b
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Figure 46

Plan of Maya Vernacular House 4, House Built by Don Lucio, 
Yucatan, Mexico

The plan of Maya Vernacular House 4 has a width to length ratio of three to seven (1 to 2.333...).  
The parallel sides of the apsidal plan and the principle support beams form a Pythagorean 3,4,5 
rectangle (shaded yellow). The apsis are inscribed by half circles added to either side of the Py-
thagorean rectangle.
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Figure 47

Elevations of Maya Vernacular House 4, House Built by Don Lucio, 
Yucatan, Mexico

The side elevation (a) is of equal height and width and is inscribed by a quartered square. The 
spring line and roof are of equal height. The pitch of the roof in both elevations is forty-fi ve de-
grees.
The front elevation (b) has a height of three to a length of seven. The width of the principal support 
beams to the height of the roof forms a Pythagorean 3,4,5 rectangle bisected laterally at the spring 
line (shaded yellow).  The remaining space to either side of this Pythagorean 3,4,5 rectangle is 
inscribed by root four rectangles bisected into paired squares by the spring line (shaded blue). 

a

b
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 In 1995, Liticia Rocha, Director of the Fundación Cultural Yucatán,  

introduced me to Francis Faller, a German-born, retired engineer, who had spent most 

of his life working in the Yucatan Peninsula.  Francis Faller was then living 

on a small hacienda several kilometers southwest of the city of Merida.  Before and 

during his retirement, he had taken a great interest in traditional Maya construction 

methods and had helped to construct (and to note the designs of) six Maya houses 

built by the same master house builder, Alfonso Chi.  The plans of these houses were 

identical to the apsidal plans preferred by Don Lucio and Don Pedro: an initial square 

laid out to form the parallel sides of the apsidal plan and half circle arcs laid out to 

either side of the square to form the apsis.  The roof, too, in side section, had a height 

of one to a width of two and  a pitch of forty-fi ve degrees, like those designed by Don 

Lucio and Don Pedro.  But the side section of the walls, the height of the spring line 

to the width of the structure, was a ratio of one to phi.  Mr. Faller watched Alfonso 

Chi manipulate a measuring cord to determine the height and width of the walls of 

the side elevation of these houses and he told me Alfonso did so using ”proportions 

and diagonals — not units of measure.”  Though Mr. Faller did  not recognize or 

remember the exact formula that Alfonso used, Mr. Faller measured the end result and 

realized that Alfonso was producing a very accurate phi proportion.  Mr. Faller did 
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know that the fi rst roof support post that forms one corner of the initial square of the 

plan is set into the ground at a predetermined height, invariably one uinic, or slightly 

higher that the height of the house builder.  Then a cord was stretched from the base 

of this corner post in a predetermined direction that established the orientation of the 

house.  Alfonso Chi’s houses were all orientated with the front door facing the general 

direction of north.  From the height of this corner post, the length of the side elevation 

was then determined with a measuring cord. 

 When measurng with a cord, the only simple way to lay out a phi rectangle 

using the height of the corner post as a starting point is as follows:  The measuring 

cord would be stretched from the base of this corner post to its height, then folded 

in half.  One end of this halved cord (one half uinic in length) is placed at the base 

of the post, the other end is laid out along the cord that determines the orientation 

of the house, and a wood stake is placed in the ground to mark this measure.  Then 

the measuring cord is stretched from this point on the ground back to the top of the 

set corner post and this measure is added to the one-half  uinic along the cord that 

determines the orientation of the house (see Figure 48).  To determine the placement 

of the second corner of the initial square,  the positions of the remaining two corners 

of the central square were dead-reckoned and adjusted until the diagonals of the 

square were of equal length.
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 Francis Faller also told me that he had once hired Don Alfonso to build an 

addition to his home.  Mr. Faller had already staked out the corners of the extra room 

to be built, and the height of the room was predetermined by the height of the wall 

of the main house.  Don Alfonso told him that the room was too short and asked if 

he could adjust it.  Mr. Faller agreed to this, and when, out of curiosity, he measured 

the fi nished addition he found that the ratio of the height to width of the section was a 

very precise approximation of one to phi.

 Though not related to the geometry of Maya houses, Mr Faller once  

witnessed Don Alfonso direct the preparation of a hard fl oor surface for a vernacular 

house in a manner that I had not heard of before nor since.  The fl oor was made of a 

pre-measured quantity of ordinary dirt that was mixed with water and a small quantity 

(less than a liter) of sap from an unidentifi ed species of bush or tree.  (Mr. Faller had 

forgotten the names for the species of bush or tree.)  When this mixture was of the 

consistency of wet concrete, fi ve or so liters of honey were added that served as a 

catalytic agent.  Once the honey was added, the mixture became warm to the touch 

and began to bubble.  Using shovels and trowel, the men apply the mixture as quickly 

as possible before it sets into a hard, baked, clay-like fl oor.
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Figure 48

Plan and Side Section of the Walls of Maya Vernacular House 5,
Houses Built by Don Alfonso Chi, Yucatan, Mexico

Section (a) diagrams a simple method for creating the walls of Alfonso Chi’s houses with a height 
of one to a length of phi, beginning with the height of the initial corner post (Post A).
The apsidal plan of these houses (b) begins with an initial square that forms the parallel sides of 
the house, with half-circle arcs added to either side to form the apsis.

b

a
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Figure 49

Elevations of  Maya Vernacular House 5, Houses Built by Don Alfonso Chi, 
Yucatan, Mexico

The height of the spring line of the side elevation to the width of the house (a) is a ratio of one to 
phi. The height of the roof is one half the width of the house. The pitch of the roof in both eleva-
tions is forty-fi ve degrees. Note that if the width of the side section is two, then its height is root 
fi ve and its diagonal is three.
The length of the front elevation (b) is double that of the side elevation, with a length of four and 
a height of root fi ve.  

C

D

a

b
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 Unfortunately, I met Francis Faller just before I was to leave the Yucatan to 

conduct archaeological excavations at the site of Copan, in Honduras, and later, at 

Palenque, in Chiapas, Mexico.  More than ten years passed before I was to return to 

the Yucatan Peninsula, and I was never able to interview Don Alfonso Chi.   

 However, earlier that year (1995), while helping a group of Mexican college 

students document and restore Hacienda Tabi, under the direction of architect and art 

historian Dr. Logan Wagner, I had the good fortune to conduct several interviews with 

Don Guadalupe.  As a prominent shaman in the area of Oxkintok, Don Guadalupe was 

often called upon to perform the Cha Chac rain ceremony and other rituals.  Although 

he did not perform house-building ceremonies, he had witnessed them many times 

during his sixty odd years.  He also knew how to design three types of houses with a 

measuring cord.  We spoke together in Spanish, and he used a string to show me how 

a measuring cord was used to design these houses.  

 The fi rst design that he showed me was the same as the houses I had helped 

to build with Don Lucio (Figures 40 and 41).  The ground plan of the second style of 

house was also apsidal and was accomplished by fi rst laying out a square in the same 

way that Don Aurelio and Don Alfonso had, by dead reckoning the four equal sides 

of the square and then adjusting the corners until both diagonals of the square were of 
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equal length.  The center was determined by marking the intersection of the diagonals.  

From this center point of the square, the measuring cord was then stretched to one of 

the corners of the square, and an arc was drawn or etched in the soil, terminating at an 

adjacent corner.  An identical arc was then drawn on the opposite side of the square. 

The result of this formula produces an apsidal ground plan whose width to length ratio 

is one to the square root of two (see Figure 50).

 The third house design that Don Guadalupe described was one his grandfather 

taught him and was used exclusively for building chosas, a simple fi eld house used 

seasonally by farmers when their fi eld work takes them too far from home to return 

at night.  After drawing a square in the dirt fl oor we were sitting on, Don Guadalupe 

demonstrated the formula for the plan of this house by stretching his piece of string 

along the base of the square, then folding the string in half to determine the center 

point of the base of the square.  From this center point he stretched the string to the 

upper right hand corner of the square and then swung an arc from the upper corner to a 

point parallel with the base of the square, thus determining the length of the rectangle. 

This is a concise formula for creating a phi rectangle with a ratio of 1 to 1.618….  The 

side elevation of all three house designs utilized the same common formula described 

earlier: the spring line equal to one half the width of the structure and the height of 

the roof from the spring line also equal to one half the width, producing a pitch of 
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forty-fi ve degrees.  When I asked Don Guadalupe why this particular plan was used 

specifi cally for chosas, he told me that he did not know (see Figures 52 and 53).

 At this point in my investigations, I knew that the square root and phi 

proportions that were still being used to design Maya architecture were rectangular 

expressions of the proportions inherent in the equiangular triangle, the square, and the 

pentagon.  I also knew that most fl owers had three, four, or fi ve petals or multiples 

of three, four, and fi ve petals, and that apparently, there were no seven- or nine- 

petaled fl owers.  Thus, the set of proportions inherent in most fl owers is the same set 

of proportions used to design Maya architecture.  To be clear about my bias here, I 

admit that I suspected early on that the Maya would have been aware that the set of 

proportions they chose to design their houses was the very same set of proportions that 

the “Maker and Modeler” used to create the heavens and the earth.  Nowhere in nature 

are these proportions more clearly and abundantly expressed than in the shapes of 

fl owers.  

 So, being very careful not to lead Don Guadalupe in any way, I asked him, 

“Que puede decir me sobre las fl ores? (“What can you tell me about fl owers?”)  He 

began by explaining that fl owers were very important to the Maya and that most 

Maya did not cultivate fl owers but instead harvested wild fl owers for use in specifi c 

ceremonies.  He told me that the word “fl owery” was used by Yucatec Maya as a 
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synonym for “sacred.”  He said that the human soul was a white fl ower and that one’s 

ancestors and offspring were called fl owers.  

 He fi nished by recounting that his grandfather, who was also a shaman and 

who had taught him how to use the measuring cord, had explained to him that, “Las 

formas de las fl ores son dentro nuestros casas.” (“The shapes of the fl owers are in our 

houses.”)  When I asked him what his grandfather meant by that, he told me that he 

did not know.
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Figure 50

Plan of Maya Vernacular House 6, A House Described by Don Guadalupe, 
Oxkintok, Yucatan, Mexico

The plan of Maya Vernacular House 6 has a width to length ratio of one to root two. The principal 
support beams and the parallel walls of the apsidal plan form a square, and the radii of the apsis  
run from the center of the square to its corners (yellow highlighted dashed line).
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Figure 51

Elevations of Maya Vernacular House 6, A House Described by Don Guadalupe, 
Oxkintok, Yucatan, Mexico

The side section (a) is of equal height to width and is inscribed by a square. The height of the 
spring line and the roof are also equal. The pitch of the roof  is forty-fi ve degrees.
The height to width of the front elevation (b) is a ratio of one to root two. The pitch of the roof is 
approximately 67.5 degrees 

a

b
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Figure 52

Plan of Maya Vernacular House 7, A House Described by Don Guadalupe, 
Oxkintok, Yucatan, Mexico

The plan of Maya Vernacular House 7 has a width to length ratio of one to phi. The plan is laid out 
by fi rst laying out a square and from the center of the base of this square, stretching a diagonal to 
its upper  right corner.  This diagonal is the radius for the arc that determines the length of the plan 
(highlighted yellow lines).
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Figure 53
Elevations of Maya Vernacular House 7, A House Described by Don Guadalupe, 

Oxkintok, Yucatan, Mexico

The side elevation (a) is of equal height to width and is inscribed by a square. The height of the 
spring line and the roof are equal. The pitch of the roof  is forty-fi ve degrees. 
The height to width of the front elevation (b) is also a ratio of one to phi. The pitch of the roof is 
the diagonal of a phi rectangle (approximately fi fty-six degrees and shaded blue).

a

b
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 I learned about the layout, design, and ceremonies related to Maya traditional 

houses in and around Chichicastenango, Guatemala, from my friend Fernando Lopez.  

We met in the tunnel excavations deep beneath the surface structures at Copan, 

Honduras, on my fi rst day of work, in 1994.  Fernando was the assistant to David 

Sedat, Field Director of the Early Acropolis Project. 

 As a young man, Fernando was conscripted into the Guatemalan army, but 

he soon escaped and took refuge in a small village near Chichicastenango where he 

became an apprentice to a local shaman.  Among the many things he learned there was 

how to build a traditional Maya house and the ceremonies associated with the design 

and layout of the house.  

 One weekend, during my third fi eld season at Copan, Fernando invited me 

to help him clear his milpa for burning.  Though he and his family lived in a modern 

house in town, between excavations and on weekends he worked with his uncle on a 

milpa in the hills north of town. On the milpa was a beautifully constructed traditional 

house of a design I had not seen before.  When we took a noon break to eat some 

papusas under the shade of the wide veranda, I asked him about his house.

 He told me the story of how he became a shaman’s apprentice and how 

he built this particular house to the specifi cations that he learned during his 
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apprenticeship.  He also described the ceremony performed as part of the activities 

involved in laying out the ground plan of the house.  All the shamans living in that 

area of the Highlands, including the shaman who taught Fernando, used a special 

knotted cord to lay out the right angles of a house.  They made these cords once and 

used them for the rest of their lives.  Fernando described the ceremony for making 

this knotted cord.  He said that fi rst a straight pole of wood was cut to a length exactly 

three times the height of the shaman and set into the earth and plumbed vertically with 

a plumb bob.  This was done before sunrise on a certain day of the year.  Fernando 

could not remember which day of the year that this ceremony was performed.  (I 

would guess that it may have been the day of the zenith passage when some shamans 

in the Highlands use a plumbed vertical stick to determine the day of the zenith 

passage by observing that the stick casts no shadow at noon).  At the moment of 

sunrise, the shaman counted off six and a half steps along the shadow of the pole 

and marked this measure with a wooden stake.  Fernando described these as pasos 

elegantes, no demaciado largos (“elegant steps, not too long”).  At sunset the shaman 

would repeat this process, following the shadow of the pole in the opposite direction.  

This procedure was used to determine the overall length of the cord, which of course 

would be thirteen steps long.  The cord was then carefully divided by knots into seven 

equal portions.  There were eight knots in all, including the knots at the ends of the 
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cord.  He said that the important numbers here were thirteen and eight. 

 The ground plan of this particular type of Maya house is a square, and the 

knotted cord is used to form the right angles at each corner of the square.  Beginning 

with the fi rst three sections of the cord, an equilateral triangle is stretched and staked 

into the ground.  The remaining four sections of the cord are stretched and staked 

to form two more equilateral triangles joined to the fi rst one to form a half hexagon 

divided by three equilateral triangles (see Figure 54).  Next, a length of cord that is 

four times the intended length of one side of the square plan of the house is measured 

and cut.  Generally, the length of one side of the square plan of the house is twice the 

height of the house builder.  Fernando called this length a brasada, which is measured 

in the same manner as a uinic; that is, by stretching  a cord horizontally from fi ngertip 

to fi ngertip.  To determine the perimeter of the house, two brasadas are measured from 

one end of the cord, and this measure is stretched across the two knots that form the 

base of the fi rst equilateral triangle that was staked out to form the half hexagon.  The 

opposite end of the two-brasada measure is then tied to a wooden stake pounded into 

the ground, thus delineating one side of the square house.  Using the long end of the 

same cord, two more brasadas are measured and stretched across the vertices of the 

two remaining triangles of the half hexagon and pulled tight between them.  Again, the 

opposite end of the cord is staked into the ground to form the second side of the house 
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plan.  Using a half hexagon divided into three equilateral triangles in this manner 

forms a true right angle.  The seven-sectioned measuring cord is then removed, but 

a stake at the base of the triangle that marks the corner of the right angle is replaced 

with  a third stake that is pounded into the ground.  Thus, the shaman has laid out a 

true right angle, two brasadas to a side.  The shaman then repeats these steps, laying 

out half hexagons made of three equilateral triangles at the ends of this right angle 

to complete the square plan.  At the fi nal corner of the square, he also lays out this 

half hexagon.  After the fi rst right angle is determined, laying out the half hexagon at 

each corner of the square is unnecessary and redundant.  When I pointed this out to 

Fernando, he told me that these triangles laid out at the four corners of the house were 

considered las raices de la casa (“the roots of the house”) and  that there were prayers 

for laying out of each of twelve triangles.  He could not remember all of the prayers 

to each of the triangles but mentioned that one was for the corn god and the milpa and 

that the last three were prayers for the husband, wife, and children who were to live in 

the house (see Figure 54).

 Forked wooden vertical roof support posts are set into the ground at the 

corners of the square plan, and adobe bricks are used to build the walls inside of the 

staked out square plan.  Like many Maya vernacular houses, the height of the spring 

line is equal to one half of the length of the walls.  But the roof of this particular house 
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is supported by vertical posts set into the ground that extend one brasada beyond the 

corners of the house, thus creating a roof that has an area four times that of the house 

proper (see Figure 55).  The pitch of the roof of Fernando’s house was sixty degrees, 

though sometimes a pitch of forty-fi ve degrees is used (see Figures 56 and 57).  

Fernando preferred the larger roof and used the extra space for hammocks and food 

storage.
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Figure 54

Plan of Maya Vernacular House 8, Don Fernando’s House,
 Copan, Honduras

The plan of Maya Vernacular House 8 is a square. The walls are made of adobe bricks. The half 
hexagons (blue lines) in the corners demonstrate how the Maya shaman staked out the four true 
right angled corners of the square plan with his special cord that is thirteen footsteps in length and 
divided with eight knots (including the knots at the ends of the cord) into seven equal sections.
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Figure 55

Plan of Maya Vernacular House 8 With Roof, Don Fernando’s House,
Copan, Honduras

The plan of Maya Vernacular House 8 (a), with roof support posts and (b), with rafters, demon-
strates that the square that inscribes its roof has an area exactly four times larger than the area of 
the exterior dimensions of the adobe brick house (shaded gray). Note the unusual central roof sup-
port post that extends to the height of the roof.

b

a
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Figure 56

Elevation of Maya Vernacular House 8, Don Fernando’s House,
Copan, Honduras

The elevation of Maya Vernacular House 8 has a roof that is inscribed by an equilateral triangle 
(red lines). The pitch of the roof is sixty degrees. If the width of the house (including the roof) is 
two units, then the height of the roof is root three and the height of the spring line is .5. The height 
of the entire structure would be root fi ve, as per the virtually perfect Formula Square Root of Five-
3. The diagonal a,b is virtually three (3.00006) units.
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Figure 57

Alternate Elevation of Maya Vernacular House 8, 
Don Fernando’s House, Copan, Honduras

This Alternate elevation of Maya Vernacular House 8 has a roof that is twice the height of the 
spring line of the house and twice the width of the house.  The pitch of the roof is forty-fi ve de-
grees. The bold red lines demonstrate how a Pythagorean 3,4,5 rectangle divided into twelve equal 
squares both inscribe and neatly subdivide the elevation of the house.
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 Years ago, my friend and colleague Alfonso Morales Cleveland told me about 

a Maya vernacular house style he saw in northern Honduras, as well as a ceremony for 

creating a measuring cord.  His general description was similar in many ways to the 

more detailed information provided by Fernando Lopez.  The shaman also produced 

his measuring cord by measuring its length from the shadow of a straight stick placed 

in the ground at sunrise and sunset on a particular day of the year.  Whether this cord 

was subdivided with knots was not ascertained.  In any case, this cord was divided 

into three equal sections, each of which was equal to the intended length of the 

future house, and opposing equilateral triangles were laid out. The vertices of each 

equilateral triangle was centered at the base of the opposing triangle and then staked. 

A longer cord was then tied to and stretched from these corner stakes. The walls of the 

house were built within this rectangle, which had a proportion of two over root three 

(see Figure 58).   Alfonso did not ask his informant about the elevations of this house 

style.
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Figure 58

Plan of Maya Vernacular House 9, 
Copan, Honduras

The plan of Maya Vernacular House 9 has a width to length ratio of one to two over root three and 
is formed by laying out opposing equilateral triangles (in blue lines).

A

B

C
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The height to width of the side elevation (a) is a ratio of two over root three. The pitch of the roof 
is approximately forty-nine degrees.
The front elevation (b) is of equal height to width and is inscribed by a square. The height of the 
spring line and the roof are equal. The pitch of the roof  is sixty degrees.
The plan (c) has a width to length ratio of two over root three.  All blue lines form equilateral 
triangles. 

B

C

Figure 59

Plan, Elevations, and Perspective of Maya Vernacular House 10,
 Highland Guatemala

 Measured Drawing by Wauchope (1940)

b

c

a

d
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The length to width of the plan (b) is a ratio of two over root three. 
The height of the walls of the front elevation (c) is equal to one half the width of the plan and is 
inscribed by a root four rectangle (shaded yellow).  The roof is inscribed by a root three rectangle 
with a pitch of approximately forty-nine degrees.
The height of the roof of the side elevation (a) is equal to one half the length of the plan, has a 
pitch of forty-fi ve degrees and is inscribed by a root four rectangle (shaded yellow).  The walls are 
inscribed by two, two over root three rectangles.  All blue lines form equilateral triangles.

b c

Figure 60

Plan and Elevations of Maya Vernacular House 11,
Santiago Atitlan, Guatemala

Measured Drawing by Wauchope (1940)

a



134

Figure 61

Plan, Elevations and Perspective of Maya Vernacular House 12,
San Lucas Toliman, Guatemala

 Measured Drawing by Wauchope  (1940)

The plan (c) is inscribed by a square that is subdivided at the doorway and the length of the small 
interior room into squares (white) and phi rectangles (shaded blue) as per Formula Square-2.
The front elevation (a) has a height of two to a width of phi, divided equally at the spring line. The 
wall is inscribed by a phi rectangle (shaded blue) that is subdivided by a square and a smaller phi 
rectangle at the right edge of the doorway. The pitch of the roof is fi fty-one degrees.
The side elevation (b) is inscribed by a square that is quartered.  The wall is inscribed by a phi rect-
angle (shaded blue) that is subdivided by a square and a smaller phi rectangle by the center line.  
The porch is inscribed by a phi squared rectangle. The pitch of the roof is forty-fi ve degrees.

b

c

a

d
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Figure 62

Plan and Elevations of Maya Vernacular House 13,
San Cristobal, Guatemala

Measured Drawing by Wauchope  (1940)

The plan of Maya Vernacular House 13 (c), with porch, is inscribed by a root two rectangle. The 
interior room is inscribed by a root three rectangle (shaded blue).
The side elevation (a) is inscribed by a square that is halved at the spring line. The pitch of the roof 
is forty-fi ve degrees.
The front elevation (b) is inscribed by a root two rectangle the same size as the root two rectangle 
that inscribes the plan.  Note the unusual overhanging gable roof.

c

a b
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Figure 63

Plan and Elevation of Maya Vernacular House 14,
San Pedro de Laguna, Guatemala

Measured Drawing by Wauchope (1940)

The plan of the adobe brick walls of Maya Vernacular House 14 (b) is inscribed by a Pythagorean 
3,4,5 rectangle. The interior room is inscribed by a root two rectangle (shaded yellow).
The wall of the side elevation (a) is inscribed by a root four rectangle. One half of this wall and the 
porch are inscribed by a root two rectangle (shaded yellow).

a

b
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Figure 64

Section of Maya Vernacular House 14,
San Pedro de Laguna, Guatemala

Measured Drawing by Wauchope  (1940)

The side section of the interior room of Maya Vernacular House 14 is inscribed by a phi rectangle 
(shaded blue) that is subdivided into a square and a smaller phi rectangle by the center line of the 
roof.
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Figure 65

Plan and Elevations of Maya Vernacular House 15,
Tzimin, Yucatan, Mexico

Measured Drawing by Wauchope  (1940)

The plan of Maya Vernacular House 15 (c) is inscribed by a root four rectangle.
The wall of the side elevation (a) is inscribed by a root three rectangle (shaded blue).  The roof is 
inscribed by a root two rectangle (shaded yellow).  The pitch of the roof is approximately fi fty-fi ve 
degrees (the diagonal of a root two rectangle).
The front elevation (b) is double that of the side elevation.  Note the very steep pitch of the roof 
(approximately eighty degrees).

b

c

a
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Figure 66

Plan and Elevations of Maya Vernacular House 16,
Lerma, Yucatan, Mexico

 Measured Drawing by Wauchope  (1940)

The plan of Maya Vernacular House 16 (c) is inscribed by a root fi ve rectangle.
The wall of the side elevation is inscribed by a root four rectangle (shaded yellow).  The roof is 
inscribed by an equilateral triangle.
The front elevation is inscribed by a rectangle with a ratio of one to phi + 0.188 (root three plus 
one divided by two over root fi ve).  This may have been considered a perfect formula.

b

c

a
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Figure 67

Plan and Elevations of Maya Vernacular House 17,
Chan Kom, Yucatan, Mexico

 Measured Drawing by Wauchope  (1940)

The parallel sides of the plan (c) are formed by the bases of two opposing equilateral triangles 
(blue lines). The intersections of theses equilateral triangles are the radii for the apsis of the plan.  
This formula creates a plan with a width to length ratio of one to root three.  The interior roof sup-
port posts are also laid out using opposing equilateral triangles (fi ne black lines).
The height of the side elevation is equal to one half the length of the plan.  The height of the roof 
is one half the width of the elevation, is inscribed by a root four rectangle (shaded yellow), and has 
a pitch of forty-fi ve degrees.
The front elevation (b) is inscribed by a root four rectangle, the roof is inscribed by two root three 
rectangles (shaded blue), and its pitch is approximately seventy-four degrees (the diagonal of a 
root four rectangle).

a

c

b
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Figure 68

Plan and Elevation of Maya Vernacular House 18,
Yucatan, Mexico

Measured Drawing by Wauchope  (1940)

The plan of Maya Vernacular House 18 (b) is inscribed by a root two rectangle (shaded yellow).
The wall of the side elevation (a) is also inscribed by a root two rectangle (shaded yellow).  The 
roof is inscribed by a root four rectangle and has a pitch of forty-fi ve degrees.
The wall of the front elevation (not shown) would be inscribed by a root four rectangle.

a

b
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Figure 69

Plans of Maya Vernacular Houses 19 and 20,
San Andres Xicul, Guatemala

Measured Drawing by Bonilla Privaral  (1989)

The interior room of Maya Vernacular House 19 (a) is inscribed by a root four rectangle (shaded 
yellow).
The interior of the “U” shaped wall and the four porch support posts of Maya Vernacular House 20 
are inscribed by a square.  The interior room is inscribed by a Pythagorean 3,4,5 rectangle (shaded 
blue). The elevations of these houses were not recorded.

a

b
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Figure 70

Plan of Maya Vernacular Houses 21,
Santa Maria Chiquimula, Guatemala

Measured Drawing by Bonilla Privaral (1989)

The plan of Maya Vernacular House 21 is of the adobe brick walls that enclose the patio, and the 
form the walls of the storage sheds, living room, and kitchen. The storage sheds, living room, and 
kitchen are framed by wood posts (embedded in the adobe brick walls) and beams, the roofs are 
framed with wood beams and poles and thatched. 
The entire structure is inscribed by a root two rectangle.  The adobe brick walls that enclose the 
patio and storage sheds are inscribed by a square, the diagonal of which (highlighted yellow) is 
equal to the length of the plan and is the radius for the arc that terminates at the lower right corner 
of the diagram.  The kitchen is inscribed by a square (in white), and the living room is inscribed by 
a root two rectangle (shaded yellow).  The square patio and the square and root two subdivisions 
of the kitchen and living room are a clear example of Formula Square Root of Two-1.  
The interior of the smaller of the two storage sheds is inscribed by a square whose diagonal is 
equal to the length of the interior of the larger storage shed, which is inscribed by a root two rect-
angle (shaded yellow). The remaining, semi-enclosed space in the upper left corner of the patio is 
also inscribed by a square of equal size to the square inscribed in the interior of the smaller storage 
shed.
The front wall of the kitchen (lower right corner) is also the main entrance to the house and is 
intentionally skewed or angled inward to leave a roofed dry entry to the house, protected from the 
rains.

Patio

Storage 

Storage 

Living room

Kitchen

Tree
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Figure 71

Plan of Maya Vernacular Houses 21b,
Santa Maria Chiquimula, Guatemala

Measured Drawing by Bonilla Privaral  (1989)

The plan of Maya Vernacular House 21b subdivides the square patio into two root two rectangles 
(shaded yellow) and two squares (in white) and implies that the architect of this structure may also 
have been familiar with the root two and square subdivisions of a square diagrammed in Formula 
Square-1.
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Figure 72

Plan of Maya Vernacular Houses 22 and 23,
Yucatan, Mexico

Measured Drawing by Pierrebourg  (2003)

The plan of Maya Vernacular House 22 (a) has a width to length ratio of one to two. The principle 
roof support beams, and the parallel walls of the apsidal plan, are formed by laying out opposing 
equilateral triangles. 
The plan of Maya Vernacular House 23 (b) has a width to length ratio of one to root two plus one. 
The principle roof support beams and the parallel walls of the apsidal plan form a root two rect-
angle (shaded yellow).  The radii for the apses of the plan are half circles drawn from the centers 
of the sides of the root two rectangle to its corners.
The elevations of these structures were not documented.

a

600

b
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The width to length ratio of the polygonal plan of Maya Vernacular House 24 is one to two.  The 
parallel walls and principle roof support posts of the plan are inscribed by a Pythagorean 3,4,5 
rectangle (shaded yellow).  The diagonal sides of the polygonal plan are forty-fi ve degrees.

Figure 73

Plan of Maya Vernacular House 24,
Yucatan, Mexico

Measured Drawing by Pierrebourg (2003)
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Figure 74

Plan of Maya Vernacular House 25,
Yucatan, Mexico

Original Measured Drawing by Pierrebourg (2003)

The polygonal plan of Maya Vernacular House 25 has a width to length ratio of one to two. The 
principle roof support beams and the parallel walls of the polygonal plan form a phi rectangle 
(shaded blue). The roof extends beyond the front wall of the house to form a porch whose width 
is one to a length of four (shaded yellow). The phi rectangle formed by the principal roof support 
beams and the one to four proportion of the porch forms a rectangle that inscribes an equilateral 
triangle (blue lines), as per the virtually perfect Formula Two Over Square Root of Three-3.
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The root four rectangle that inscribes the polygonal plan of Maya Vernacular House 25 is subdi-
vided into a phi rectangle (shaded blue) and squares (white).  The diagonals of the four squares at 
the corners of the plan defi ne the angled ends (forty-fi ve degrees) of the polygonal plan. 
Each quarter of the plan is a root four rectangle subdivided into horizontal phi rectangle and a 
smaller phi rectangle and square (a phi squared rectangle), as per Formula Square Root of Four-
3.

Figure 75

Plan of Maya Vernacular House 25b,
Yucatan, Mexico

Measured Drawing by Pierrebourg (2003)
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CHAPTER 7

GEOMETRY IN CLASSIC AND POST-CLASSIC  MAYA  ARCHITECTURE

 The following analyses of the geometry of Classic and Post-Classic period ar-

chitecture begins with some simple plans of Classic Period structures from Palenque 

and proceeds to include the plans and elevations of more complex Classic Period 

structures from Palenque, Tikal, and Altar de los Sacrifi cios.  These Classic examples 

are followed by analyses of simple plans from the Post-Classic site of Chichen Itza 

and more complex examples of plans and elevations from Chichen Itza, Acanceh, 

Dzibilchaltun, Xpuhil, Zempoala, and El Tajin.

 These examples were selected to represent a wide temporal and spacial range 

of Pre-Columbian Maya ceremonial architecture, but this selection is also biased by 

the availability of published measured drawings.

 The set of square root, phi, and Pythagorean 3,4,5 rectangles and their subdi-

visions that are manifested in Pre-Columbian architecture are the same as those ex-

pressed in the examples of vernacular architecture. But, as might be expected, some 

of the suggested geometrical formulae seen in Pre-Columbian ceremonial architecture 

are more complex.  
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 Note that the square root, phi, and Pythagorean rectangles are always ex-

pressed relative to the interior and exterior walls of the structures (never the centers of 

walls) and that the suggested subdivisions of these rectangles generally focus on the 

front galleries and entrances of these structures.  
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Figure 76

Plan of Houses G and H, Palenque, Chiapas, Mexico
Measured Drawing by G. F. Andrews  (1974)

The exterior walls are inscribed by a square root of four rectangles (one to two), and the interior 
space is subdivided into two, two over root three rectangles, each of which are inscribed by equi-
lateral triangles (blue lines). 
The interior vault support walls and the rear galleries are inscribed by root four rectangles (shaded 
yellow). 
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Figure 77

Plan of Temple XVIIIa, Palenque, Chiapas, Mexico
Measured Drawing by G. F. Andrews  (1974)

Like Houses G and H, the exterior walls of Temple XIIIa are inscribed by a root four rectangle 
(one to two), and the interior space is subdivided into two, two over root three rectangles, each of 
which are inscribed by equilateral triangles (blue lines). 
The interior vault support walls further subdivide the interior space into four square root of three 
rectangles (front gallery) and the remaining space into two square root of three rectangles, as per 
Formula Two Over Square Root of Three-2.
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Figure 78

Plan of Temple XVIII, Palenque, Chiapas, Mexico
Measured Drawing by G. F. Andrews  (1974)

Temples XVIII and XVIIIa are a pair of temples that share a platform and are arranged parallel to 
to each other, about one meter apart. Note that the interior and exterior geometry of these temples 
are essentially reversed. The exterior walls of Temple XVIII are inscribed by a root three rect-
angle, and the interior space inscribes a root four rectangle. 
The interior vault support walls further subdivide the double squares of the interior space into two 
phi-squared rectangles (front gallery, shaded yellow) and the remaining space into two phi rect-
angles (shaded blue), as per Formula Square-2.
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Temple II shares identical proportions as those described for Temple XVIII on the previous page. 
The exterior walls are inscribed by a root three rectangle, and the interior space inscribes a root 
four rectangle. 
As in Temple XVIII,  interior vault support walls further subdivide the double squares of the inte-
rior space into two phi-squared rectangles (front gallery, shaded yellow) and the remaining space 
into two phi rectangles (shaded blue), as per Formula Square-2.

Figure 79

Plan of Temple II, Palenque, Chiapas, Mexico
Measured Drawing by G. F. Andrews  (1974)
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The raised platform of Temple II is inscribed by a phi rectangle (shaded blue). If the width of the 
staircase is one, than the width of the balustrade is square root of two. If the width of the balustrade 
is one, the width of the platform is two.

Figure 80

Plan of the Raised Platform and Staircase of Temple II,
Palenque, Chiapas, Mexico

Measured Drawing by G. F. Andrews  (1974)
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Temple IV also shares identical proportions with those described for Temples II and XVIII on the 
previous pages. The exterior walls are inscribed by a root three rectangle, and the interior space 
inscribes a root four rectangle. 
As in Temples II and XVIII,  interior vault support walls further subdivide the double squares of 
the interior space into two phi-squared rectangles (front gallery, shaded yellow) and the remaining 
space into two phi rectangles (shaded blue), as per Formula Square-2.

Figure 81

Plan of Temple IV, Palenque, Chiapas, Mexico
Measured Drawing by G. F. Andrews  (1974)
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Where the balustrade is attached to the raised platform of Temple IV, straight lines were probably 
drawn across the width of the platform, creating a root two rectangle, the diagonal of which is de-
marcated with a yellow highlighted line. This diagonal may have been used as the radius of an arc 
to determine the width of the balustrade and to produce a root three rectangle (shaded blue). The 
remaining rectangles to either side of the balustrade form root four rectangles (shaded yellow).  

Figure 82

Plan of the Raised Platform and Staircase of Temple IV,
Palenque, Chiapas, Mexico

Measured Drawing by G. F. Andrews  (1974)
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The interior space of Temple VIII is inscribed by a root fi ve rectangle that is subdivided into a 
square (white) that is defi ned by the placement of the curtain walls of the rear gallery and two phi 
rectangles (shaded blue), as per Formula Square Root of Five-3.

Figure 83

Plan of Temple VIII, Palenque, Chiapas, Mexico
Measured Drawing by G. F. Andrews  (1974)
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The geometry of the platform of Temple VIII is identical to that of the platform of Temple IV. 
Where the balustrade is attached to the raised platform of Temple IV, straight lines were prob-
ably drawn across the width of the platform, creating a square root of two rectangle, the diagonal 
of which is demarcated with a yellow highlighted line. This diagonal may have been used as the 
radius of an arc to determine the width of the balustrade and to produce a square root of three rect-
angle (shaded blue). The remaining rectangles to either side of the balustrade form square root of 
four rectangles (shaded yellow).  

Figure 84

Plan of the Raised Platform and Staircase of Temple VIII,
Palenque, Chiapas, Mexico

Measured Drawing by G. F. Andrews  (1974)
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The raised platform of Temple XII is inscribed by a rectangle with a length of two to a width of 
root phi.  

Figure 85

Plan of the Raised Platform of Temple XII,
Palenque, Chiapas, Mexico

Measured Drawing by G. F. Andrews  (1974)



161

The exterior walls of Temple XII are inscribed by a phi rectangle.  The front gallery is inscribed 
by two root four rectangles, the diagonals of which are the radii for the arcs that defi ne the two phi 
rectangles that inscribe the rear gallery and principle roof support piers. 
If the width of the central entrance is one, then from the central entrance to the outer edges of the 
lateral entrances is root two.

Figure 86

Plan of  Temple XII,
Palenque, Chiapas, Mexico

Measured Drawing by G. F. Andrews  (1974)
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The central entrance is inscribed by a square (white), and the piers that separate the three doorways 
are inscribed by phi rectangles (shaded blue).  Together, they form a root fi ve rectangle, as per 
Formula Square Root of Five-3.   The width of the central entrance and piers is equal to the height 
of the temple to the top of the roof moulding, forming a larger square.  To either side of this larger 
square are phi rectangles (also shaded blue).  Together, these also form a root fi ve rectangle, as per 
Formula Square Root of Five-3. 
The radii for the half-circle arcs that defi ne the phi rectangles are the diagonal lines that extend 
from the center base of the squares to their upper corners.  The forty-fi ve degree diagonals of the 
square central entrance are the radii for the arcs that determine the outer lower corners of the lat-
eral entrances.
Note that the height of the roof to the length of the temple is inscribed by a square root of fi ve rect-
angle that subdivides identically to the square root of fi ve rectangle created by the central doorway 
and its piers.
Though the base of the roof comb is intact, its height is estimated here. 

Figure 87

Elevation of Temple XII,
Palenque, Chiapas, Mexico

Measured Drawing by G. F. Andrews  (1974)
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The plan of the upper fl oor of the Temple of the Jaguars is inscribed by a rectangle with a width of 
two and a length of root fi ve.  The diagonal of this rectangle (a,b) is three.  From the outer wall to 
the opposite inner wall is two, and forms a square two units to a side.  The diagonals drawn from 
the horizontal center of this square to the opposite corners are the radii for the arc that determines 
the width of the walls.

Figure 88

Plan of the Upper Floor of the Temple of the Jaguars,
Palenque, Chiapas, Mexico

Measured Drawing by Merle G. Robertson  (1991)  
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The interior walls of the plan of the upper fl oor of the Temple of the Jaguars are inscribed by a 
two over root three rectangle that inscribes an equilateral triangle (blue lines).  The central support 
piers and the front gallery are inscribed by a root four rectangle (shaded yellow).  Because the 
front and rear galleries are of equal size, a root four rectangle would also inscribe the rear gallery 
and central support piers.

Figure 89

Plan of the Upper Floor of the Temple of the Jaguars-b,
Palenque, Chiapas, Mexico

Measured Drawing by Merle  G. Robertson  (1991)
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The section of the lower story of the Temple of the Jaguars is inscribed by a root four rectangle.  
The section of the interior room is inscribed by a Pythagorean 3,4,5 rectangle, and the doorway is 
inscribed by a phi rectangle.
The upper story, including the roof, is inscribed by a two over root three rectangle that is divided in 
half at the spring line.  The interior rooms are inscribed by Pythagorean rectangles, and the angles 
of the vaults are seventy-two degrees (the angle of a phi triangle). 

Figure 90

Section of the Temple of the Jaguars,
Palenque, Chiapas, Mexico

Measured Drawing by Merle G. Robertson  (1991)
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The interior walls of the Temple of the Inscriptions are inscribed by a rectangle with a ratio of 
one to four that is divided into four squares.  The front gallery subdivides these squares into phi 
squared rectangles (shaded yellow) and phi rectangles (shaded blue), as per Formula Square-2.  
Four circles inscribe the four squares and defi ne the width of the walls.  Whether intentional or not, 
this formula produces a width to length ratio of one to pi minus 0.0202.
Where the balustrade is attached to the raised platform (Figure b), straight lines are drawn across 
the width of the platform, creating a root phi rectangle, the diagonal of which is demarcated with 
a yellow highlighted line. This diagonal is the radius of an arc that determines the width of the 
balustrade and creates a phi rectangle (shaded blue). The remaining rectangles to either side of the 
balustrade are squares (shaded yellow).

Figure 91

Plan of the Temple of the Inscriptions,
Palenque, Chiapas, Mexico

Measured Drawing by G. F. Andrews  (1974)

b

a
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The lower platform of this enormous structure is inscribed by a phi rectangle. The uppermost level 
of the principle platform is inscribed by a square root of fi ve rectangle whose width is determined 
by the smaller platform and whose length is used to defi ne the centered square. This square is 
further subdivided into a phi rectangle (shaded blue) and a phi-squared rectangle (shaded yellow). 
This square is also quartered (yellow highlighted lines), and the front edge of the temple rests on 
the horizontal center of the square. The yellow highlighted diagonals from the center base of the 
square are the radii used to determine the arc which then determines the length of the square root 
of fi ve rectangle.

A

Figure 92

Plan of of Structure A-1, Altar de los Sacrifi cios, Peten, Guatemala
Measured Drawing by A.L.Smith  (Marquina 1951)
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Inscribed on either side of the staircase are square root of two rectangles that are subdivided into 
squares (the vertical risers of the three terraces  in white). The remaining spaces and inset corners 
are inscribed by square root of two rectangles (shaded yellow). The staircase, too, is subdivided 
into a square root of two rectangle and a square.  The yellow highlighted diagonals are forty-fi ve 
degrees and are the radii for the arcs that defi ne the height of the upper terrace.
The temple proper is inscribed by a square (in white).  The horizontal center of the square divides 
the roof from the roof comb.  The diagonals from the center base of this square to its upper corners 
are the radii for the arc (shaded blue) that defi nes the phi rectangles to either side of the temple. 
The phi rectangles, along with the central square, form a square root of fi ve rectangle subdivided 
via Formula Square Root of Five-3.

Figure 93

Elevation of Temple I, Tikal, Guatemala
Measured Drawing by J.A. Gomez R.  (Marquina 1951)



169

The width of the upper platform of the three-tiered base of Temple I is equal to its height, forming 
a square whose diagonals are shown in yellow highlighted lines. These are the radii for the arcs 
that form square root of two rectangles to either side of the square (shaded yellow on the right 
side). 
The section of the temple is inscribed by a Pythagorean 3,4,5 rectangle (shaded blue) that is quar-
tered. The triangle formed from where the top of the staircase meets the upper platform to the base 
of the pyramid  is a Pythagorean 3,4,5 triangle (also shaded blue). If the base of this triangle is 
three, its height is four and the slope of the stairs is fi ve.

Figure 94

Section of Temple I, Tikal, Guatemala
Measured Drawing by J.A. Gomez R. (Marquina 1951)
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The plan of the pyramidal base of Temple I and the plan of the temple proper, including its stair-
case, are inscribed by squares.  The square that inscribes the temple is quartered and the diagonals 
drawn from the lower center of this square to its upper corners are radii foe the arc that defi nes the 
phi rectangles (shaded blue) to either side of it. This process would be repeated at a ninety-degree 
angle to produce the phi rectangles to the front and rear of the temple.

Figure 95

Plan of Temple I (a), Tikal, Guatemala
Measured Drawing by J.A. Gomez R  (Marquina 1951)
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The plan of the temple proper, not including the staircase, inscribes an equilateral triangle (blue 
lines).  Straight lines drawn from the edges of the square upper platform to the edges of the base 
of the pyramid form square root of three rectangles (shaded yellow, with their diagonals, drawn in 
blue lines, forming equilateral triangles). The plan of the principle staircase is also inscribed by a 
square root of three rectangle whose diagonals (also in blue lines) form equilateral triangles.

Figure 96

Plan of  Temple I (b), Tikal, Guatemala
Measured Drawing by J.A. Gomez R.  (Marquina 1951)
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The front elevation of Temple II is inscribed by a virtually perfect two over square root of three 
rectangle that is subdivided via Formula Two Over Square Root of Three-e. The width of the pyra-
mid, to the base of the temple, is inscribed by a square root of four rectangle (shaded yellow). The 
temple is inscribed by a two over square root of three rectangle (shaded blue), and the remaining 
space to either side of the temple is inscribed by square root of phi rectangles (shaded gray).
An equilateral triangle is inscribed in the virtually perfect two over square root of three rectangle 
that defi nes the slope of the pyramid, and this equilateral triangle is divided in half at the top of 
the pyramid.

Figure 97

Front Elevation of the Temple II, Tikal, Guatemala
Measured Drawing by J.A. Gomez R.  (Marquina 1951)
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The side section of the  pyramidal base of Temple II is inscribed by a square root of four rectangle 
subdivided by a central square that is equal to the width of the top of the pyramid and two smaller 
square root of four rectangles to either side of this central square, the diagonals of which (fi ne 
black lines) defi ne the angle of the slope of the pyramid.
Identically to Temple I, the section of the temple proper is inscribed by a quartered Pythagorean 
3,4,5,  rectangle, and the staircase is inscribed by a Pythagorean 3,4,5, triangle (shaded grey).
 

Figure 98

Section of Temple II (a), Tikal, Guatemala
Measured Drawing by J.A. Gomez R.  (Marquina 1951)
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The section of Temple II may also be inscribed by a virtually perfect square that is divided hori-
zontaly in half at the top of the pyramid. As noted in the previous diagram, the pyramid may be 
inscribed by a square root of four rectangle that is subdivided by a central square that is equal to 
the width of the top of the pyramid and two smaller square root of four rectangles to either side of 
this central square.  
The upper half of this diagram is inscribed by a virtually perfect square root of four rectangle that 
is subdivided at the rear of the temple by a square root of two rectangle (shaded blue) and a square 
root of three rectangle (shaded yellow), as per the Formula Square Root of Four-4.

Figure 99

Section of Temple II (b), Tikal, Guatemala
Measured Drawing by J.A. Gomez R  (Marquina 1951)
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Because the front elevation of Temple II is inscribed by a two over square root of three rectangle 
and the side section is inscribed by a square, the plan of Temple II must also be inscribed by a two 
over square root of two rectangle of the same size as the front elevation.  The measured drawing 
here is in error in that its length was drawn a bit short. I have corrected this error with the diagram 
that overlays the measured drawing.
The base of the pyramid and the platform at the top of the pyramid are inscribed by two over 
square root of three rectangles, which in turn, are inscribed by equilateral triangles (blue lines). 
The rectangles to either side of the top of the pyramid are square root of three rectangles (shaded 
yellow).  
The temple proper, along with its staircase, is inscribed by a Pythagorean 3,4,5 rectangle.

Figure 100

Section of Temple II, Tikal, Guatemala
Measured Drawing by J.A. Gomez R  (Marquina 1951)
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Figure 101

Plan of Structure 2B2, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)

The proportions of the interior and exterior walls of this structure are identical to those of Houses 
G and H and Temple XVIIIa at Palenque. The exterior walls of Structure 2B2 are inscribed by a 
square root of four rectangle (one to two). The width of the entrance was probably determined by 
stretching a cord from the front corners of this rectangle to its center top (a forty-fi ve degree angle) 
and then swinging arcs to the base of the rectangle (highlighted yellow lines).  This produces a one 
to square root of two ratio between the entrance and the width of the structure.
The interior space of this structure (b) is subdivided into two, two over square root of three rect-
angles, each of which inscribe equilateral triangles (blue lines). The vault support walls further 
subdivide the interior space into two square root of four rectangles (shaded yellow).

b
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The exterior walls of structure 5B21 are inscribed by a root three rectangle.  The width of the 
entrance of this structure is one third of the width of the exterior walls, thus subdividing the hori-
zontal root of three rectangle into three vertical root three rectangles via Formula Square Root of 
Three-2
The lateral galleries are a proportion of one to three.  The central galleries are inscribed by a square 
(in bold red lines) that is further subdivided into a phi rectangle (shaded blue) and a phi squared 
rectangle (shaded yellow).  If the width if the front gallery is one, its length is two times phi.

Figure 102

Plan of Structure 5B21, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)
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The exterior walls of structure 5B10 are inscribed by a horizontal root three rectangle subdivided 
by three vertical root three rectangles, as per Formula Square Root of Three-2. The interior rooms 
are inscribed by squares (in white), a rectangle with a ratio of two to three (also white), a root of 
two rectangle (shaded yellow), and two, two over root three rectangles that inscribe equilateral 
triangles (in blue lines).

Figure 103

Plan of Structure 5B10, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)
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Diagram a subdivides a root three rectangle by the virtually perfect Formula Square Root of 
Three-3 The two square root of fi ve rectangles are shaded blue, and the two square root of two 
rectangles are shaded yellow. 
The interior space (b) is subdivided by square root three rectangles (shaded yellow), phi rectangles 
(shaded blue), two squares (in white), and two square root of phi rectangles (the exterior wall of 
the inner room whose diagonals are drawn in black lines).

a

b

Figure 104

Plan of Structure 3B2, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)
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The exterior walls of Structure 2C4 (a) are inscribed by a phi rectangle and the interior walls by a 
square root of three rectangle (shaded blue).
The centered interior support walls further subdivide the interior space (b) into three squares 
(shaded yellow) relative to the front and rear galleries.  This subdivision recalls Formula Square 
Root of Three-2 whereby a horizontal square root of three rectangle subdivided by three produces 
three vertical square root of three rectangles.

a

Figure105

Plan of Structure 2C4, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)

b
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The platform of Structure 2C4 is inscribed by a rectangle with a ratio of two to the square root of 
phi. The diagonals of the two square root of phi rectangles are used to determine the width of the 
entrance. If the width of the entrance (a) is one, the length of the platform (b) is phi.

Figure 106

Plan of Structure 2C4 (b), Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952) 
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The proportions of exterior and interior walls of structure 5B14 are identical to those of Structure 
2C4. The exterior walls are inscribed by a phi rectangle and the interior walls by a root three rect-
angle (shaded blue). The width of the entrance is equal to the width of the structure and is also in 
a one to phi ratio to the length of the structure.

Figure 107

Plan of Structure 5B14, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)
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The interior space of Structure 2C8, is subdivided by the virtually perfect Formula Square Root 
of Three-5 (red lines). The rear lateral rooms are two over root three rectangles and inscribe equi-
lateral triangles.
The exterior walls and interior walls may be further subdivided by the virtually perfect Formula 
Phi-3 (in bold black lines). The central rear room has a width of two to a length of root fi ve and a 
diagonal (blue line) of three.

Figure 108

Plan of Structure 2C8, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)
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Figure 109

Plan of Structure 2C10, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)

The exterior walls of Structure 2C10 are inscribed by a rectangle with a ratio of two to three. The 
interior space is inscribed by a phi rectangle (shaded blue).



185

Figure 110

Plan of the Temple of the Painted Capstone, 
Chichen Itza, Yucatan Peninsula, Mexico
Measured Drawing by Karl Ruppert  (1952)

Identically to Structure 2C10 on the previous page, the exterior walls of this structure are inscribed 
by a rectangle with a ratio of two to three. The interior space is inscribed by a phi rectangle (shaded 
blue).
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The exterior walls of the larger of the two rooms of this structure is a square (shaded grey) and 
quartered (black lines). The interior of this larger room is also a square and is subdivided at the 
rear gallery into a phi rectangle (shaded blue) and a phi squared rectangle (shaded yellow), as per 
Formula Square-2. The smaller room to the right is one half the width of the larger room, and its 
exterior walls are inscribed by a phi rectangle (shaded blue). The empty space beneath this smaller 
room (in white) is also inscribed by a phi rectangle.  The interior space of the smaller room can 
inscribe two equilateral triangles.

Figure 111

Plan of Structure 5B3, Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)
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The exterior walls of Structure 5B7 are inscribed by a square root of fi ve rectangle. The interior 
walls form a rectangle with a ratio of one to two times square root of phi (shaded yellow). The 
interior rooms are inscribed by double phi rectangles (shaded blue), phi-squared rectangles (in 
white), and square root of phi rectangles (shaded yellow). The width of the entrance (a) times phi 
equals the length of the structure (b).

Figure 112

Plan of Structure 5B7, Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)
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The exterior walls of Structure 5C1 are inscribed by two root two rectangles, and the interior space 
is subdivided at the front gallery into two phi rectangles (shaded blue) and two root two rectangles 
(shaded yellow). Divided in half, this subdivision produces two Pythagorean 3,4,5 rectangles via 
the virtually perfect Pythagorean 3,4,5 - 2 formula.
Figure b subdivides the interior space at the rear gallery by two root three and two Pythagorean 
3,4,5 rectangles via  the virtually perfect Pythagorean 3,4,5 - 3 formula.

Figure 113

Plan of Structure 5C1, Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)

a

b
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The exterior walls of Structure 5B1 are inscribed by a Pythagorean 3,4,5 rectangle. This is further 
subdivided into a phi rectangle (shaded blue) and a square root of three rectangle (shaded yellow), 
as per Pythagorean 3,4,5,-2 formula.
A rectangle with a width of one to a length of three inscribes the rear gallery, and a rectangle with 
a width of one to a length of pi inscribes the front gallery.

Figure 114

Plan of Structure 5B1, Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)
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Structure 2C3 is inscribed by a Pythagorean 3,4,5 rectangle. If a,c is three, a,f is four and c,f is fi ve. 
The interior dimensions are a square root of phi rectangle (shaded yellow). The center of the width 
of this structure is demarcated by the interior wall of the front gallery (b,e).

B

Figure 115

Plan of Structure 2C3 (a), Chichen Itza, Yucatan Peninsula, Mexico
Measured drawing by Karl Ruppert, 1952
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In diagram b, a horizontal root three rectangle (shaded blue and trisected into three vertical root 
three rectangles) is used to determine the length and width of the Pythagorean 3,4,5 rectangle. 
The diagonals of this root three rectangle are also drawn in blue lines.  The intersections of these 
diagonals, to the corners of the root of three rectangle, are the radii for the arc (highlighted in yel-
low) that defi ne the widths of the walls.. If a,b is one, b,c is two, and c,d is four. Thus, b,c,d,e form 
a root four rectangle. This is a true formula for using a root three rectangle to create a Pythagorean 
3,4,5 rectangle.

Figure 116

Plan of Structure 2C3 (b), Chichen Itza, Yucatan Peninsula, Mexico
Measured drawing by Karl Rupert, 1952
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Diagram c further subdivides the Pythagorean 3,4,5 rectangle by a phi rectangle (shaded blue) and 
a square root of two rectangle (shaded yellow), as per the virtually perfect Formula Pythagorean 
3,4,5-b.  This same division divides the Pythagorean rectangle that inscribes the small room at the 
back wall of the structure into a root three rectangle (shaded blue) and a smaller Pythagorean 3,4,5 
rectangular (shaded yellow), as per virtually perfect Formula Pythagorean 3,4,5-3.
Diagrams a,b, and c, considered together, is a good example of how more than one geometrical 
formula can be incorporated into a single structure.

c

Figure 117

Plan of Structure 2C3 (c), Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)



193

The interior room in Plan a (shaded yellow) is a square root of phi rectangle. The circle and the 
yellow shaded square root of phi rectangle have virtually the same area (see Formula Concentric 
Circles-2). 
The support columns within this room form a Pythagorean 3,4,5 rectangle divided into twelve 
squares (bold black lines).  An equilateral triangle, whose’ base equals the width of the Pythago-
rean rectangle, terminates at the upper center of the structure.

Figure 118

Plan of Structure 5C11 (a), Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)
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In this plan (b), the square formed by a, c, f, g is subdivided into phi rectangles (shaded blue) and 
squares (in white).  If a, g is two, a, b is phi. If d, e is one, c, f is phi.
The central upper room above a,c,f,g is inscribed in a phi-squared rectangle (shaded yellow).  The 
spaces to either side of this room are inscribed by phi rectangles (shaded blue).

Figure 119

Plan of Structure 5C11 (b), Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)

a

b

c d e f

g
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The upper platform forms a square (diagramed and in white). The  platform staircase and balus-
trade form a phi rectangle (shaded blue). Also, a,b and c,d equal one.
The exterior walls of the upper temple are inscribed by a rectangle with a length of two and a width 
of phi. The interior walls of the temple defi ne a square root of phi rectangle (shaded in yellow).

Figure 120

Plan of Structure 3D8, Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)
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In Plan a, the suggested geometrical formula that relates the dimensions of the platform to the 
placement of the temple is generated by fi rst drawing straight lines from both sides of the staircase 
across the width of the platform and a straight line across the length of the platform at the front 
edge of the U-shaped temple.  The intersections of these lines create two squares (diagramed as 
one to one above). The diagonals of these squares are used as radii for the arcs that terminate at 
the front corners of the platform, producing two square root of two rectangles (yellow highlighted 
lines). These same squares are then quartered, and lines are drawn from the center bases of these 
squares to the upper inside corners of the squares and are used as radii to draw the arcs that defi ne 
two phi rectangles that defi ne the length of the platform. The remaining space, from the front edge 
of the staircase to the front edge of the temple, forms a square root of fi ve rectangle (shaded yel-
low).

Figure 121

Plan of Structure 5D2 (a), Chichen Itza, Yucatan Peninsula, Mexico
Measured Drawing by Karl Ruppert  (1952)



197

The U-shaped temple of structure 5D2 is inscribed by a rectangle with a width of one to a length 
of two times the square root of three. The diagonals of these square root of three rectangles form 
equilateral triangles and are drawn in blue lines to visually emphasize these rectangles.
Square root of fi ve rectangles are shaded yellow, and the interior rooms of the temple are inscribed 
by rectangles with widths that equal one to their lengths that equal pi (shaded blue).
Because the platform has a ratio of square root of two to two times phi, two virtually perfect equi-
lateral triangles may be inscribed (blue lines), per Formula Two over Square Root of Three -5.

Figure 122

Plan of Structure 5D2 (b), Chichen Itza, Yucatan Peninsula, Mexico
Measured Drawing by Karl Ruppert  (1952) 
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Structure Chichanchob is inscribed by a root two rectangle.  A root four rectangle (double squares) 
is inscribed from the top of the doorways to the top of the roof comb to the length of the structure 
(shaded grey).  The forty-fi ve degree diagonals of these squares are the radii for the arc that defi nes 
the height of the structure.

Figure 123

Front Elevation of Structure Chichanchob (a), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by M. A. Fernandez  (Marquina 1951)

1

2
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Structure Chichanchob (b) and its raised platform are inscribed by a root two rectangle.  The stair-
case is inscribed by a phi rectangle (shaded blue).  The raised platform to either side of the stair-
case is  inscribed by two over root three rectangles that inscribe equilateral triangles (blue lines).

Figure 124

Front Elevation of Structure Chichanchob (b), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by M. A. Fernandez  (Marquina 1951)
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From the base of the walls of Structure Chicanchob, to the top of the roof comb to the length of 
the walls is inscribed by a virtually perfect three over two rectangle.  The formula for this virtually 
perfect three over two rectangle begins with a smaller three over two rectangle that inscribes the 
height of the roof to the inside edges of the lateral doorways (in white).  Root three rectangles are 
added to the sides and the top of this three over two rectangle to produce a larger, virtually perfect 
three over two rectangle.

Figure 125

Front elevation of Structure Chichanchob (c), Chichen Itza, 
Yucatan Peninsula, Mexico

Measured drawing by M. A. Fernandez, (Marquina 1951)

3 (+0.0029)

2
3/2
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Here, Structure Chichanchob and its raised platform is inscribed by a virtually perfect root two 
rectangle.  The temple proper, as in the previous diagram, is inscribed by a virtually perfect three 
over two rectangle (shaded blue and white).  The staircase is inscribed by a root two rectangle 
(shaded yellow).  The rased platform to either side of the staircase is inscribed by two squares 
(shaded grey), and the empty space to either side of the temple is inscribed by root fi ve rectangles 
(in white).

Figure 126

Front Elevation of Structure Chichanchob (d), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by M. A. Fernandez  (Marquina 1951)

3/2

d
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In this side elevation of Structure Chichanchob, the temple proper, including its plinth, is inscribed 
by a Pythagorean 3,4,5 rectangle.  The height of the walls to the width of the temple is inscribed 
by a root two rectangle (shaded yellow), and the roof comb is inscribed by a root four rectangle 
(shaded blue).  The raised platform is inscribed by two Pythagorean 3,4,5 rectangles (shaded 
grey).  The bold red lines form a phi rectangle, subdivided by a smaller phi rectangle and a square, 
that inscribes the width of the entire structure, from the base of the staircase to the top of the roof.  
Note that the forty-fi ve degree diagonal of this square is an extension of the forty-fi ve degree di-
agonal of the staircase and that the right edge of this square divides the temple at the rear of the 
front gallery and also divides the raised platform precisely in half.  

Figure 127

Side Elevation of Structure Chichanchob, Chichen Itza, 
Yucatan, Mexico

Measured Drawing by M. A. Fernandez  (Marquina 1951)

450

3

3
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4 4
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The interior walls of the temple are inscribed by a root four rectangle.  The front gallery and the 
rear rooms inscribe equilateral triangles (blue lines).

Figure 128

Plan of Structure Chichanchob (a), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by M. A. Fernandez  (Marquina 1951)



204

The upper platform, to the rear interior wall, is inscribed by a root four rectangle or double square 
(shaded grey).  The forty-fi ve degree diagonals of these squares are the radii for the arc that ter-
minates at the front of the staircase, which is also inscribed by a root four rectangle (shaded blue).  
The empty space to either side of the staircase is inscribed by root two rectangles.  Thus, the plan 
of this structure, from the rear wall of the temple proper to the front edge of the staircase, is in-
scribed by a root two rectangle that is subdivided by two root four rectangles and two root two 
rectangles, as per Formula Square Root of Two-2.  Because a root two rectangle divided in half 
produces two smaller root two rectangles, the diagonals from the lower corners of the diagram 
to the center of the rear wall of the temple are the radii for the arcs at the top of the diagram that 
terminate at the rear wall of the raised platform and produce two root three rectangles.

Figure 129

Plan of Structure Chichanchob (b), Chichen Itza, 
Yucatan Peninsula, Mexico

Measured Drawing by M. A. Fernandez  (Marquina 1951)
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The length of the temple proper, including its plinth, is equal to the width of the raised platform 
and is inscribed by a square (shaded grey).  The entire plan is inscribed by a two over root three 
rectangle that inscribes opposing equilateral triangles (blue lines).  The horizontal center of the 
plan cuts across the front interior wall of the temple (line a,b).

Figure 130

Plan of Structure Chichanchob (c), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by M. A. Fernandez  (Marquina 1951)
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In south elevation a, the height and width of the structure is inscribed by a rectangle. The staircase 
and the right and left sides of the upper platform are inscribed by square root of two rectangles 
(shaded yellow). The upper two square root of two rectangles are subdivided by squares that termi-
nate at the outer edges of the temple, the diagonals of which are the radii of the arcs that terminate 
at the outer edges of the lateral doorways (highlighted yellow lines).
The height of the platform, from the edges of the staircase to the lower corners of the platform, 
are inscribed by phi rectangles (shaded blue).  Vertical lines drawn from the lower corners of the 
temple to the base of the platform create square root of four rectangles, the diagonals of which are 
the radii for the arcs (yellow highlighted lines) that determine the lengths of the phi rectangles.
A square is inscribed between the lateral doors and the top of the roof (shaded gray).

A

Figure 131

South Elevation (a) of Structure 3C7, Chichen Itza, 
Yucatan, Mexico
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In south elevation b, the same radii of the arcs that determine the length of the phi rectangles 
(shaded blue) are used as radii to create double squares (shaded grey) that terminate at the lateral 
exterior edges of the central doorway.
In south elevation c, note the square root of three rectangles (shaded grey) that are framed by three 
squares (in white).

b

Figure 132

South Elevations b and c of Structure 3C7, Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert (1952)

c
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I consider the diagram that overlays Structure 3C7 speculative.  Because the angle of the platform 
and the angle of the base of a pentagram are seventy-two degrees, I decided to place the base of 
the pentagram, with its equiangular spirals, at the base of the platform.  Note how the spirals fi t 
neatly within the temple and frame the doorways. Also note how the rectangle that inscribes the 
structure fi ts neatly within the spirals.

d

Figure 133

South Elevation of Structure 3C7 (d), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)
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The east elevation of Structure 3C7 (a) is inscribed by a square root of four rectangle that is subdi-
vided by a square, square root of two, and square root of three rectangles. Note how the forty-fi ve-
degree diagonal of the square is the angle of the staircase and how the diagonals of the square root 
of two and three rectangles frame the rectangular altar on the top of the platform.

Figure 134

East Elevation of Structure 3C7 (a), Chichen Itza, 
Yucatan Peninsula, Mexico

Measured Drawing by Karl Ruppert (1952)

a
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Diagram b inscribes the east elevation of Structure 3C7 by a virtually perfect square root of four 
rectangle, subdivided by a square root of two rectangle (quartered and shaded yellow) and a square 
root of three rectangle (shaded blue), as per Formula Square Root of Four-3.
Diagram c shows the relationship between four squares, the upper platform, the temple, and the 
staircase (red lines). The east elevation of the temple proper is inscribed by a phi rectangle (shaded 
blue).

b

Figure 135

East Elevations of Structure 3C7 (b and c), Chichen Itza, 
Yucatan, Mexico

c
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The plan of the bases of the platform of Structure 3C7 is inscribed by a Pythagorean 3,4,5, rect-
angle that is subdivided by square root of four rectangles. If a,b is one, then b,c and a,d are two 
and a,e is four. The portion of the staircase that extends beyond the front of the platform is also 
inscribed by a square root of four rectangle (in white), and the yellow highlighted diagonals of the 
double square are the radii for the arc that defi nes the width of the staircase, which is inscribed by 
a square root of two rectangle.
The temple at the top of the platform is inscribed by a rectangle whose width is one to a length of 
two times square root of three (shaded blue).

Figure 136

Plan of Structure 3C7 (a), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952) 

a

b

c

e
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The top of the platform of Structure 3C7 is inscribed by a square root of two rectangle that is sub-
divided into squares and square root of two rectangles via Formula Square Root of Two-2.
The staircase is inscribed by a square root of two rectangle, and to either side of the staircase phi 
rectangles are inscribed (shaded blue).

Figure 137
Plan of Structure 3C7 (b), Chichen Itza, 

Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952) 
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A phi rectangle is inscribed from the front of the upper platform to the rear wall of the temple 
(shaded blue). If a,b is one, then a.c is square root of phi, a,d is phi, and diagonal b,c is phi.

Figure 138

Plan of Structure 3C7 (c), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)

a

b

c
d
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A square is drawn from the base of the platform, and the circle inscribed within the square in-
scribes a smaller square. If the width of the smaller square is one, the width of the larger square is 
square root of two.  The slope of the platform is forty-fi ve degrees.  Note the relationship of the 
width of the smaller square to the width of the upper platform and to the serpent heads (shaded 
yellow).Note that the circle appears to be grasped in the mouths of the serpent heads in profi le. 

Figure 139

Elevation of Structure C3C, Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)
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Figure 140

Plan of Structure C3C (a), Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert (1952)

A square is drawn from the base of the platform, a circle is inscribed within the square that in-
scribes a smaller square. If the width of the smaller square is one, the width of the larger square is 
square root of two.  Note  the relationship of the the width of the smaller square to the width of the 
upper platform and to the the serpent heads (shaded yellow).
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Structure 3C3 is a square platform with four staircases. Straight lines drawn from the edge of each 
staircase form four squares at the corners of the diagram. At the center of these squares are the 
corners of the platform. If b,c is one, then c,d is square root of two. Line c,d is also the radius for 
arc a,d.

Figure 141

Plan of Structure C3C (b), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)

a

b

c d
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Straight lines drawn from the edge of each staircase form four squares at the corners of the plat-
form. The diagonals of theses squares (highlighted in yellow) are the radii for the four arcs that 
terminate at the centers of the staircases.

Figure 142

Plan of Structure C3C (c), Chichen Itza, 
Yucatan, Mexico

Measured Drawing by Karl Ruppert  (1952)
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Straight lines drawn from the upper corners of each balustrade form a square in the center of the 
platform. This square (in white) is quartered and an arc is drawn from the center base to the upper 
corner to form phi rectangles (shaded blue).

Figure 143

Plan of Structure C3C (d), Chichen Itza, Yucatan, Mexico
Measured Drawing by Karl Ruppert  (1952)
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In the front elevation (a), the concentric circles that are overlaid determine the height and width 
of the platforms.
In the section (b), the forty-fi ve degree diagonal lines that overlay the staircases are the radii for 
the arcs that produce two root two rectangles.

Figure 144

Elevation and Section of the Temple of the Faces, Acanceh, 
Yucatan, Mexico

Measured Drawing by L. MacGregor K. (Marquina 1951)

a

b
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Figure 145

Plan of the Temple of the Faces (a), Acanceh, 
Yucatan, Mexico

Measured Drawing by L. MacGregor K. (Marquina 1951)

Identically to Structure 3C3 at Chichen Itza (Figure 140), straight lines are drawn from the edges 
of each staircase to form four squares at the corners of the diagram. If b,c is one, then c,d is square 
root of two. Line c,d is also the radius for arc a,d.

a

b

c d
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Concentric circles and squares overlay the plan of the Temple of the Faces, and each square in-
scribes the three raised platforms and the uppermost platform of the pyramid. From the smallest to 
the largest, each square has a root two relationship to the previous square.

Figure 146

Plan of the Temple of the Faces (b), Acanceh, 
Yucatan, Mexico

Measured Drawing by L. MacGregor K. (Marquina 1951)
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As with the plan of the Temple of the Faces from Acanceh, concentric circles and squares overlay 
the plan of the Temple of the Seven Dolls and each square inscribes the raised platforms and the 
uppermost platform of the pyramid. From the smallest to the largest, each square has a root two 
relationship to the previous square.

Figure 147

Plan of the Temple of the Seven Dolls, Dzibilchaltun, 
Yucatan, Mexico

Measured Drawing by L. MacGregor K. (Marquina 1951)
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 Beyond the Maya area, at the Late Post-Classic site of Zempoala, in Vera-

cruz, the Temple of the Gods of the Wind combines some of the proportions we have 

already seen at a fascinating level of complexity.  On the plaza in front of the principal 

structure sits a circular raised platform with a single staircase and a square raised plat-

form with four staircases. The main structure consists of a steep platform that is rect-

angular in the front and semicircular in back and supports a circular temple at the top. 

The rear of this steep platform rests on a low, U-shaped, rectangular platform.  At the 

front of the platform, a staircase and balustrade access a slightly higher platform that 

supports a rectangular temple with a columnar altar at the center of the front entrance. 

 The rectangular portion of the steep platform is inscribed by a phi-squared 

rectangle (shaded blue), and its length is equal to the width of the low U-shaped 

platform. Straight lines drawn from the front corners of this steep platform to the rear 

wall of the U-shaped platform thus forms a square, the remainder of which is a phi 

rectangle (shaded light yellow).  The center of the round temple at the top of the steep 

platform is also the center of this square.  The diagonal lines from the center of this 

square to to its upper corners are used as radii to form the arcs (highlighted in yellow) 

that defi ne the width of the balustrades, which in turn defi ne the interior part of the 

U- shaped platform, creating a square root of two rectangle. The diagonals from the 

center of the initial square to the corners of this square root of two rectangle are used 

to form the arcs that defi ne the length of the U-shaped platform and produce a square 

root of three rectangle.

 The rectangular raised platform at the front of the steep platform is also 

inscribed by a phi rectangle (shaded light yellow).  The plan of the balustrade that 

accesses the platform is inscribed by a square root of four rectangle. The diagonals of 



224

this upper balustrade are used to form arcs that terminate at the edges of the front bal-

ustrade of the lower platform and cross one another at the base of the columnar altar 

at the center of the front entrance of the rectangular temple (yellow highlighted lines) 

creating a phi rectangle between the two balustrades (shaded a darker yellow).

 The staircase that accesses the steep platform (not including the balustrade) is 

inscribed by a Pythagorean 3,4,5, rectangle (in white).

 Finally, another phi-squared rectangle is drawn from the front edge of the 

front platform to the front edge of the small square platform centered before it 

(shaded blue).  The width of the small square platform subdivides this phi-squared 

rectangle into two squares and a central phi rectangle. This phi-squared rectangle, 

added to the phi rectangle of the front raised platform, also form a square.  Note 

that the horizontal center line of this square terminates at the lower edges of the 

lateral balustrades of the front platform and that the center of this square is at the 

center of the columnar altar at the entrance of the rectangular temple (fi ne black 

lines).
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Figure 148

Plan of the Temple of the Gods of the Wind
Zempoala, Veracruz, Mexico
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Figure 149

Plan of the Temple of the Faces
Zempoala, Veracruz, Mexico

Measured Drawing by I. Marquina (1951)

a b

The plan of the Temple of the Faces is inscribed by a two over root three rectangle that inscribes 
two opposing equilateral triangles (blue lines).  The horizontal center of the plan is line a,b at the 
front edge of the uppermost platform.
The principal raised platform is inscribed by a root two rectangle (shaded yellow), and the diago-
nals from its top center to its lower corners are the radii for the arc that determines the width of 
the plan.
The uppermost platform and balustrade is inscribed by a Pythagorean 3,4,5 rectangle.



227

Plan a of the Temple of Moctezuma is inscribed by a root fi ve over two rectangle. If the width of 
the plan is two, then the length is root fi ve and the diagonal (a,b) is three.
The raised platform is inscribed by a square, and the diagonals from the rear center of the platform 
to the front corners are the radii for the arc that determines the length of the platform.  
The staircase is inscribed by two root fi ve rectangles (shaded yellow), and the balustrade and the 
remaining space to either side of the balustrade are inscribed by root four rectangles, as per For-
mula Square Root of Five-1.

Figure 150

Plan of the Temple of Moctezuma (a)
Zempoala, Veracruz, Mexico

Measured Drawing by I. Marquina  (1951)
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Plan b of the Temple of Moctezuma is inscribed by a virtually perfect root fi ve over two rectangle, 
as per Formula Square Root of Five-4.  A two over root three rectangle is inscribed from the rear 
of the temple to the front of the staircase (shaded blue).  The remaining space to the rear of the 
temple is inscribed by two root four rectangles. 
The interior of the temple is inscribed by a Pythagorean 3,4,5 rectangle (shaded grey) and the stair-
cases are inscribed by a root three rectangle (in white)  The blue lines form equilateral triangles.

Figure 151

Plan of the Temple of Moctezuma (b)
Zempoala, Veracruz, Mexico

Measured Drawing by I. Marquina (1951)
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The Pyramid at Tenayuca, (not including the narrow, low platform that extends beyond the front 
of it), is inscribed by a square. The front edges of the twin temples at the top of the pyramid 
demarcate the horizontal center of this square. The upper half of the square (a double square) is 
quartered, and the centers of the double squares demarcate the inner rear corners of the rear gal-
leries of the temples. The diagonals of the double square are the radii for the arc that terminates at 
the front edge of the platform at the top of the staircase and forms a square root of two rectangle 
(shaded yellow). Two virtually perfect root three rectangles, as per Formula Square Root of Four-
3, are shaded blue.
The entire plan is inscribed by a root fi ve over two rectangle that is subdivided by root four and 
fi ve rectangles, as per Formula Square Root of Five-1

Figure 152

Plan of the Pyramid at Tenayuca (a)
Zempoala, Veracruz, Mexico

Measured Drawing by I Marquina (1951)
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In Plan b, the diagonal (highlighted in yellow) of the double square (in white), demarcated by the 
exterior of the front walls of the twin temples, is the radius of the arc that terminates at the lower 
left-hand corner of the diagram and forms a phi rectangle (shaded blue). 

Figure 153

Plan of the Pyramid at Tenayuca (b)
Zempoala, Veracruz, Mexico

Measured Drawing by I. Marquina (1951)
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Plan c of the Pyramid of Tenayuca is inscribed by a root fi ve over two rectangle that is subdivided 
by a two over root three rectangle (shaded blue), which inscribes an equilateral triangle (blue 
lines), as well as four squares (shaded yellow), as per virtually perfect Formula Square Root of 
Five-4

Figure 154

Plan of the Pyramid at Tenayuca (c)
Zempoala, Veracruz, Mexico

Measured Drawing by I. Marquina  (1951)
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A quartered square is inscribed from the base of the staircase to the top of the lateral towers and 
the top of the doorway of the central tower.  The horizontal center of the square demarcates the 
height of the roof of the temple. The diagonal, from the center base of this square to its upper 
corner, is the radius for the arc that terminates at the lateral edges of the temple and creates a root 
fi ve rectangle that is subdivided by a square and two phi rectangles (shaded blue), as per Formula 
Square Root of Five-3

Figure 155

Front Elevation, Xpuhil (a), 
Quintana Roo, Mexico

Measured Drawing by J. A. Gomez R. (Marquina 1951)

a
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Beginning with the same square that produced the root fi ve rectangle in Elevation a, a root four 
rectangle inscribes the balustrades and the tops of the roofs of the lateral towers.  Circles are in-
scribed within the double squares and squares are then inscribed within these circles. The inner 
squares to the outer squares have a ratio of one to root two. Note that the bases of the inner squares 
rest on the top of the central staircase, the tops of the squares terminate at the height of the central 
tower, the inner sides of the squares terminate at the balustrade of the central tower, and the outer 
sides of the squares terminate at the center lines of the staircases of the lateral towers.

Figure 156

Front Elevation, Xpuhil (b),
Quintana Roo, Mexico

Measured Drawing by J. A. Gomez R. (Marquina 1951)

b
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In Elevation c, the temples and balustrades of the lateral towers are inscribed by vertical phi rect-
angles and the space between them is inscribed by a horizontal phi rectangle.  Together, these fi ve 
phi rectangles precisely subdivide a root fi ve rectangle.
In Elevation d, a root fi ve rectangle inscribes the width of the lateral towers and the height of the 
central tower.

Figure 157

Front Elevations, Xpuhil (c and d), 
Quintana Roo, Mexico

Measured Drawing by J. A. Gomez R. (Marquina 1951)

c

d
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The width of the temple to the height of the roof of the central tower is inscribed by two, two over 
root three rectangles that inscribe equilateral triangles (blue lines) 

Figure 158

Front Elevation, Xpuhil (e), 
Quintana Roo, Mexico

Measured Drawing by J. A. Gomez R. (Marquina, 1951)

e
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The front elevation of the Pyramid of the Niches is inscribed by a virtually perfect phi rectangle 
that is subdivided via the virtually perfect Formula Phi-3. The squares are shaded grey, the square 
root of two rectangles are shaded yellow. The square root of fi ve rectangle in the center is subdi-
vided into a vertical phi rectangle (the decorated balustrade, shaded light blue) and a horizontal phi  
rectangle (the plain balustrade and temple, shaded darker blue).

Figure 159

Elevation of the Pyramid of the Niches (a) 
Veracruz, Mexico

Measured Drawing by L. MacGregor K. (Marquina 1951)
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This diagram demonstrates the square root of two proportions inherent in the design of the Pyra-
mid of the Niches.  The square root of two rectangles are shaded yellow.  The slope of the pyramid 
is determined by the diagonal of the lateral square root of two rectangles. The staircase is inscribed 
by two square root of two rectangles. 
If the width of the staircase (a,b) is one, then from the outside lower corners of the balustrade to 
the corners of  the pyramid (c,d) is two. Thus, whether intentionally or not, the area of the staircase 
is equal to the area of triangle c,d,e.

Figure 160

Elevation of the Pyramid of the Niches (b), 
Veracruz, Mexico

Measured Drawing by L. MacGregor K. (Marquina 1951)

a b c d

e
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Both diagrams are shown together here to better appreciate how more than one geometrical for-
mula can be integrated into a single architectural design.

A

Figure 161

Elevation of the Pyramid of the Niches (c) 
Veracruz, Mexico

Measured Drawing by L. MacGregor K. (Marquina 1951)
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The plan of the Pyramid of the Niches is inscribed by a square. The staircase and balustrade are 
inscribed by a phi rectangle (shaded blue) and the uppermost, undecorated portion of the staircase 
and balustrade are inscribed by a square root of four rectangle, the diagonal of which is the radius 
used to determine the length of the phi rectangle.

Figure 162

Plan`of the Pyramid of the Niches, 
Veracruz, Mexico

Measured Drawing by L. MacGregor K. (Marquina 1951)
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CHAPTER 8

GEOMETRY IN CLASSIC AND POST CLASSIC PERIOD MAYA ART

 The following observations reveal some overall rules and norms that seem 

to characterize the composition of Maya art and the codices,  It should be noted that 

these proposed “rules and norms” are general ones, some more strictly adhered to 

than others and, in some cases, ignored.  After extensive examination,  I have found 

no obvious correlation between particular geometric proportions and specifi c subject 

matter. It does appear, however, that Maya artist/geometers were guided by certain 

general principles.

1.  The underlying geometry is not overt. On the contrary, it appears to be       

consciously hidden. 

2.  Bilateral symmetry is clearly important but not essential.

3.  Intentional asymmetries are often noted; for example, one corner of     

Yaxchilan Lintel 11 is notably out of square. 

4.  Body postures often follow the principle angles and curves of the   

underlying geometrical composition.

5.  Objects, such as bodies, arms, legs, spears, and serpent bars, generally touch or are 
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parallel to the principle lines and curves of the underlying geometrical composition.  

Rarely do these lines run through the centers of these objects.

6.  The brow, in particular, as well as hands and feet are extremely important and 

are almost always touching or crossed by critical junctures or principle lines of the 

geometrical diagram. Principle lines of the geometrical program almost always divide 

the headdress from the head of human subjects. 

7.  Navels, noses, and the temple region of the head are often foci of the geometry, 

though not as often noted in the compositions as are hands, feet, and brows.

8.  Hieroglyphic writing is secondary to the rest of the composition.  Glyph blocks 

are often included and accounted for in the geometrical compositions, but brief 

inscriptions may have  been used to fi ll empty space.  Names and titles are often 

crossed by principle lines of the geometry, and some appear to have been added after 

the artistic composition has been adapted to the geometrical composition.

 9. Though much of the art analyzed so far focuses on one or more of the given set of 

Maya proportions, others are clearly attempts to unite the full set of proportions into a 

balanced and harmonious composition.
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The above are ball court markers from either side of the principle ball court a Uxmal. If the diam-
eter of the inner circle of Ball Court Marker 1 is one, then the diameter of the outer circle is phi. If 
the diameter of the inner circle of Ball Court Marker 2 is one, then the diameter of the outer circle 
is square root of two.

Figure 163

Ball Court Markers 1 and 2, Uxmal 
Yucatan, Mexico

Measured Drawing by Ian Grahm
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If the diameter of the inner circle of Tikal Altar 7 is one, then the diameter of the outer circle is 
phi.
If the diameter of the inner circle of Yaxchilan Monument AI-OP is one, then the diameter of the 
outer circle is four.  If the diameter of the middle circle of Yaxchilan Monument AI-OP is one, then 
the diameter of the outer circle is phi.

Figure 164

Altar 7, Tikal and Monument AI-OP, Yaxchilan
Measured Drawing by W. R. Coe (a) and S. G. Morley (b)

Tikal Altar 7

a

b
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The inner circles are the diameter of the width of the squares inscribed in the outer circles.  If the 
diameter of the inner circles is one, then the diameter of the outer circles is square root of two, as 
per Formula Circle-a.

Figure 165

Monuments 69,11,and 34 and Altar 001, Tonina 
Chiapas, Mexico

Measured Drawings by Ian Grahm

Altar
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If the diameter of the inner circles is one, then the diameter of the outer circles is square root of phi.  
The perimeters of the squares that inscribe the inner circles are virtually equal to the perimeters of 
the outer circles, as per Formula Circle-2.

Figure 166

Monuments 110, 111, 139, and 137, Tonina
Chiapas, Mexico

Measured Drawings by Ian Grahm

139
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If the diameter of the inner circle is one, then the diameter of the outer circle is square root of phi.  
The diameter of the square that inscribes the inner circle is virtually equal to the diameter of the 
outer circle, as per Formula Circle-2
The square that inscribes the outer circle is subdivided into a phi rectangle (shaded blue) and a phi 
squared rectangle (shaded yellow), as per Formula Square-3.

Figure 167

Altar 10, Tikal,
Peten, Guatemala

Measured Drawing by W. R. Coe
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A circle is inscribed by a square that is trisected. Note the possibly intentional asymmetry of the 
upper portion of the circle.

Figure 168

Altar 8, Tikal, 
Peten, Guatemala

Measured Drawing by W. R. Coe
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If the diameter of the inner circle is three, then the diameter of the outer circle is four. 
An equilateral triangle is inscribed in the outer circle that is, in turn, inscribed within a square.  
A straight line across the base of the equilateral triangle to the sides of the square subdivides the 
square into a Pythagorean 3,4,5 rectangle (shaded blue) and a one to four rectangle (in white).

Figure 169

Altar 5, Tikal, 
Peten, Guatemala

Measured Drawing by W. R. Coe
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Hieroglyphic text blocks inscribed by squares.

Figure 170

Square Hieroglyphic Text Blocks 1
Measured Drawings by Ian Grahm, Rubbing By Merle Greene Robertson

Lintel 1, YulaMonument 141, Tonina

Altar Q, Copan Lintel 11, Yaxchilan
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For each of these lintels from the  Las Monjas Temple at Chichen Itza, the ratio between the in-
ner and outer squares is one to phi. The bar of hieroglyphics within the inner square of Lintel 2 is 
inscribed by a root fi ve rectangle. The two bars of hieroglyphics within the inner square of Lintel 
3 are inscribed by a square. The two bars of hieroglyphics within the inner square of Lintel 4 are 
inscribed by a two over root three rectangle (that inscribes an equilateral triangle) and the bars 
themselves are inscribed by two, two over root phi rectangles. The bar of hieroglyphics within the 
inner square of Lintel 5 is inscribed by a root four rectangle.

Figure 171

Square Hieroglyphic Text Blocks 2
Measured Drawings by Ruth Krochock 

Lintel 2 Lintel 3

Lintel 4 Lintel 5
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Monument M01 is inscribed by a square that inscribes a circle that inscribes a square.  The ratio 
of the inner square to the outer square is one to root two.

Figure 172

Monument  M01, 
Chichen Itza, Yucatan, Mexico

Rubbing by Merle Greene Robertson
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The La Pasadita Lintel is inscribed by a square that is quartered (fi ne black lines) and subdivided 
by a phi rectangle (shaded blue) and a phi squared rectangle (shaded yellow), and into smaller 
squares and phi rectangles (bold red lines), as per Formula Square-2.  The square in the upper right 
corner is further subdivided into squares and phi rectangles, and an equiangular spiral is added that 
conforms to the curve of the quetzal bird headdress of the standing male fi gure and terminates in 
its mouth.
Note how the hands of the human fi gures, the position of the spear, and the blocks of hieroglyphic 
texts conform to this proposed geometrical diagram.

Figure 173

Yaxchilan area, Chiapas, Mexico
Measured Drawing by Ian Grahm
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Here, the diagram that overlays the La Pasadita Lintel is further subdivided by vertical lines (a 
and b).  These lines subdivide the corner squares of the previous diagram into phi and phi squared 
rectangles. Equiangular spirals are also added to the principal phi rectangles of the diagram.  Note 
that the spiral in the blue shaded phi rectangle encapsulates the standing male fi gure and termi-
nates on one of his royal titles. The second spiral encapsulates body of the captive and terminates 
at his wrist.  

Figure 174

La Pasadita Lintel (b), 
Yaxchilan area, Chiapas, Mexico
Measured Drawing by Ian Grahm

a b
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Lintel Mayers 6 (a) is is inscribed by a square that is subdivided nearly identically via Formula 
Square-2, as was the La Pasadidta Lintel.  The principle difference is that a vertical line has been 
moved to the inside of the squares at the upper and lower right-hand corners. 
An equiangular spiral is added that appears to conform to the shape of the headdress of the seated 
fi gure.
Note the positions of the standing fi gures, the text block, the hands of each of the fi gures, the place-
ment of the bench beneath the seated fi gure, and the position of the headdress being presented to 
the seated fi gure by the standing female fi gure relative to the suggested geometrical diagram.

Figure 175

Lintel Mayers 6 (a),  
Yaxchilan area, Chiapas, Mexico
Measured Drawing by Ian Grahm
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Lintel Mayers 6 (b) shows an equiangular spiral within the principal phi rectangle (shaded blue) 
that appears to emanate, like a speech scroll, from the mouth of the seated fi gure, and touches the 
speech scroll emanating from the mouth of the head attached to the headdress. 

Figure 176

Lintel Mayers 6 (b), 
Yaxchilan area, Chiapas, Mexico
Measured Drawing by Ian Grahm

 

a
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Lintel 45 is inscribed by a square that is dynamically subdivided into smaller squares and square 
root of two rectangles via Formula Square-1.  
Note that both of the human fi gures are leaning forward as if to fi t within the arcs (highlighted yel-
low lines) whose radii are the sides of the square.  Note also the placement and the angles of the 
feet of the fi gures, the angle of the thighs of the seated fi gure, the placement of the hands of both 
fi gures and the position of the left arm of the standing fi gure relative to the suggested geometrical 
diagram.

Figure 177

Lintel, 45, Yaxchilan, 
Chiapas, Mexico

Measured Drawing by Ian Grahm
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Lintel 1 is inscribed by a square that inscribes a circle that, in turn, inscribes a square root of phi 
rectangle (shaded yellow). Straight lines are drawn along the sides of the square root of phi rect-
angle that terminate at the sides of the square, as per Formula Square-4.
Rectangle h,g,c,d is a phi rectangle and rectangle a,b,f,e is a square root of phi rectangle that has 
virtually the same area as the yellow highlighted circle, again as per Formula Square-4.
Note the possibly intentional asymmetry of the artistic composition at the the upper right corner.

Figure 178

Lintel 1, Yaxchilan, 
Chiapas, Mexico

Measured Drawing by Ian Grahm
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The Palace Tablet is inscribed by a square that is subdivided by a Pythagorean 3,4,5 rectangle 
(shaded yellow) and a remaining one to four rectangle.  The coronation scene embedded within the 
text is inscribed by a root fi ve rectangle subdivided by a quartered square and two phi rectangles 
(shaded blue), as per Formula Square Root of Five-3.

Figure 179

The Palace Tablet, 
Palenque, Chiapas, Mexico

Measured Drawing by Merle Grene Robertson
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Like the Palace Tablet, Lintel 1 from El Cayo is inscribed by a square that is subdivided by a Py-
thagorean 3,4,5 rectangle (above the inset standing fi gure) and a remaining one to four rectangle.  
The standing fi gure imbedded within the text is inscribed by a root four rectangle (shaded blue) 
subdivided at the center of the exterior square by three Pythagorean 3.4.5 rectangles. Note that the 
left hand of the standing fi gure divides the root four rectangle in half.

Figure 180

Lintel 1, 
El Cayo, Guatemala
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Figure 181

Pythagorean 3,4,5 Hieroglyphic Text Blocks 1
Measured Drawings by Merle Greene Robertson (a) and Ian Graham (b)

The Center Tablet of the Temple of the Inscriptions, Palenque

Panel 1, Calakmul

Hieroglyphic text blocks inscribed by Pythagorean 3,4,5  rectangles
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Monument 122 is inscribed by a Pythagorean 3.4.5 rectangle.  In diagram a, this rectangle is subdi-
vided into a quartered square (shaded grey) and a rectangle with a ratio of one to three (in white).
The diagonals of the principle rectangle and the square are drawn in fi ne black lines.
In diagram b, the Pythagorean rectangle is divided into a phi rectangle (shaded blue) and square 
root of two rectangle (shaded yellow) via Formula Pythagorean 3.4.5-2. 
Note how the posture and the positions of the hands of the reclining fi gure precisely conform to 
the proposed geometrical diagram.

Figure 182

Monument 122, Tonina, Chiapas, Mexico
Measured Drawing by Ian Grahm

a

b
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Lintel 2 is inscribed by a Pythagorean 3,4,5 rectangle that is divided into a square root of two rect-
angle (shaded yellow) and a phi rectangle (shaded blue), as per Formula Pathagorean 3,4,5-2.

Figure 183

Lintel 2, 
Yaxchilan, Chiapas, Mexico

Measured Drawing by Ian Grahm
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Lintel 2 is inscribed by a Pythagorean 3,4,5 rectangle that is divided into three root fi ve rectangles, 
each of which is subdivided into squares (shaded yellow) and phi rectangles (shaded blue).
Note that the diagonal of the double square to the left of the seated and kneeling fi gures is the ra-
dius for the arc that defi nes the width of the phi rectangle that inscribes the iconography.

Figure 184

Lintel 2, Yaxchilan, Chiapas, Mexico
Measured Drawing by Ian Graham
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Hieroglyphic text blocks inscribed by root two rectangles

Figure 185

Square Root of Two Hieroglyphic Text Blocks
Measured Drawing by Ian Grahm

Lintel 29, YaxchilanMonument 8-d, Tonina
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Panel n-3 from Tonina is inscribed by a root two rectangle that is subdivided into squares (shaded 
blue) and smaller root two rectangles (shaded yellow), as per Formula Square Root of Two-3.

Figure 186

Panel n-3, Tonina, Chiapas, Mexico
Measured Drawing by Ian Grahm
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Lintel 24 from Yaxchilan is inscribed by a root two rectangle that is subdivided into squares (shad-
ed blue) and smaller root two rectangles (shaded yellow), as per Formula Square Root of Two-3.

Figure 187

Lintel 24, Yaxchilan, Chiapas, Mexico
Measured Drawing by Ian Grahm
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Lintel 58 from Yaxchilan is inscribed by a root two rectangle that is subdivided into squares (shad-
ed blue) and smaller root two rectangles (shaded yellow), as per a variation of Formula Square 
Root of Two-3. 
The unshaded rectangles added to the squares produce root two rectangle and added to the root 
two rectangles produce squares.

Figure 188

Lintel 58, Yaxchilan, Chiapas, Mexico
Measured Drawing by Ian Grahm
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Stela 34 from El Peru is inscribed by a root two rectangle that is subdivided into squares (shaded 
blue) and smaller root two rectangles (shaded yellow), as per a variation of Formula Square Root 
of Two-3. 

Figure 189

Stela 34, El Peru, Peten, Guatemala
Measured Drawing by Ian Grahm



269

The Dumbarto Oaks Table from Palenque is inscribed by a three over two rectangle, but the ico-
nography, minus the band of hieroglyphs across the top of the panel, is inscribed by a root two 
rectangle that is subdivided into squares (shaded blue) and smaller root two rectangles (shaded 
yellow). as per a variation of Formula Square Root of Two-3. 

Figure 190

Dumbarton Oaks Tablet, Palenque, Chiapas, Mexico
Measured Drawing by Merle Greene Robertson
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Figure 190 is a photograph of the Dumbarton Oaks Tablet with the same geometry as Figure 189 
overlaid.

Figure 191

Photograph of Dumbarton Oaks Tablet, Palenque, Chiapas, Mexico
Photograph by Merle Greene Robertson
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This lintel is a clear example of two formulae combined.  The seated fi gures are inscribed by virtu-
ally perfect Pythagorean 3,4,5 rectangles subdivided by root two rectangles (shaded yellow) and 
phi rectangles (shaded blue), as per Formula Pythagorean 3,4,5-2.  The text block, which may be 
viewed as two Pythagorean 3,4,5 rectangles divided into twenty-four equal sized squares, when 
added to either of the larger Pythagorean 3.4.5 rectangles, produces virtually perfect root two rect-
angles, as per Formula Square Root of Two-4.

Figure 192

Lintel from the Bonampak Area,
Chiapas, Mexico 
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Lintels`from Yaxchilan inscribed by square root of three rectangles

Figure 193

Square Root of Three Hieroglyphic Text Blocks  1
Measured Drawings by Ian Grahm

Lintel 32, YaxchilanLintel 11, Yaxchilan

Lintel 47, Yaxchilan Lintel 60, Yaxchilan
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Lintels from Yaxchilan inscribed by square root of three rectangles

Figure 194

Square Root of Three Hieroglyphic Text Blocks 2
Measured Drawings by Ian Grahm

Lintel 34, Yaxchilan

Lintel 48, Yaxchilan Lintel 49, Yaxchilan
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Figure 195

Square Root of Three Hieroglyphic Text Blocks 3

Provenience UnknownPanel 6-v, Dos Pilas

Hieroglyphic text blocks inscribed by square root of three rectangles
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Hieroglyphic text blocks inscribed by square root of three rectangles

Figure 196

Square Root of Three Hieroglyphic Text Blocks 4
Measured Drawings by Merle Greene Robertson

West Tablet, Temple of the Inscriptions, Palenque

East Tablet, Temple of the Inscriptions, Palenque
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This stela from Coba is inscribed by a virtually perfect root three rectangle that is subdivided by 
root fi ve rectangles (shaded blue) and root two rectangles (shaded yellow), as per Formula Square 
Root of Two-4.
Note these subdivisions relative to the positions of the left thumb and big toe of the dancing fi g-
ure.

Figure 197

Dancer, Coba, Quintana Roo, Mexico
Measured Drawing by Ian Graham
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La Mar Stela 3 is inscribed by a root three rectangle that is subdivided by a root four rectangle 
(shaded yellow) and two phi rectangles (shaded blue), as per the virtually perfect Formula Square 
Root of Three-3.  Paired equilateral triangles and hexagons (overlaid in black lines) may have  
determined the placement of the hands and the angle of the spear.

Figure 198

La Mar Stela 3 
(Provenience Unknown)
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The standing fi gure in Stela 7 from Seibal is inscribed by a root three rectangle that is subdivided 
into three smaller root three rectangles, as per Formula Square Root of Three-1.  At the center of 
these subdivisions are three squares that separate the standing fi gure from the hieroglyphic texts. 
The large hieroglyph beneath the feet of the standing fi gure is inscribed by a phi rectangle (shaded 
yellow).

Figure 199

Stela 7, Seibal, Guatemala
Measured Drawing by Ian Graham
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The Sarcophagus Lid from the Temple of the Inscriptions at Palenque is inscribed by a root three 
rectangle that is subdivided by a root four rectangle (white) and two phi rectangles (shaded blue), 
as per the virtually perfect Formula Square Root of  Three-3.  Where the root four rectangle cuts 
across the inside of the sky band it defi nes a phi rectangle (shaded yellow).

Figure 200

Sarcophagus Lid (a), Temple of the Inscriptions, Palenque, Chiapas, Mexico
Measured Drawing by Merle Greene Robertson
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The rectangle inside of the sky band is inscribed by a square (white) and two root fi ve rectangles 
(shaded blue).  The central square is inscribed by a circle (shaded yellow).

Figure 201

Sarcophagus Lid (b), Temple of the Inscriptions, Palenque, Chiapas, Mexico
Measured Drawing by Merle Greene Robertson
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This is a photograph of the Sarcophagus Lid with the suggested geometry overlaid.  The rectangle 
inside of the sky band is subdivided into squares and phi rectangles.

Figure 202

Sarcophagus Lid (c), Temple of the Inscriptions, Palenque, Chiapas, Mexico 
Photograph by Merle Greene Robertson 
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The side view of Stela 6 from Copan is inscribed by two root four rectangles subdivided by four 
equal sized squares.
The front view of the stela is inscribed by two root three rectangles.  The uppermost root three rect-
angle is divided in two at the brow of the standing fi gure, and a hexagon inscribes the headdress.

Figure 203

Stela 6, Copan, Honduras
Measured Drawing by Barbara Fash
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Hieroglyphic text blocks inscribed by root four rectangles. Note the possibly intentional asymme-
try of the upper left corner of Stela 30-b.

Figure 204

Square Root of Four Hieroglyphic Text Blocks 1
Measured Drawings by Ian Grahm

Stela 30-b, Naranjo Stela 31-b, Naranjo
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Hieroglyphic text blocks inscribed by root four rectangles

Figure 205

Square Root of Four Hieroglyphic Text Blocks 2
Measured Drawings by Ruth Krochoc (a) and Ian Graham (b)

Stela A, Chichen Itza Stela 8, Dos Pilas

a b
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Panel 1,Cancuen

Hieroglyphic text blocks inscribed by root four rectangles

Figure 206

Square Root of Four Hieroglyphic Text Blocks 3
Measured Drawing by Nikolai Grube (b)

Provenience Unknown

b
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This Hieroglyphic Stair from Yaxchilan is inscribed by a root four rectangle that is quartered. The 
upper right-hand corner may be an example of intentional asymmetry.

Figure 207
Hieroglyphic Stair 03-2, Yaxchilan, Chiapas, Mexico

Measured Drawing by Ian Grahm
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Stela 10 from Seibal is inscribed by a root four rectangle that is subdivided by root two and root 
three rectangles, as per the virtually perfect Formula Square Root of Four-4.  The root three rect-
angle (shaded blue) is subdivided into three smaller root three rectangles, and the root two rect-
angle (shaded yellow) is subdivided into squares and smaller root two rectangles, as per Formula 
Square Root of Two-3

Figure 208

Stela 10, Seibal, Guatemala
Measured Drawing by Ian Grahm
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As in Stela 10 from Seibal, Stela 28-a from Naranjo is inscribed by a root four rectangle that is 
subdivided by root two and root three rectangles, as per the virtually perfect Formula Square Root 
of Four-4.  The root three rectangle (shaded blue) is subdivided into three smaller root three rect-
angles, and the root two rectangle (shaded yellow) is subdivided into squares and smaller root two 
rectangles, as per Formula Square Root of Two-3

Figure 209

Stela 28-a, Naranjo, Belize
Measured Drawing by Ian Grahm
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Identically to Stela 10 from Seibal and Stela 28-a from Naranjo, Stela 13 from Piedras Negras is 
inscribed by a root four rectangle that is subdivided by root two and root three rectangles, as per 
the virtually perfect Formula Square Root of Four-4.  The root three rectangle is shaded blue.  The 
root two rectangle (shaded yellow) is subdivided into squares and smaller root two rectangles, as 
per Formula Square Root of Two-3

Figure 210

Stela 13, Piedras Negras, Guatemala
Measured Drawing by John Montgomery
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Identically to Figures 220-222, the rubbing and the drawing of Stela 1 from Ixcun are inscribed 
by a root four rectangle that is subdivided by root two and root three rectangles, as per the virtu-
ally perfect Formula Square Root of Four-4.  The root three rectangles are subdivided into three 
smaller root three rectangles, two of which are subdivided by root two rectangles that inscribe the 
captives.  The root two rectangles (shaded yellow) are subdivided into squares and smaller root 
two rectangles, as per Formula Square Root of Two-3  The white and black lines subdivide the root 
two rectangles into three Pythagorean 3,4,5 rectangles, as per Formula Square Root of Two-4.

Figure 211

Stela 1, Ixcun, Yucatan, Mexico
Measured Drawing by Ian Grahm, Rubbing by Merle Greene Robertson
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Figure 212

Square Root of Five Hieroglyphic Text Blocks
Measured Drawings by Merly Greene Robertson (a) and John Montgomery

Tablet of the Ninety-Six Glyphs, Palenque

Hieroglyphic text blocks inscribed by a root fi ve rectangles.  Note that the root 
fi ve rectangle that inscribes Panel 6 from Piedras Negras is subdivided by a root 
three rectangle (shaded blue) and a root four rectangle (shaded yellow).

Panel 36, Piedras Negras Panel 6, Piedras Negras

a
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Stela 35 from Piedras Negras is inscribed by a root fi ve rectangle that is subdivided by a square 
and two phi rectangles, as per Formula  Square Root of Five-3.  The phi rectangles are shaded blue 
and the remaining square is subdivided by a root two rectangle (shaded yellow).
The upper left side may be an example of intentional asymmetry.

Figure 213

Stela 35, Piedras Negras, Guatemala
Measured Drawing by John Montgomery
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Stela 11 (a) from Seibal is inscribed by a root fi ve rectangle that is subdivided by a square (white)
and two phi rectangles (shaded blue), as per Formula Square Root of Five-3.  
Stela 11 (b) includes the hieroglyphic text block. From the top of the stela to the center of the root 
fi ve rectangle is a root two rectangle (shaded yellow).

Figure 214

Stela 11, Seibal, Peten, Guatemala
Measured Drawing by Ian Grahm

a b
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Stela 31 (a) from Seibal is inscribed by a root fi ve rectangle that is subdivided by a square (shaded 
yellow) and two phi rectangles (shaded blue), as per Formula Square Root of Five-3.
In Stela 31 (b), two squares (shaded yellow) and a phi rectangle (shaded blue) isolate the standing 
fi gure from the hieroglyphic texts.
All of the diagonal black lines are forty-fi ve degrees.

Figure 215

Stela 31, Naranjo, Belize
Measured Drawing by Ian Grahm

a b
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Stela 30-a from Naranjo is inscribed by a root fi ve rectangle that is subdivided by a vertical phi 
rectangle (light blue) and horizontal phi rectangle (dark blue), as per Formula Square Root of 
Five-3.  These rectangles are further subdivided into squares and smaller phi rectangles.  The fi ne 
black line is the horizontal center of the root fi ve rectangle.  Note the placement of the hands of 
the standing fi gure.

Figure 216

Stela 30-a, Naranjo, Belize
Measured Drawing by Ian Grahm
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The Hauberg Stela is inscribed by a root fi ve rectangle that is subdivided by a square (white) and 
two phi rectangles (shaded blue), as per Formula Square Root of Five-3.  The square is subdivided 
by the hieroglyphic text into a smaller square whose diagonal is equal to the length of the sides of 
the larger square by a ratio of one to root two.
In Figure 216 a, the hieroglyphic text divides the phi rectangles by a root three rectangle that in-
scribes two equilateral triangles (blue lines).
In Figure 216 b, the phi rectangles are separated by phi squared rectangles (shaded yellow), and 
the equiangular phi spirals terminate in the spiral eye of the standing fi gure and the bifurcated 
tongue of the human face emerging from the serpent. Black line (A) is the horizontal center of the 
root fi ve rectangle.

Figure 217

Hauberg Stela, Kaminaljuyu, Guatemala

a b

A
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Both the East (b) and West (a) Jambs are inscribed by virtually perfect root fi ve rectangles that are 
subdivided at the brows of the standing fi gures by root three rectangles (shaded blue) and root four 
rectangles (in white), as per Formula Square Root of Five-4.

Figure 218

East and West Jambs, Temple of the Cross, Palenque, Chiapas,Mexico
Measured Drawings by Merle Greene Robertson

a b
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Both of these stelae are inscribed by virtually perfect root fi ve rectangles that are subdivided by 
root four rectangles (white) and root three rectangles (shaded yellow and blue), as per Formula 
Square Root of Five-4.  The root two rectangles are further subdivided by root two rectangles 
(shaded yellow) and root fi ve rectangles (shaded blue), as per Formula Square Root of Three-4. 

Figure 219

Stela 1, Coba, Quintana Roo, Mexico (a) and an Unprovenienced Stele (b)
Measured drawings by Ian Grahm (a) and Christian Prager (b)

a b
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Both Jamb 1 (a) from Kaba and an unprovenienced stela (b) are inscribed by virtually perfect 
root fi ve rectangles that are subdivided by root four rectangles (white) and root three rectangles 
(shaded yellow and blue), as per Formula Square Root of Five-4.  The root two rectangles are fur-
ther subdivided by root two rectangles (shaded yellow) and root fi ve rectangles (shaded blue), as 
per Formula Square Root of Three-4.

Figure 220

Jamb 1, Structure 1A1, Kaba, Yucatan, Mexico
Rubbings by Merle Greene Robertson

a b
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Hieroglyphic text blocks inscribed by two over square root of three rectangles

Figure 221

Two Over Square Root of Three Hieroglyphic Text Blocks 1
Rubbings by Merle Greene Robertson

Lintel 1, Temple of the Four Monuments,
 Chichen Itza

Lintel 2, Temple of the Four Monuments,
 Chichen Itza

Lintel 3, Temple of the Four Monuments,
 Chichen Itza

Lintel 4, Temple of the Four Monuments,
 Chichen Itza
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Hieroglyphic text blocks inscribed by two over square root of three rectangles

Figure 222

Two Over Square Root of Three Hieroglyphic Text Blocks 2
 Measured Drawings by Ian Grahm

Lintel 30, Yaxchilan

Lintel 31, Yaxchilan
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The East Panel (a) and the West Panel (b) from Xcalumkin are inscribed by two over root three rect-
angles that inscribe equilateral triangles (yellow lines) and are subdivided by phi rectangles (shad-
ed blue) and four squares (shaded yellow), as per Formula Two Over Square Root of Three-4. 
The phi rectangles that inscribe the seated fi gures are subdivided by a root phi rectangle (white 
lines) at the brows, whose diagonals are the radii for the arcs that determine the length of the phi 
rectangles.

a b

Figure 223

Panels T112 East and West, Xcalumkin,
Yucatan, Mexico

Rubbings by Merle Greene Robertson
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The Tablet of the Slaves is inscribed by a virtually perfect two over root three rectangle that is 
subdivided at the base of the text block and the brow of the central seated fi gure by a root fi ve rect-
angle (shaded blue) and a root two rectangle (shaded yellow), as per Formula Two Over Square 
Root of Three-5.  The root two rectangle is further subdivided by squares and smaller root two 
rectangles via a variation of Formula Square Root of Two-3.

Figure 224

Tablet of the Slaves (a), Palenque, Chiapas, Mexico
Measured Drawing by Merle Greene Robertson
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In the Tablet of the Slaves b, the root two rectangle (shaded yellow) is further subdivided by ad-
ditional square and root two subdivisions (arcs and fi ne black lines).  

Figure 225

Tablet of the Slaves (b), Palenque, Chiapas, Mexico
Measured Drawing by Merle Greene Robertson
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Like the Tablet of the Slaves, Tikal’s Stela 16, minus the rounded half circle at the top, is inscribed 
by a virtually perfect two over root three rectangle that  inscribes equilateral triangles (blue lines) 
and is subdivided by a root fi ve rectangle (shaded blue) and a root two rectangle (shaded yellow).  
The diagrams on the following pages demonstrate how all of the noted Maya proportions are con-
cisely incorporated into the layout of this stela.

Figure 226

Stela 16 (a), Tikal, Peten, Guatemala
Measured Drawing by W. R. Coe
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All of the yellow highlighted areas represent root two proportions.  The interior carved portion of 
the stela (minus the border), from the fi ngertips to the bottom of the feet, is inscribed by a quar-
tered square. From the center of this square to its corners are the radii for the arc that defi nes the 
width of the border area and produces a horizontal root two rectangle.  An equal sized vertical root 
two rectangle terminates at the brow of the standing fi gure and is derived by swinging an arc from 
the diagonal of the quartered square. The half circles at the top of the stela also display root two 
proportions. The diagonals (highlighted yellow lines) of double squares that inscribe the inner half 
circle are the radii used to create the outer half circle.

Figure 227

Stela 16 (b), Tikal, Peten, Guatemala
Measured Drawing by W. R. Coe
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The same quartered square used to produce the root two rectangles in the diagram above may be 
used to create the phi rectangle shown here (shaded blue). 
Note that the phi rectangle terminates at the brow of the monster headdress worn by the standing 
fi gure.

Figure 228

Stela 16 (c), Tikal, Peten, Guatemala
Measured Drawing by W. R. Coe
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Here, all of the suggested geometry of Stela 16 from Tikal are shown, and the virtually perfect for-
mula for a Pythagorean 3,4,5 rectangle is highlighted.  The phi rectangle (shaded blue) and the root 
two rectangle (shaded yellow) together inscribe a virtually perfect Pythagorean 3,4,5 rectangle, as 
per Formula Pythagorean 3,4,5-2

Figure 229

Stela 16 (d), Tikal, Peten, Guatemala
Measured Drawing by W. R. Coe
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Hieroglyphic text blocks inscribed by phi rectangles

Figure 230

Phi Hieroglyphic Text Blocks 1

Lintel 21,YaxchilanLintel 12, Yaxchilan 

Lintel 37,Yaxchilan Initial Series Tablet, Chichen Itza
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Hieroglyphic text block inscribed by a phi rectangle

Figure 231

Phi Hieroglyphic Text Blocks 2

Stela 14, Nimli Punit
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This relief panel is inscribed by a phi rectangle that is subdivided by squares (shaded yellow) and 
smaller phi rectangles (shaded blue), as per Formula Phi-2.  Equiangular spirals are added to the 
lateral phi rectangles.

Figure 232

Relief Panel (Unknown Provenience) 
Museo Amparo, Puebla, Mexico

Measured Drawing by Christian Prager
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This relief panel is inscribed by a phi rectangle that is subdivided by squares (shaded yellow) and 
smaller phi rectangles (shaded blue), as per Formula Phi-2.  Equiangular spirals are added to the 
lateral phi rectangles.

Figure 233

Ball Player Panel (a), (Unknown Provenience)
Measured Drawing by Merle Greene Robertson 
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This rubbing of a relief panel is inscribed by a phi rectangle that is subdivided by squares and 
smaller phi rectangles, as per Formula Phi-2.  Equiangular spirals are added to the lateral phi rect-
angles.

Figure 234

Ball Player Panel (b), (Provenience Unknown)
Rubbing by Merle Greene Robertson
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This rubbing of a relief panel is inscribed by a phi rectangle with an inscribed equiangular spiral. 

Figure 235

Two Dancers, Yaxchilan area, Chiapas, Mexico 
Rubbing by Merle Greene Robertson 



315

The exteriors of the sky bands of both diagrams are inscribed by rectangles with a ratio of two to 
three that are divided in half to form two Pythagorean 3,4,5 rectangles (bold black lines).
In diagram a, the standing and seated fi gures are inscribed by a phi rectangle that is subdivided by 
a variation of Formula Phi-2. Two squares are shaded yellow, two phi rectangles are in white, and 
a phi squared rectangle is shaded blue.  
In diagram b, the standing and seated fi gures are inscribed by a virtually perfect phi rectangle that 
is subdivided by a variation of Formula Phi-3. Two squares are shaded yellow, two root two rect-
angles are in white, and a root fi ve rectangle is shaded blue.
Piers C,D, and E of House A are very similar to Pier A, and can be subdivided identically. 

Figure 236

House A, Pier B, Palenque, Chiapas, Mexico
Measured Drawing by Merle Greene Robertson

a b
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This relief panel is inscribed by a rectangle with a ratio of two to phi.  The standing fi gure holding 
the Kawil god is inscribed by a phi rectangle that is the same height and one half the width of the 
panel. The hieroglyphic text blocks are inscribed by rectangles with a ratio of one to two times 
phi.   
The phi rectangle that inscribes the standing fi gure is subdivided by horizontal and vertical phi 
rectangles of equal size (shaded blue) and four phi squared rectangles (shaded yellow).  The verti-
cal phi rectangle and the four phi squared rectangles form a square.  
An equiangular phi spiral is inscribed within the central phi rectangle.
The thin black line (a,b) divides the panel in half horizontally. 

Figure 237

Relief Panel (a), El Peru area
Museo Amparo, Puebla, Mexico

a b
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In this close-up of the central portion of the relief panel, note the placement of the hands of the 
standing fi gure and the Kawil god. The index fi nger of the deity is virtually touching the vanishing 
point of the phi equiangular spiral.

Figure 238

Relief Panel (b) El Peru area
Museo Amparo, Puebla, Mexico
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Lintel 5 from Yaxchilan is inscribed by a two over phi rectangle that is subdivided by two squares 
(shaded yellow) and two phi rectangles (shaded blue).
Note the placement of the hands relative to the principle subdivisions.

Figure 239

Lintel 5, Yaxchilan, Chiapas, Mexico
Measured Drawing by Ian Grahm
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Lintel 5 from Yaxchilan is inscribed by a two over phi rectangle that is subdivided by two squares 
(shaded yellow) and two phi rectangles (shaded blue).  The double square is further subdivided 
into two phi and phi-squared rectangles by black lines.
Note the placement of the hands relative to the principle subdivisions.

Figure 240

Lintel 3, Yaxchilan, Chiapas, Mexico
Measured Drawing by Ian Grahm
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This relief panel is inscribed by a rectangle with a length of two to a width of phi. The paired phi 
rectangles are subdivided by squares and phi rectangles, and equiangular spirals are inscribed 
within. Note the probable intentional asymmetry of the lower left-hand corner.  

Figure 241

Relief Panel  (Provenience Unknown) 



321

This relief panel is inscribed by a rectangle with a length of two to a width of phi. The paired phi 
rectangles are subdivided by squares and phi rectangles, and equiangular spirals are inscribed 
within. 
Note the probable intentional asymmetry of the lower right-hand corner.  

Figure 242

Two Dancers (a), Yaxchilan area, Chiapas, Mexico
Measured Drawing by Berthold Riese 
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Here, the hieroglyphic texts are removed from the relief panel and the phi rectangles are harmoni-
cally subdivided into squares and phi rectangles and their diagonals, in order to highlight the dy-
namic postures of the dancing fi gures.

Figure 243
Two Dancers (b), Yaxchilan area, Chiapas, Mexico

Measured Drawing by Berthold Riese 
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This lintel from the Bonampak area clearly indicates Maya knowledge of the perfect and virtually 
perfect subdivisions of a phi squared rectangle.  Above, the two principal text blocks that begin 
with a date and a distance number are inscribed by a phi rectangle (shaded blue) and a phi-squared 
rectangle (shaded yellow) that fl ank a horizontal phi rectangle (in white) to produce a perfect sub-
division of a phi-squared rectangle. 
Below, the tertiary and secondary text blocks are inscribed by a root three rectangle (shaded yel-
low), and the iconography is inscribed by a root two rectangle (in white) to produce the virtually 
perfect subdivision.

Figure 244

Unprovenienced Lintel, Bonampak area, Chiapas, Mexico
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Stela 20 from Coba (a) is inscribe by a phi-squared rectangle that is subdivided by a square with 
an inscribed half circle (in white) and a phi rectangle (shaded blue).  The phi rectangle is further 
subdivided by a square (with a yellow highlighted diagonal) and a smaller phi rectangle that is 
subdivided by squares and yet smaller phi rectangles.
Line a,b is the horizontal center line. Note the angle of the double-headed serpent bar and the 
placement of the hands and the brows of the three human fi gures.
Stela 1 from Naranjo is identically proportioned and subdivided, except for the addition of a phi 
squared rectangle (shaded yellow), which, added to either phi rectangle (shaded blue), produces 
a square..

a

ba

Figure 245

Stela 20, Coba, and Stela 1, Naranjo
Measured Drawing by Ian Grahm  
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Stela 25 from Piedras Negras, the last of the carved stone monuments analyzed in this dissertation, 
is a marvelous example of how al of the square root, phi and Pythagorean 3,4,5 rectangles can be  
ingenuously incorporated into the geometrical layout of a single work of art.  Each of the propor-
tions will be highlighted in the following series of fi gures:

Above, the stela is inscribed by a phi rectangle (shaded blue), and the seated fi gure with headdress 
is also inscribed by a smaller phi rectangle (shaded yellow) that is subdivided at the brow by a 
quartered square and a smaller phi rectangle.
Note that the bottom of the stela is somewhat narrower than the top, perhaps an example of an 
intentional asymmetry.

Figure 246
Stela 25 (a), Piedras Negras, Guatemala
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In Stela 25 (b), the sky band that surrounds the seated fi gure is inscribed by a root phi rectangle.

Figure 247

Stela 25 (b), Piedras Negras, Guatemala
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In Stela 25 (c), the central phi rectangle (in white) is embedded within a larger phi rectangle 
(shaded blue) that is topped by a horizontal phi rectangle (shaded dark yellow).  Because a root 
fi ve rectangle may be subdivided by two phi rectangles, rectangle c,d,h,g is a root fi ve rectangle.  
Rectangle a,b,c,f is also a root fi ve rectangle.

Figure 248

Stela 25 (c), Piedras Negras, Guatemala
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The same root fi ve rectangle (a,b,c,d) that is subdivided by phi rectangles in the previous diagram 
is subdivided here by a root three rectangle (shaded blue) and a root four rectangle (shaded yellow) 
via the virtually perfect Formula Square Root of Five-4.
Within the root three rectangle is a two over root three rectangle that is the height of the seated 
fi gure and the width of the sky bands.  All of the dark blue lines form equilateral triangles.

Figure 249

Stela 25 (d), Piedras Negras, Guatemala
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In Stela 25 (e), a three over two rectangle is divided in half at the brow of the seated fi gure into two 
Pythagorean 3,4,5 rectangles (shaded blue), which are embedded in a root two rectangle divided in 
half into two smaller root two rectangles at the chin of the seated fi gure (shaded yellow).

Figure 250

Stela 25 (e), Piedras Negras, Guatemala
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In Stela 25 (f), rectangle b,c,d,e is a square (shaded light yellow).  The sky band is inscribed by a 
root two rectangle (shaded dark yellow).  The seated fi gure, including his jaguar pelt cushion,  is 
inscribed by a root three rectangle that is subdivided by two phi rectangles (shaded blue) and a root 
four rectangle (in white) via the virtually perfect Formula Square Root of Three-3.
The space above square ab,c,d,e, is inscribed by a rectangle with a width of one to a length of three 
(shaded grey).  Thus, c,e is three, a,c is four, and diagonal a,e is fi ve.

Figure 251

Stela 25 (f), Piedras Negras, Guatemala

a

b

c

d

e
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The phi rectangle that inscribes Stela 25 from Piedras Negras is quartered. Four phi equiangular 
spirals, which frame the face of the seated fi gure, are added.

Figure 252

Stela 25 (g), Piedras Negras, Guatemala
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The fl anges of Incensario-1 are inscribed by a root four rectangle that is divided in half at the brow 
of the deity.  The central design elements between the fl anges are inscribed by two root four rect-
angles that are one half the width of the root four rectangle that inscribes the fl anges (highlighted 
yellow).

Figure 253

Incensario 1, Palenque, Chiapas, Mexico
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Like Incensario 1, the fl anges of Incensario 2 are inscribed by a root four rectangle that is divided 
in half at the brow of the Sun God.  The central design elements between the fl anges are inscribed 
by two root four rectangles that are one half the width of the root four rectangle that inscribes the 
fl anges (highlighted yellow).

Figure 254

Incensario 2, Palenque, Chiapas, Mexico
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The fl anges of Incensario 3 are inscribed by a phi rectangle that is divided in half at the brow of the 
human face.  The central design elements between the fl anges are inscribed by two phi rectangles 
that are one half the width of the phi rectangle that inscribes the fl anges (highlighted yellow). 

Figure 255
Incensario 3, Palenque, Chiapas, Mexico
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As in Incensario 3, the fl anges of Incensario 4 are inscribed by a phi rectangle that is divided 
in half at the brow of the face of the deity.  The central design elements between the fl anges are 
inscribed by two phi rectangles that are one half the width of the phi rectangle that inscribes the 
fl anges (highlighted yellow). 

Figure 256

Incensario 4, Palenque, Chiapas, Mexico
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The fl anges of Incensario 5 are inscribed by a root fi ve rectangle that is divided in half at the brow 
of the face of the deity.  The central design elements between the fl anges are inscribed by two 
root fi ve rectangles that are one half the width of the root fi ve rectangle that inscribes the fl anges 
(highlighted yellow).

Figure 257

Incensario 5, Palenque, Chiapas, Mexico
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The fl anges of Incensario 6 are inscribed by a two over root three rectangle that is divided at the 
brow of the face of the Sun God.  The central design elements between the fl anges are inscribed 
by two, two over root three rectangles that are one half the width of the two over root three rect-
angle that inscribes the fl anges and that are further subdivided by a vertical root three rectangle 
(highlighted yellow) and a horizontal root three rectangle (highlighted blue).  Equilateral triangles 
are drawn in thin yellow lines.

Figure 258

Incensario 6, Palenque, Chiapas, Mexico
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Page 31 is a square root of four rectangle divided in half into two squares.  Page 101 is a square 
root of four rectangle subdivided into four equal-sized square root of four rectangles, as per For-
mula Square Root of Four-b.

Figure 259

Madrid Codex, Pages 31 and 101 

Page 31 Page 101
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Page 28 is trisected into nine root four rectangles, and page 103 is quadrasected into sixteen root 
four rectangles

Figure 260

Pages 28 and 103 of the Madrid Codex 
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On the left, the square root of four rectangle that inscribes the page is subdivided by three, both 
vertically and horizontally, to produce nine equal-sized square root of four rectangles. On the 
right, each of these nine smaller square root of four rectangles is further subdivided into a square 
root of three rectangle (shaded blue) and a square root of two rectangle, as per Formula Square 
Root of Four-4

Figure 261

Madrid Codex, Plate XVII 
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Figure 262

Madrid Codex, Plates XII and XI 

Plate XII Plate XI

Both Plates XII and XI are inscribed by square root of four rectangles that are subdivided into 
square root of three rectangles (shaded blue) and root two rectangles, as per Formula Square Root 
of Four-4.  The remaining root two rectangle of Plate XII (unshaded) is further subdivided into 
three Pythagorean 3,4,5 rectangles, as per Formula Square Root of Two-3.  The corresponding 
square root of two rectangle on Plate XI is divided in half into twwo smaller root two rectangles.
The diagonals of the squares within these root two rectangles are the radii of the arcs that deter-
mine their lengths (yellow highlighted lines).
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Pages 32 and 33 are divided into two squares that are then subdivided into smaller squares (in 
white) and phi rectangles (shaded blue), as per Formula Square-2.

Figure 263

Madrid Codex, Pages 32 and 33

Page 32 Page 33
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The square root of four rectangles that inscribe pages 5 and 6 join at the center (vertical black line) 
and form a square that is subdivided into squares (in white) and phi rectangles (shaded blue), as 
per Formula Square-2.

Figure 264

Madrid Codex, Pages 5 and 6

Page 5 Page 6
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The square root of four rectangles that inscribe pages 41 and 42 are merged at the center and 
form a square that is subdivided into squares (unshaded) and phi rectangles (shaded blue), as per 
Formula Square-2.  The square in the center of the diagram is divided into a phi rectangle (shaded 
gray) and a phi squared rectangle (shaded yellow).  The yellow highlighted diagonal within this 
center square is the radius for the arc that determines the width of the adjacent phi rectangles. 

Figure 265

Madrid Codex, Pages 41 and 42
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The pages of the Dresden Codex are all inscribed by square root of fi ve rectangles.  Page 52 is 
divided in half,  and page 18 is trisected into three virtually perfect Pythagorean 3,4,5 rectangles, 
as per Formula Square Root of Five-5.

Figure 266

Dresden Codex, Pages 18 and 52

Page 52 Page 18
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The height and width of the square root of fi ve rectangle that inscribes page 39 is trisected to cre-
ate nine smaller square root of fi ve rectangles (left).  On the right, each of these smaller rectangles 
is further subdivided into square root of three rectangles (shaded blue) and square root of four 
rectangles (double squares) via the virtually perfect Formula Square Root of Five-4.  Note that 
each row of three vertical square root of three rectangles produces a larger horizontal square root 
of three rectangle, as per Formula Square Root of Three-2.

Figure 267

Dresden Codex, Page 39
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In this close up of page 39 of the Dresden Codex, you can see each of the subdivisions of the over-
laid diagram in Figure 266 (right) painted in now faded red lines by the original artist.

Figure 268

Dresden Codex, Page 39 (Close-Up)
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Pages 31 and 32 are each trisected into three virtually perfect Pythagorean 3,4 5 rectangles that are 
then subdivided by various formulae.  The uppermost Pythagorean rectangle on page 31 and the 
upper two on page 32 are subdivided into square root of three rectangles (shaded blue) and smaller 
Pythagorean 3,4,5 rectangles (unshaded), as per Formula Pythagorean 3,4,5-3.  The remaining two 
Pythagorean 3,4, 5 rectangles on page 31 are divided into squares (shaded yellow) and rectangles 
(unshaded) with proportions of one to three.  The lowermost Pythagorean rectangle on page 32 is 
composed of three square root of fi ve rectangles that are further subdivided into square root of four 
rectangles (shaded yellow) and square root of three rectangles (shaded blue).

Figure 269

Dresden Codex, Pages 31 and 32

Page 31 Page 32
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The square root of fi ve rectangles that inscribe Pages 26 and 28 are subdivided by squares (un-
shaded) and phi rectangles (shaded blue).

Figure 270

Dresden Codex Pages 26 and 28

Page 28 Page 26
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 Both of the square root of four rectangles that inscribe pages 6 and 23 of the Paris Codex are 
subdivided virtually perfectly by square root of three rectangles (shaded blue), Pythagorean 3,4,5 
rectangles (unshaded), and rectangles with a proportion of two to three (shaded yellow).

Figure 271

Paris Codex, Pages 6 and 24

Page 6 Page 24
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Page 21 of the Paris Codex is inscribed by a square root of four rectangle that is subdivided into a 
square root of four rectangle (shaded red) and two Pythagorean 3,4,5 rectangles (unshaded). Page 
9 is inscribed by a square root of four rectangle that is subdivided by a square root of three rect-
angle (shaded blue) and a square root of two rectangle (shaded yellow) that is divided in half  to 
form two smaller square root of two rectangles, as per Formula Square Root of  Four-3.

Figure 272

Paris Codex, Pages 9 and 21

Page 21 Page 9
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Page 1 of the Prague Codex is inscribed by a square root of three rectangle that is subdivided by a  
quartered square root of two rectangle whose diagonal is equal to the height of the square root of 
three rectangle, as per Formula Square Root of Two-1.  Page 4 is also inscribed by a square root of 
three rectangle that is subdivided by a square root of three rectangle (shaded blue), a square root 
of fi ve rectangle (shaded yellow), and a square root of two rectangle (unshaded), as per Formula 
Square Root of Three-5.

Figure 273

The Prague Codex, Pages 1 and  4

Page 1 Page 4
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All of the pages of the Codex Vindobonensis Mexicanus can be inscribed by two over square root 
of three rectangles.  Page 2 is simply divided longitudinally to form two square root of three rect-
angles.  Page 62 trisects these two square root of three rectangles to create six smaller square root 
of three rectangles.

Figure 274

Codex Vindobonensis Mexicanus, Pages 2 and 62

Page 2

Page 62
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Pages 25 and 35 of the Codex Vindobonensis Mexicanus  are inscribed by two over square root 
of two rectangles that are subdivided by square root of two rectangles (shaded yellow) and square 
root of fi ve rectangles (shaded blue), as per Formula Two Over Square Root of Three-3.  The thin 
black lines are tentatively suggested subdivisions of the square root of two rectangles in half and 
the square root of fi ve rectangles into squares and phi rectangles.

Figure 275

Codex Vindobonensis Mexicanus Pages 25 and 35

Page 25

Page 35



355

All of the pages of the Codex Zouche-Nuttall can be inscribed by Pythagorean 3,4,5 rectangles.  
The length of  page 28 is quartered and its width is trisected to create twelve equal squares.  The 
length of page 48 is trisected, creating three virtually perfect square root of fi ve rectangles, as per 
Formula Pythagorean 3,4,5-5.

Figure 276

Codex Zouche-Nuttall, Pages 28 and 48

Page 48

Page 28
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All of the pages of the Codex Becker can be inscribed by Pythagorean 3,4,5 rectangles, and on 
most of them the iconographic elements are arranged in groups of twelve that fi t fairly neatly into 
twelve equal-sized squares that are created by trisecting the width of the Pythagorean rectangles 
and quartering the lengths, as shown on page 13 above. 

Figure 277

Codex Becker, Page 13
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All of the pages of the Codex Egerton can be inscribed by a square root of phi rectangle. At the 
bottom of many of these pages, two principal seated fi gures occupy most of the space while small-
er fi gures occupy the space near the top of the page.  Diagram a is a suggested subdivision of the 
space by a square root of four rectangle, or two squares (unshaded) and two square root of three 
rectangles (shaded yellow), as per Formula Square Root of Phi-2.  In diagram b, a second possible 
subdivision is suggested.  Here, the  initial rectangle is further subdivided into three smaller square 
root of phi rectangles, as per Formula Square Root of Phi-1.

Figure 278

Codex Egerton, Pages 28

b

a
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Page 20 of the Codex Fejérváry-Mayer is inscribed by a square that is bisected vertically, and Page 
16 is bisected diagonally.

Figure 279

Codex Fejérváry-Mayer, Pages 16 and 20

Page 20

Page 16
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Page 18 is inscribed by a square the is subdivided into smaller squares and phi rectangles (shaded 
blue), as per Formula Square-2.  Page 17 is subdivided by two overlapping square root of fi ve 
rectangles.  The smaller square in the lower right corner, when added to either of the two over phi 
rectangles (also shaded blue), produces square root of fi ve rectangles.

Figure 280

Codex Fejérváry-Mayer, Pages 17 and 18

Page 18

Page 17
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Pages 33 and 34 are inscribed by squares. On page 34, the right half of the square is subdivided 
into a vertical square root of two rectangle (shaded yellow) and a horizontal square root of three 
rectangle (shaded blue), as per Formula Square Root of Four-4. Page 33 is identically subdivided, 
but the two vertical square root of two rectangles are highlighted to show that they form a single 
horizontal square root of two rectangle.

Figure 281

Codex Fejérváry-Mayer, Pages 33 and 34

Page 34

Page 33
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Page 1 of the Codex Fejérváry-Mayer is inscribed by a square, and bold red lines are drawn from 
the sides of this outer square to frame the central square that was drawn by the original artist to 
inscribe the Central Mexican god of fi re and time, Xiuhtecuhtli, at the center of the composition.  
The resulting rectangles adjacent to each of the four sides of the central square (shaded blue) are 
Pythagorean 3,4,5 rectangles that frame the standing fi gures and trees adjacent to each side of the 
square.

Figure 282

Codex Fejérváry-Mayer, Page 1 (a)
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Here, Page 1 of the Codex Fejérváry-Mayer is identically subdivided, but a virtually perfect square 
root of phi rectangle is highlighted in yellow.  If the central square is arbitrarily assigned six units 
per side, then the yellow highlighted rectangle would be fourteen units long by eleven units wide, 
producing a virtually perfect square root of phi rectangle accurate to -0.0007 (seven ten thou-
sandths of one percent), as per Formula Square Root of Phi-2.

Figure 283

Codex Fejérváry-Mayer, Page 1 (B)
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All of the pages of the Borgia Codex may be inscribed by squares.  Page 34 is simply a square 
quartered, and Page 33 is a square trisected into nine equal squares.

Figure 284

Borgia Codex, Pages 34 and 33

Page 34

Page 33
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Pages 24 and 26 and both subdivided via variations of Formula Square-2.  The square inscrib-
ing page 24 is subdivided into a phi rectangle (shaded blue) and the remaining rectangle is a phi 
squared rectangle.  Page  is a variation of this same formula with phi rectangles shaded blue and 
squares left un-shaded.

Figure 285
Borgia Codex, Pages 24 and 26

Page 24

Page 26
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Page 23 is also inscribed by a square, and bold red lines are drawn from the sides of this outer 
square to frame the central square that was drawn by the original artist to inscribe the skull and 
bones at the center of the composition.  The resulting rectangles adjacent to each of the four sides 
of the central square (shaded yellow) can be viewed as paired square root of fi ve rectangles (two 
over square root of fi ve) that frame the day name symbols and seated fi gures adjacent to each side 
of the square.  The blue shaded rectangle is a phi rectangle. Thus, the geometrical composition 
may also be viewed as paired phi rectangles that join at the center. If the width of the central square 
is one, then the width of the square that inscribes the page is phi times two.

Figure 286

Borgia Codex, Page 23 (a)
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A second geometrical formula is also indicated for Page 23 of the Borgia Codex. Bold red lines are 
drawn from the sides of the square that inscribes this page to frame a central square that was drawn 
by the original artist to inscribe the 20 day-name symbols surrounding the skull and bones at the 
center of the composition. The resulting rectangles adjacent to each of the four sides of the central 
square (shaded blue) are phi rectangles, and if the width of the central square is one, then the width 
of the square that inscribes the page is square root of fi ve. The yellow highlighted diagonal in one 
half of the central square is the radius for the yellow highlighted arc that determines the width of 
the adjacent phi rectangles via Formula Square Root of Five-2. Note that the hands of each of the 
blood-vomiting, star-farting fi gures at the extreme corners of the composition reach into the adja-
cent phi rectangles (shaded blue).

Figure 287

Borgia Codex, Page 23 (b)
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Figure 288

Cospi Codex, Pages 9 and 10

Page 9

Page 10

All of the pages of the Cospi Codex may be inscribed by squares. The fantastical, atlatl-wielding 
warriors on both pages, the wounded human fi gures on page 9, and the dart-pierced toponyms 
on page 10 are inscribed by two over root of three rectangles, which, in turn, inscribe equilateral 
triangles (thin black lines).  The remaining space on the left of each page is occupied by a column 
of dates. The sides of the equilateral triangles are the radii for the arcs that defi ne the widths and 
lengths of these columns.  Note the tips of the atlatl darts at the interstices of the equilateral tri-
angles.
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CHAPTER 9

THE SQUARE ROOT AND PHI PROPORTIONS IN THE MAYA UNIVERSE

 The Maya are, and were, keen observers of nature.  In addition to monitoring 

the movements of the sun, moon, planets and constellations, they note changes in 

the weather, the seasonal cycles of fl owering plants, and the migration patterns of 

birds and animals.  Intimate knowledge of changes in their environment is the basis 

of their daily lives.  The timing of the burning, planting, weeding and harvesting of 

corn and other crops, when to cut wood and harvest thatch, when and where to build 

a home, when and what to hunt and where, when and why to perform ceremonies: 

these activities are precisely orchestrated relative to their profound knowledge of their 

physical universe.

 With this in mind, I pose a question:  Where in the Maya universe might 

allegories for Maya geometry be observed?  Answers to this question are not 

immediately obvious.  You do not fi nd square root and phi proportions in the shapes of 

the irregular coastlines and mountain ranges, in the shapes of meandering streams and 

rivers, or in the apparently chaotic brachiations of plants and trees in the dense forests 

of the Maya world.  

 But a profound clue was provided earlier, in the chapter on Maya vernacular 
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architecture, by Don Guadelupe Lucio’s response to my question, “Que puede decir 

me sobre las fl ores?” (“What can you tell me about fl owers?”)  Remember that he 

began his response by explaining that fl owers were very important to the Maya and 

that most Maya did not cultivate fl owers but rather harvested wild fl owers for use 

in specifi c ceremonies. He told me that the word “fl owery” in Yucatec Maya meant 

“sacred.”  He said that the human soul was a white fl ower and that one’s ancestors and 

offspring were called fl owers.  He concluded by saying that his grandfather, who was 

also a shaman and who had taught him how to use a measuring cord, had told him, 

“Las formas de las fl ores son dentro nuestros casas.” (“The shapes of the fl owers are 

in our houses”). 

 In the fi rst two diagrams of this dissertation (Figures 1 and 2) I illustrated how 

the square root and phi proportions are rectangular expressions of the proportions 

inherent in the equilateral triangle, the square, and the pentagon.  Most fl owers have 

three, four, or fi ve petals or multiples of three, four, and fi ve petals.  In fact, botanists 

categorizes fl owers into four basic categories:  Three Somes, Four Somes, and Five 

Somes (fl owers whose petals are arranged in multiples of threes, fours, and fi ves), and 

the much less common Irregulars, which are usually bi-petaled  (mostly found in the 

fl owers of legumes) or cone-shaped (mostly found in the petals of a few species of 

lilies).  Thus, the set of proportions seen in most fl owers is the same set of proportions 
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utilized to design Maya art and architecture.  Nowhere in nature are these proportions 

more clearly and abundantly expressed than in the shapes of fl owers (Figure 289).  

 In Maya and Teotihuacan art from the Classic Period, fl owers are often paired 

with sea shells in sacred contexts.  These sea shells are usually cut in half to show 

a cross section of the equiangular phi spiral within.  A fl ower and a cut shell are 

almost always at either side of the stingray spine in the headdress of the Quadripartite 

Monster that often rests at the base of the world cross.  The world  cross, and crosses 

in general (for example, those held in the hands of kings in the art of Yaxchilan), are 

frequently depicted with fl owers at their extremities.  Modern “Christian” crosses in 

the Maya highlands invariably display carved or painted fl owers at their extremities.  

I have often seen these modern crosses adorned with fresh fl owers.  Churches, too,  

prominently display geometrically stylized fl ower iconography (Figures 290-292).

 Flowers and shells often hang or fl oat in the background of sacred scenes, 

particularly in the art at Palenque (Figure 293).  Also at Palenque, the exterior 

facade of House E, where coronation ceremonies were performed, was adorned 

with a painted mural of geometrically stylized fl owers (Figure 294).  The murals at 

Teotihuacan are often framed by alternating fl ower and shell motifs, and speech scrolls 

or spirals are also often adorned with fl owers and shells (Figure 295).  

 Ear fl ares, worn ubiquitously by Maya nobles and royalty, are fl owers made of
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of jade. The fl ower ear fl ares of the gods are almost always surmounted by cut shells; 

cut shells are also worn as diadems and necklaces by gods and kings. The Maya Gods 

K and N, as well as human fi gures, are sometimes depicted as emerging form sea 

shells.  Ancestors are portrayed emerging from fl owers and fl owering trees (Figures 

296-304)
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Three some, four some, and fi ve some fl owers (fl owers with multiples of three, four, and fi ve 
petals).

Figure 289

Flowers
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Flowered and foliated crosses in the Highlands of Chiapas

Figure 290

Flowered and Foliated Crosses
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Flowers and geometrically stylized fl owers on the facade of the church at San Juan Chimula, 
Chiapas, Mexico.

Figure 291

Flower Iconography and Churches 1
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Geometrically stylized fl owers on the facade of a church in Yucatan, Mexico.

Figure 292

Flower Iconography and Churches 2
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Flowers, “bone seeds”, and roots are shaded yellow and shells are shaded blue.

Figure 293

The Cross Tablet, Temple of the Cross, Palenque, Chiapas, Mexico
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Geometrically stylized fl owers cover the front wall of House E in the Palace at Palenque.

Figure 294

Facade of House E, Palenque, Chiapas, Mexico
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Shells are on the interior and fl owers are hanging from the exterior of the spirals emerging from 
the hands of the standing fi gure.

Figure 295

Teotihuacan Mural, (Tepantitla, Room 2, Mural 3)
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Figure 296
Jade Ear Flares

Round, four-sided, fi ve-sided, and six-sided jade fl ower ear fl ares.
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Figure 297

Painted Maya Vase  (Provenience Unknown)

This painted vase shows a seated fi gure with a jeweled pentagram ear fl are instead of the usual jade 
fl ower ear fl are.  A fi sh is nibbling at a waterlily fl ower in the fi gure’s headdress.
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Figure 298

Shell Jewel (Provenience Unkown) 

This is a blurry photo of an exquisitely carved shell jewel, about ten centimeters in diameter, that 
I took through a glass case in the Anthropology Museum in Guatemala City.  Because the photo-
graph is blurred, I outlined it.  The decagonal exterior ring encloses opposing equilateral triangles 
that inscribe a pentagram.
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Ancestors are depicted as fl owering trees on Pacal’s sarcophagus.

Figure 299

Detail of Pacal’s Sarcophagus, Temple of the Inscriptions, 
Palenque, Chiapas
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These are a few of many examples of ceramic depictions of humans (possibly ancestors) emerging 
from fl owers.

Figure 300

Humans Emerging from Flowers  (Provenience Unknown) 



384

These painted vases depict God N emerging from sea shells.

Figure 301

Two Painted Vases (Provenience Unknown) 
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Diagram a represents a sea shell with an equiangular spiral that inscribes a phi rectangle.  Diagram 
b is a drawing of a sea shell with an equiangular spiral that is derived from a pentagram and is in-
scribed by a root two rectangle.  Diagram c is a photograph of a sea shell with an equiangular spiral 
where each 180-degree turn has a ratio of one to phi relative to the previous 180-degree turn.

Figure 302

The Geometry of Sea Shells

a b

c
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Figure 303

Cut Shell Jewel  (Provenience Unknown)



387

Diagram a depicts opposing equiangular spirals generated from a pentagram.  The spirals bifurcate 
at the base of the pentagram.  Diagram b is a drawing of a stone carving of the god Tlaloc in a 
pentagram from Teotihuacan.  Note the bifurcated tongue at the base of the pentagram.  Diagram c  is 
a Maya stamp of a pentagonal fl ower with a bifurcated spiral emerging from its base.

Figure 304

The Bifurcated Spiral of a Pentagram

a

b c
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Diagram a is a detail from a lintel at Yaxchilan.  Note the pentagram in the eye of the Tlaloc head-
dress. 
Diagram b is a mural painting of  Tlaloc in a pentagram with a bifurcated tongue emerging from 
its base.

Figure 305

Tlaloc and the Pentagram

a

b



389

 Flowers and shells are not the only expressions of the square root and phi 

proportions to be found in the Maya universe.  A Maya interested in observing these 

forms in nature might begin by noting the shapes and proportions inherent in his or 

her own body.  The width of most Maya vernacular houses in the Yucatan Peninsula 

consists of two units called uinics (“humans”), which are measured by stretching a 

cord from fi ngertip to fi ngertip, with arms outstretched and perpendicular to the body.  

The Maya shamans and house builders whom I worked with knew that one uinic was 

also virtually equal to the height of the person who was measuring it.  Thus, a human 

being with arms outstretched and perpendicular to the body may be inscribed by a 

square.

 The center of this square occurs at the pubic bone or genital area, and the phi 

division of this square (as per Formula Square-2) happens to occur at the height of the 

navel. (I have measured dozens of  people to check the accuracy of these observations 

and have found them to be accurate to within a few centimeters).  

  In the Yucatec dialect the word for navel is “tzuk,”  which is also translated as 

“division place.”  (The God C or “Tzuk” head also demarcates the intersections of the 

crosses depicted in the carved stone panels of the Cross Group and the sarcophagus lid 

of Pacal at Palenque). Your navel is also where you were once attached to your mother 

by a cord, so to speak, and when some of the Maya I have known in Chiapas ask,
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“Where are you from?” they often phrase it as, “Where is your umbilicus buried?”

 If the Maya did observe these proportions in the human form, they were 

not the only people to do so. Though it is beyond the scope of this dissertation to 

thoroughly examine the history and use of these proportions in non-Maya cultures, an 

examination of Leonardo da Vinci’s drawing, “The Vitruvian Man,” is presented to 

help illustrate how these proportions relate to the human body (see fi gure 306).  
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The square (in red lines) and the yellow highlighted circle are superimposed over the original 
square and circle drawn by da Vinci.  I have added to the drawing the diagonals of the square 
(black lines) that center on the genital area of the human form; the horizontal division at the navel 
that divides the square (via Formula Square-2) into a phi rectangle (shaded blue) and a phi-squared 
rectangle (shaded yellow); and the radius of the circle (yellow highlighted line from the navel to 
the feet) that bisects the phi rectangle.

Figure 306

“Vitruvian Man”
Leonardo da Vinci, 1492



392

 The ancient Maya may also have been interested in the geometry of time. 

When the Spaniards arrived in the Maya region, various sixteenth-century chroniclers 

reported that the Maya used “Katun Wheels,” or circular calendars, to count the 

passage of Katuns.  Katun wheels are also mentioned and drawn in the Bacab 

manuscripts (Figure 307).  The large body of information written about Katun wheels 

is beyond the scope of the simple observations I will present here.  Suffi ce it to say 

that the Maya often recorded time in circular forms. The Katun stones, carved and set 

in the plazas of Classic Maya sites, are also generally circular.

 The observations diagramed in Figure 308 depend on the hypothetical 

arrangement of the 260-day Tzolkin into a circle of days.  Roughly the fi rst third 

of the Dresden Codex is concerned with prognostications assigned to fi fty-two 

and sixty-fi ve-day almanacs, along with longer almanacs that are subdivided into 

multiples of these.  Several similar examples are also found in the Madrid and Paris 

Codices.  If the Tzolkin is arranged as a circle of days and the completions of these 

fi fty-two and sixty-fi ve-day almanacs are plotted on this circle and straight lines are 

drawn to connect them, then a pentagon and a square are created respectively.  If the 

lunar nodes are similarly plotted on this circle of time, then an equilateral triangle is 

produced.  The days at which lunar and solar eclipses might occur (shown as red dots 

in Figure 308), some eighteen days to either side the lunar nodes, would also trisect 
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the Tzolkin circle.  Only a 260-day circle (or a 520-day circle that equals 2 x 260 and 

is redundant) would produce this pattern and grouping of lunar nodes and possible 

eclipse days.  Plotting lunar nodes and possible eclipse days on a circle of 365 days or 

360 days, for example, would produce apparently random and overlapping groupings 

of possible eclipse days.  

 The triangle, square, and pentagon represent the smallest set of polygons that 

express all of the square root (square root of one through fi ve) and phi proportions that 

were and are apparently used by the Maya.  The square and its diagonal express the 

square root of one and two proportions, the equilateral triangle expresses the square 

root of three proportion, and the pentagon expresses the phi proportion (see Figure 3).  

The square root of four rectangle may be viewed as a double square, and a square root 

of fi ve rectangle may be viewed as a square and two phi rectangles.  Thus, in a sense, 

they are redundant. 

 There are other calendrical and astronomical cycles that, if arranged as circles, 

would produce equilateral triangles, squares, and pentagons.  One of them is the 

Venus-Solar period of 2,920 days (the least common multiple of the 365-day Haab 

and the 584-day Venus synodic period).  If the number of days in this cycle is arranged 

as a circle, the Venus synodic periods would plot a pentagram and the Haabs would 

plot out an octagon.  And, if a 360 day Tun were arranged as a circle, the equilateral  
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triangle, the square, and the pentagon, their subdivisions, and multiples of these 

polygons, would all divide evenly.  The circle is, and has been for thousands of years, 

almost universally subdivided by 360 degrees precisely because 360 is the least 

common multiple of these fundamental polygons and their subdivisions.  
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Three examples of “Katun Wheels” from Contact Period historical texts

Figure 307
Katun Wheels 
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A Tzolkin circle divided by 173 1/3-day lunar nodes and sixty-fi ve and fi fty-two day almanacs 
produces an equilateral triangle, a square, and a pentagon, respectively.

Figure 308

Tzolkin Circle Divisions

 Tzolkin Divided by 65-Day Almanacs  Tzolkin Divided by 52-Day Almanacs

 Tzolkin Divided by Lunar Nodes
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This Tzolkin circle of two hundred and sixty days shows the equidistantly spaced lunar nodes (1 
Ahaw, 8 Chikchan and 4 Eb) at the vertices of an equilateral triangle.  The twenty-six lunar eclipse 
possible days centered on the nodes (red dots) produce precise phi (or pentagram) triangles. The 
ratio of the base of these triangles to their slopes is one to phi.
On the 182 days represented by the black dots, lunar eclipses can not occur.  

Figure 309
Tzolkin Circle and Possible Lunar Eclipse Days
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This Tzolkin Circle of 260 days show the equidistantly spaced lunar nodes (1 Ahaw, 8 Chikchan, 
and 4 Eb) at the vertices of an equilateral triangle.  The thirty-six possible solar eclipse days cen-
tered on the nodes (red dots) produce nearly perfect forty-fi ve degree triangles (the diagonal of a 
square).
On the 152 days represented by the black dots, solar eclipses cannot occur.  

Figure 310

Tzolkin Circle and Possible Solar Eclipse Days
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 Stone henges, wood henges, and other ancient devices used to demarcate the 

rising and setting positions of the sun, the moon, and the planets are almost always 

arranged as arcs or circles.  The most logical reason is that the easiest ways to obtain 

these data would produce circular instruments.  I can think of no simpler method than 

to fi rst fi nd or make a fl at surface with an unobstructed view to the east and west and 

to place a forked stick at eye-level height near the center of this surface.  Next, attach 

a similar forked stick to this center post with a cord or string.  This second forked stick 

would be somewhat shorter that the center stick; its height determined so that when 

the cord between them is pulled taut, a straight line between the crooks of the forks 

would terminate at the horizon.  With one person at the center post and another pulling 

the second forked stick until the cord is taut, the rising or setting of the sun or moon on 

the horizon could be lined up between the crooks of the V- shaped forked sticks.  The 

person at the center stick would direct his or her partner to move to the north or south 

until the alignment was obtained.  A simple plumb bob attached with a string to the 

shaft of the shorter stick could be used to maintain a perpendicular position relative to 

the ground and thus maintain a consistent distance from the center stick while marking 

or staking the position of  the alignment on the cleared ground surface.

 After a year of measuring the rising and setting positions of the sun in this 

manner, the solstice positions would be defi ned at the ends of two arcs.  To determine 
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due east and west would be a simple matter of stretching a string or cord between the 

staked solstitial positions, halving the cord, marking its center, re-stretching the cord 

and stretching a second cord from the center post across this marked center point to 

a point on the arc of rising and setting positions.  Turning a right angle at the center 

of  the east/west line would determine due north and south.  Using the original forked 

sticks and taut cord to connect the arcs would form a circle.

 If  Maya astronomers were using devices similar to the one described above 

to track the rising and setting positions of the sun on solstice, equinox, and zenith 

passages, and perhaps the rising and setting positions of the full moon, they would 

have produced easily recognizable polygonal expressions of the square roots of two 

and three and the phi proportions. 

 The observation circle seen in Figure 311 would be accurate to within a 

fraction of a degree throughout Maya latitudes.  From the center post, the solstices 

rise and set at twenty-fi ve degrees to either side of east and west, with a span of 

fi fty degrees.  The full moon rises and sets at the lunar standstills at thirty degrees to 

either side of east and west, with a span of sixty degrees, creating equilateral triangles 

(shaded blue).  The maximum rising and setting positions of the fi ve visible planets 

are bounded by the solstices and the lunar standstills.  Within the observation circle the 

cardinal directions, north, south, east and west, inscribe a square; the lunar standstill 
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positions and due north and south inscribe a hexagon.

 The square, the equilateral triangles, and the hexagon are polygons that 

express the square root of two and three proportions.  These polygons would be 

common to and fairly obvious in observation circles throughout Mesoamerica.  What 

is missing here to complete the set of polygonal expressions of the square root and phi 

proportions in a Maya observation circle is the pentagon or phi proportion.  

 While conducting archaeo-astronomical investigations at Palenque with my 

friends and colleagues of the Maya Exploration Center (Dr. Ed Barnhart, Alonso 

Mendez, Carol Karasik and Moises Morales), we noticed that the rising and setting 

positions of the sun on the days of the zenith and nadir passages occur within a 

very small fraction of a degree, at eighteen degrees to either side of east and west, 

producing a span of thirty-six degrees.  If these positions were demarcated with pegs 

on an observation circle and a string were attached between these two points and 

the center post, a pentagram or phi triangle would be produced.  If the base of this 

triangle is one, then its slope is phi.  Moreover, if these rising and setting positions of 

the zenith and nadir positions are then connected with strings to the north and south 

positions on the observation circle and back to the center post, four pentagon triangles 

of seventy-two degrees are created (see Figure 312).

 After grasping the basic geometry inherent in these zenith and nadir positions 
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at Palenque, I noted that Tikal and its sister site, Uaxactun, shared virtually the same 

latitude as Palenque. Thus, they would share the same pentagon and phi proportions 

relative to the rising and setting positions of the sun on the days of zenith and nadir 

passages.

 I then considered the rising and setting positions of the sun at zenith and 

nadir passages at Copan and noticed that they occurred, again to within a small 

fraction of a degree, at fi fteen degrees to either side of east and west.  These positions 

on an observation circle, along with the due east and west positions, subdivide the 

equilateral triangles created by the lunar standstill positions into four evenly spaced 

positions of fi fteen degrees each. Forty-fi ve degrees (the diagonal of a square) separate 

the zenith and nadir positions and the lunar standstill positions (see Figure 313).  
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This general observation circle would be accurate to within a small fraction of a degree throughout 
the Maya latitudes.  From the center post, the solstices rise and set at fi fty degrees.  The full moon 
rises and sets at the lunar standstills at sixty degrees.  
The maximum rising and setting positions of the fi ve planets visible to the naked eye are bounded 
by the solstices and the lunar standstills.  
North, south, east and west inscribe a square within the observation circle and the lunar standstill 
positions, and north/south inscribe a hexagon within the observation circle.

Figure 311

An Astronomical Observation Circle 
at the Latitudes of the Maya World

Equinox Equinox
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From the center post, the zenith and nadir positions at Tikal and Palenque are separated by thirty-
six-degree phi (or pentagram) triangles (shaded blue).  Between the zenith positions and north is 
seventy-two degrees, forming two pentagon triangles. Between the nadir positions and south is 
also seventy-two degrees, forming two pentagon triangles.

Figure 312

An Astronomical Observation Circle at Tikal and Palenque

Equinox Equinox
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From the center post of an observation circle at Copan, the lunar standstills, zenith and nadir pas-
sages, and equinox positions on the horizon are separated by fi fteen degrees.  The nadir positions 
and the northern lunar standstill positions are separated by forty-fi ve degrees, and the zenith posi-
tions and the southern lunar standstill positions are separated by forty-fi ve degrees.

Figure 313

An Astronomical Observation Circle at Copan

EquinoxEquinox
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 Malmstrom (1976) noticed that the two zenith passages at Copan and Izapa 

(both at 14.8 degrees latitude) neatly subdivide the solar year of 365 days into a 

260-day (Tzolkin) period between zenith passages and winter solstice and 105 days 

between zenith passages and the summer solstice.  Anderson, Morales, and Morales 

(1980), examine the apparent alignment of the Tower at the Palace in Palenque to the 

zenith sunset position at the latitude of Copan and Izapa.  In their general discussion of 

the importance of zenith passage, they mention that the zenith passages bear a strong 

relationship to the corn cycle.  In fact, the authors noted that some Maya communities 

still use a straight plumbed stick as a gnomon to identify the days of the zenith passage 

(by observing when the gnomon casts no shadow at noon); the determined April or 

May zenith passage heralds the corn planting season and the August zenith passage 

heralds the harvest. (On average, corn takes about 105 days to mature from planting to 

harvest.)  

 On the other hand, the 260-day cycle may be equated with human gestation. 

If a woman conceived on the August zenith, she would give birth on or very near the 

April zenith at the latitude of Copan.  (The world wide average number of days of 

human gestation from conception to birth is 263 days.)  The ideal zenith passages 

at Copan and Izapa — April 30 and August 13 (the day of Maya creation) — thus 

subdivide the solar year by the human gestation cycle and the corn cycle; a pattern 
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that probably would have been noticed by the Maya and may well have been deemed 

elegant.  When we are reminded that, in the Popol Vuh, the fi rst human beings were 

made of corn, the intermeshing cycles become more resonant. 

 At this point in my investigations into the possible calendrical and geometrical 

signifi cance of zenith and nadir passages and the proposed Maya or Mesoamerican 

observation circles, I recalled that the hieroglyphic passages on Stela A from Copan 

and Stela 10 from Seibal associate the four cardinal directions with the ceremonial 

centers of Tikal (east), Palenque (west), Copan (south), and Calakmul (north) (see 

Figure 314).  I realized that the locations of three of these important Maya ceremonial 

centers may have been chosen, at least in part, because of their particular latitudes. 

That is, the observation circles at Tikal and Palenque would have produced phi and 

pentagon triangles, and these would be related to the geometrical and calendrical 

characteristics of the zenith and nadir passages as noted above for Copan.  

 



408

Map with latitudes for the four “corner” cities of the Maya region: the southern corner (Copan), the 
northern corner (Calakmul), the eastern corner (Tikal), and the western corner (Palenque)

Figure 314

Map of the Four Corner Cities of the Maya Region
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 But Calakmul, to the north at 18.2 degrees latitude, did not seem to exhibit 

anything signifi cant in relation to the zenith or nadir passages. Then Dr. Ed Barnhart 

sent me a map of Mesoamerica with the latitudes of one-day increments for zenith 

passages drawn across it. The April 12th and August 1st zenith passages noted on this 

map crossed right through the site of Calakmul.  These dates fall exactly thirteen days 

earlier than the April 29th and August 13th zenith passages observed at Copan.  (I later 

double-checked this on my Starry Night astronomy program and got the same result.)

 I had just completed a diagram (Figure 315) to help explain a theory I was 

working on concerning idealized thirteen-day increments that separate the solstices, 

zenith passages, equinoxes and nadir passages at the latitude of Copan and Izapa 

(14.8 degrees). The increments, I suspected, bore some relationship to my proposed 

scheme for leap-year calculations.  As is shown in Figure 315, the interval from the 

summer solstice to the zenith passage is 4 x 13 days and from the zenith position to 

the calendrical equinox is 3 x 13 days.  The interval from the calendrical equinox to 

the calendrical nadir is also 3 x 13 days and from the calendrical nadir to the winter 

solstice is 4 x 13 days.  The term “calendrical equinox” here refers to the midpoint in 

the count of days between the solstices, and the term “calendrical nadir” refers to an 

idealized nadir passage that is separated by the same number of days from the winter 

solstice as is zenith passage from the summer solstice.  Both the calendrical equinox 
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and the calendrical nadir would occur four days after the actual equinox and nadir 

as the sun moves towards the winter solstice and four days before when the sun is 

moving towards the summer solstice.  This is because the sun tarries eight days longer 

between the equinoxes and the winter solstice than it does between the equinoxes and 

the summer solstice, since the earth’s orbit is further away from the sun during the 

winter.

 Using the proposed thirteen-day arrangement, all of the principal solar events 

would occur on the same day number of the Tzolkin in a given year and would 

advance one day each year until the need to add a leap day would ruin the scheme. 

 What I am proposing here is an entirely theoretical but very accurate and 

simple method for adjusting this scheme to account for the difference between the 

canonical 365-day Haab and the tropical year of 365.2422… days without the need 

to make changes in the Haab calendar.  This scheme is based on Lounsbury’s (1976) 

observation that the Maya probably let the 365-day year drift through the seasons until 

it accumulated 365 days’ worth of drift every twenty-nine Calendar Rounds (of fi fty-

two Haabs and seventy-three Tzolkins each) and would equate 1,508 Haabs of 365 

days to 1,507 tropical years of 365.2422… days.  Lounsbury also provides evidence 

that the Maya had kept track of the number of Maya “leap days” that had accumulated 

between given dates.  To accomplish this would have been a simple matter of 
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accounting for one day of tropical year drift every 1,508 days. 

 This type of tropical year calculation would be necessary for the Maya to 

be able to predict which day a given solar station would occur.  The simplest way to 

apply this proposed Maya “leap year” calculation to the Haab calendar would be to 

begin counting multiples of 365 days between solstices (winter or summer) and also 

maintain a continuous count of 1,508-day cycles.  Every time a 1,508-day cycle was 

completed during a given 365-day year, the Maya would add a day, so to speak, at 

the end of that year and begin the day count for the next solar year with the solstice 

occurring on the 366th day.  Because this particular tropical year calculation is 

virtually as accurate as our present best estimates, the proposed scheme could be used 

for many thousands of years without the need to adjust it.

 For all latitudes in the Maya region, the solstices and the calendrical equinoxes 

would occur on the same day number of the Tzolkin cycle and would advance by 

one every year until a 1,508 day-cycle was passed, and then the day number would 

advance by two.  For most of the Maya area, the zenith and nadir passages would 

occur on Tzolkin day numbers different from those of the solstices and calendrical 

equinoxes, depending on the latitude of a given site.  But at 14.8 degrees latitude 

(Copan) and 18.2 degrees latitude (Calakmul), and only at these latitudes, all of these 

solar events (solstices, zenith passages, calendrical equinoxes and calendrical nadir 

passages) would occur on the same Tzolkin day number (see Figures 315 and 316). 
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Figure 315

A Count of Days at Copan
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Figure 316

A Count of Days at Calakmul
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 Regarding this proposed “leap year” scheme, I pointed out in my Master’s 

thesis (Powell, 1996) that 1,508 days is equal to thirteen whole day approximations 

of the Mercury synodic period of 116 days (13 x 116 = 1,508) and that the complete 

tropical year drift cycle of twenty-nine Calendar Rounds, or 1,508 Haabs, is the least 

common multiple of the 116-day Mercury synodic period and the Calendar Round.  

Several interesting numerological observations concerning this proposed tropical 

year drift calculation were also noted in my Master’s thesis.  One example is that 

one twenty-day month, or Uinal, worth of drift equals the Tzolkin times the Mercury 

synodic period (20  x 1,508 = 116 x 260). 

 The idea that multiples of the Mercury synodic period could be used with 

extreme accuracy to calculate and to keep track of the tropical year relative to the 

Haab and the Tzolkin possesses a certain astronomical poetry.  More than the other 

four planets visible to the naked eye, Mercury appears to both hound and herald the 

sun.  Mercury is never more than about twenty-three degrees from the sun’s rising 

or setting position on the horizon.  It rises, shortly before sunrise as morning star and 

shortly after sunset as evening star, as if tied to the sun by a short leash.  

  My rather belabored point here is that the four major Maya ceremonial centers 

associated with the cardinal directions may have been regarded as the four corners 

of the Maya region because of their unique latitudes relative to both the calendrical 
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and geometrical positions of the zenith and nadir passages.  The eastern and western 

corners share the only latitude that would produce phi and pentagon triangles in an 

observation circle, and the northern and southern corners are located precisely at the 

only latitudes where all of the major solar events occur on the same day numbers 

of the Tzolkin cycle and whose zenith and nadir passages are separated by exactly 

thirteen days. 

 Outside the Maya area, there is evidence to suggest that the Teotihuacanos 

may also have been interested in changes in the calendrical and geometrical positions 

of the zenith passages relative to changes in latitude.  The most obvious evidence is 

that most of the architecture at Teotihuacan is aligned in a grid whose east/west axis 

points to the sunrises and sunsets on April 29th and August 13th, the same rise and set 

days for the zenith passages at Copan, as discussed above. 

 In ways that remain unclear, the Teotihuacanos had a major infl uence on a 

number of far-fl ung foreign ceremonial centers, most of which occupy key latitudes 

related to this discussion.  One of these is the ceremonial center of Alta Vista, well to 

the north of Teotihuacan and located within a few kilometers of the Tropic of Cancer, 

which is the northern limit of the occurrence of zenith passage and where zenith 

passage takes place only once a year, at the summer solstice (Aveni, 1992).  

 Moving south, the Teotihuacanos arrived at Tikal in A.D. 378 and quickly 
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intermarried with the royal bloodline there.  They then sent an emissary to rule over 

Uaxactun, the sister site of Tikal.  At Uaxactun we fi nd an early and clearly functional  

E Group solar observatory.  From the vantage point of a central pyramid, three smaller 

temples arranged on a raised platform to the east demarcate the rising positions of the 

sun at the solstices and the equinoxes.  Alonso Mendez and I noticed independently 

that the outer temples also mark the rising sun at the zenith and nadir passages.  The 

same has proved true for the E Group structures at Dzibilchaltun and Ek Balam in 

the Yucatan.  At Tikal, which is about a quarter of a degree south of the latitude of 

Palenque, the zenith and nadir positions of the sun on the horizon are slightly short 

of creating a precise thirty-six-degree phi triangle on an observation circle.  But the 

latitude of Uaxactun, some twenty kilometers to the north of Tikal, shares the same 

geometrically ideal latitude with Palenque to within a few minutes of a degree.  Also 

at Uaxactun, a pristine pecked cross, orientated to within a fraction of a degree to the 

zenith sunrise there, is found inscribed on the fl oor of  Structure A-V (Aveni, Hartung, 

and Buckingham, 1978).  Virtually identical pecked crosses at Teotihuacan might also 

have functioned as benchmarks to lay out the orientations of the architecture to the 

Copan zenith sunrise date.   

 By the early fi fth century, a foreigner called Yax K’uk Mo arrived at the 

southern “corner” of the Maya region, Copan.  He is depicted as a Teotihuacan 
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warrior and established a royal bloodline there with a local queen.  A decade or so 

later, the royal bloodline of the eastern “corner,” Palenque was also established,  

perhaps by a Teotihuacan emissary as well.  The three “corners” of the Maya region, 

Palenque, Tikal, and Copan, remained close allies throughout the Classic period and, 

interestingly, were almost constantly at war with the city at the northern “corner,” 

Calakmul.  In these historical events we may be seeing the Maya carefully choosing 

four principal ceremonial centers associated with the cardinal directions and their 

unique latitudes relative to the ideal geometrical and calendrical zenith and nadir 

positions. 
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CHAPTER 10

CONCLUSIONS

 For thousands of years, the Maya, their predecessors, and their Mesoamerican 

neighbors have produced architectural and iconographic models of the cosmos based 

largely on symbolic reenactments of the primordial creation (Freidel, Schele, and 

Parker 1993). 

  Recent examinations of these artifacts, their associated texts, and relevant 

ethnographic data have served to catalyze decades of research from within the fi elds 

of ethnography, linguistics, epigraphy, archaeology, iconography, and art history.  

These indigenous expressions of creation myths range from the sublime to the 

vernacular and are expressed in a variety of contexts.  Some of the most exalted and 

dramatic examples are now shown to be cyclically enacted in the very movements of 

the heavens (Freidel, Schele, and Parker, 1993).  Shaman kings and queens claimed 

religious and political charter by reenacting creation events in public ceremonies and 

by establishing themselves as living conduits between the gods, ancestors, and the 

human realm. 

  Grand cosmogramic architectural schemes were commissioned to serve as 
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foci for these supernatural communications.  Upon these structures, superbly talented 

artists and scribes employed their crafts to further elucidate themes of creation and to 

record the actions of shaman kings, queens, and the elite who brought these mythic 

images and events to life.  In the hamlets and villages surrounding ceremonial 

centers, communal shamans incorporated cosmograms into their ceremonies by using 

measuring cords to defi ne ritual space in symbolic reenactments of the primordial 

creation (Powell, 1993).  Today, performances of house-building, Cha Chac, and 

other ceremonies in modern Maya communities vividly express and preserve ancient 

cosmological beliefs.  Even vernacular houses and milpas are imbued with profound 

cosmological symbolism (Breedlove and Laughlin, 1993). 

 The preceding discussion of the physical manifestations of Mesoamerican 

cosmology strongly supports the hypothesis that the Maya sought to emulate and 

incorporate the geometries and proportions that were observed in nature and alluded 

to in their creation myths into the layout and design of their ceremonial and vernacular 

works of art and architecture. 

 By focusing on geometrical formulae encoded in individual Maya structures 

and works of art embedded with grand cosmological schema, new layers of 

cosmological interpretation can be examined and added to the whole.  For example, 

the set of repeated proportions uncovered in this study are also the principal 
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proportions found in nature. 

 The shapes of fl owers and shells; the human form; the cardinal directions 

and the square Maya world; Maya concepts of time (circular calendars); their place 

in the universe (astronomical observation circles); the architecture of their physical 

environment (the shapes of their houses, milpas, and temples); and their works of art 

all share the proportions inherent in three simple geometrical forms — the equilateral 

triangle, the square, and the pentagon.  These three regular polygons, with their 

square root of two, square root of three, and phi rectangular expressions, provide 

an underlying structure that unites the Maya cosmos.  Viewed in this way, Maya 

geometry might be compared to the modern concept of E = MC2.

 The myriad expressions of Maya geometry are subtle.  Like contrived distance 

numbers that unite historical and mythological dates via the least common multiples 

of various astronomical and calendrical cycles, they are not advertised.  You have to 

do the math to understand which astronomical and calendrical cycles are being used 

and you have to do the geometry to understand which proportions and formulae are 

being expressed.  Almost certainly, intentional asymmetries are incorporated into 

ancient art and architecture, just as today intentional errors are incorporated into the 

complex designs of Maya textiles (Walter F. Morris, 2009, personal communication).  

And continuing with the analogy to distance numbers, it is possible that some of the 
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suspiciously common mathematical “errors” found in Maya hieroglyphic texts were 

also intentional.

 We are told in the Popol Vuh (Tedlock 1985:165-167) that when the gods 

made human beings from corn the fi rst men and women were so like the gods that 

they saw everything under the sky perfectly. This worried the gods, so they decided to 

shorten their eyesight.  “They were blinded as the face of the mirror is breathed upon.”  

Though the Maya went to great lengths to penetrate the mathematical and geometrical 

patterns of their universe and to emulate and incorporate these patterns into their own 

creations, it may have been deemed presumptuous and unwise to attempt to do so 

blatantly or fl awlessly.  

 In this light, I will share what may be a geometrical formula cleverly hidden in 

the telling of the creation story in the Popol Vuh (Tedlock 1985:72). 

There is the original book and ancient writing, but he who reads it and 

ponders it hides his face. It takes a long performance and account to 

complete the emergence of all the sky-earth:                                                              

the fourfold siding, the fourfold cornering,

measuring, fourfold staking, 

halving the cord, stretching the cord,
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in the sky, on the earth,                                                                                                      

the four sides, the four corners,

as is said,

by the Maker, Modeler, 

mother-father of life, of human kind…”

 

 This passage may be viewed as a concise formula for staking out a phi 

rectangle with a cord.  The “fourfold siding, the fourfold cornering, measuring, 

fourfold staking,” is presumed to describe the staking out of a square, the shape that 

must be drawn or staked out fi rst to create any of the square root or phi rectangles.  

The next two phrases, “halving the cord, stretching the cord in the sky, on the earth,” 

would refer to the next steps taken to create a phi rectangle; that is, “halving the cord” 

at the base of the square and “stretching the cord” from the center of the base of the 

square to an upper corner of the square “in the sky,” then downward and parallel to the 

base of the square “on the earth.”  The next phrase, “the four sides, the four corners,”  

would refer to staking out the sides and corners to inscribe this measure and complete 

the phi rectangle.

 That the phi proportion would be used to describe the making and modeling 

of the heavens and the earth is particularly apt.  Phi is the most common proportion 
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observed in nature.  Most fl owers are classifi ed by botanists as fi ve somes with fi ve 

petals or multiples of fi ve petals.  Pentagonal arrangements of seeds in the cross-

sections of fruits are common.  The phi equiangular spiral is readily observed in 

seashells and snail shells and in the growth spirals of various plants.  Recall the 

Yucatec Maya word for belly button, “tzuk,” or division place, which divides the 

human form by the phi proportion.  And, when the intrinsic subdivisions of the phi 

rectangles and triangles are considered, it is clear that phi is by far the most dynamic 

of the formal set of dynamic proportions.

 I conclude by comparing the contents of this dissertation to a uinic, the 

Yucatec Maya unit of measure and the word for human being.  The feet are the 

ethnographical descriptions of the phi, square root, and Pythagorean rectangles that 

are used by the modern Maya to design and lay out their houses. Interpretations 

regarding the meaning of Maya geometry rests on the words once spoken to the 

shaman Don Guadalupe by his mentor and grandfather: “The shapes of the fl owers are 

in our houses.” 

 The fact that the Maya use these proportions today provides the solid footing 

for the subsequent geometrical analyses of Pre-Columbian artifacts.  And a Maya 

shaman who uses a measuring cord to lay out square root and phi-proportioned 

houses, and who then says that the shapes of the fl owers are in them, serves as a 
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foundation for subsequent philosophical interpretations that suggest that the Maya 

were, and still are, consciously emulating and incorporating the observed shapes of 

nature into the designs of their art and architecture.

 The legs and body are represented by the numerous geometrical analyses of 

Pre-Columbian art, architecture, and books.  The illustrations show how the ancient 

Maya were using geometry, exemplify some of the general rules that were followed in 

the designs of buildings and artifacts, and present a clear explanation of the principles 

of perfect and virtually perfect formulae.       

 The head and brains are the fi nal chapters that explore how Maya concepts 

of geometry, space, and time can be integrated into a profound understanding of the  

cosmos. 

 The heart represents the hundreds of generations of Maya who had the 

courage and capacity to investigate and learn the mathematical and geometrical 

principles used by  their “Maker, Modeler, mother-father of life,” to create their 

universe, and who have left us at least a glimpse of how it works.            
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See Creation of the Uinal in Chilam Balam where the fi rst man steps into a pre-

existent footprint and measures out time.]

[See also Lopez-Austin.

Concerning the elevations of both ceremonial and vernacular structures, iconographic 

and linguistic data indicate that the roofs of these structures were and are often 
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CHAPTER V
COSMOLOGY

[This seems beyond the scope of the dissertation, but may be summarized somehow in 

the conclusions as implications, ramifi cations, or topics for further study. It is certainly 

suitable material for a popular book.]

 Recent syntheses of research in the fi elds of archaeology, ethnography, 

linguistics, epigraphy, iconography, and art history set forth a bold new interpretation 

of Maya art and architecture. The most ambitious studies propose that the Maya and 

their neighbors produced architectural and iconographic [and linguistic?] models 

of the cosmos based on myths [symbolic reenactments?] of the primordial creation 

(Schele, Freidel and Parker: 1993).  

 Creation myths, such as the Popol Vuh, were expressed in a variety of 

contexts. [the ball game]  Perhaps the most exalted and dramatic affi rmation of the 

myth was seen in the cyclical movement of the constellations (Schele, Freidel and 

Parker, 1993).[Describe. What about seasons? Discuss myths, such as Corn god in 

“Mayan Cosmos.”]

 As incarnations of the gods, kings and queens reaffi rmed their religious and 
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political charter by reenacting creation events in public ceremonies; and as shamanic 

priests, by establishing themselves as living conduits between the divine and human 

realms. [Source? Elaborate.] The great temples they commissioned served as loci for 

masked dramas, sacrifi cial rites, and supernatural communications. Upon these cosmic 

stages, rulers, dressed in full regalia, literally stood at the center of the universe. In 

stone and stucco, artists and scribes recorded themes of creation as well as the ritual 

acts of kings and queens who brought those mythic episodes to life. 

  A mythical framework provided the geometric blueprint for the layout and 

design of ceremonial and vernacular architecture. During ceremonies observed in 

villages and hamlets, local shamans incorporated the sacred quincunx by using the 

measuring cord to defi ne ritual space in symbolic reenactments of the primordial 

creation (Powell 1993). Performances of similar ceremonies in modern Maya 

communities vividly express and preserve the ancient cosmograms.  Even vernacular 

houses and milpas are imbued with profound cosmogramic [?] symbolism. 

Ceremonial Architecture as Cosmograms

 In The Blood of Kings (Schele and Miller 1986:104,113,122-123, 269), the 

authors state that Maya pyramids, plazas, and temples “replicated in symbolic form 
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the sacred landscape generated by the gods at creation” (Schele and Miller 1990:71 

?).  Based on iconographic, linguistic, and epigraphic evidence, Schele and Freidel 

identify temples and pyramids as “sacred mountains, “their doorways portrayed as 

the mouths or entrances to caves that [,which] were considered by the Maya to be 

important portals to the Other world. Groups of temples are identifi ed as mountain 

ranges:...towering over the forest of tree-stones (stelae) in the plazas below. The 

architecture of ritual space thus replicated the features of the sacred geography [of?] 

the forest, the mountain, and the cave” (Schele and Freidel 1990:70-2,107,121,239)). 

[The citations are confused. Check quotation and quotation marks] [More on caves 

and the underworld.] 

 Iconography related to astronomical phenomena complete the cosmological 

program (Schele and Freidel 1990:114). [Give examples: Cerros, etc.] 

 If temples were miniature versions of the house of the universe, then the roofs 

of both ceremonial and vernacular architecture represented the sky or heavens. This 

contention is based primarily on iconographic interpretations of stone representations 

of vernacular structures that decorate the facades of Post-Classic buildings in the Puuc 

region of the Yucatan peninsula.  [What about roof combs in Classic, and other Meso 

sites?]

 At Uxmal, a stone representation of a thatch-roofed structure is the only 
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embellishment to grace the east facade of the temple atop the Pyramid of the 

Magician. Two similar representations, now fallen, were once prominently displayed 

on the facade of the Palace of the Governor. Twelve such representations are present 

on the facades at the Nunnery Quadrangle. 

 The iconography on the roofs of these carved structures exhibit sky-related 

symbols. For example, the “thatch” on the roofs probably represents feathers 

(Kowalski 1987). Several examples at the Nunnery Quadrangle display bicephalic 

serpents draped across the roof crests. 

  The homophonic relationship between the Maya words for “snake” and “sky” 

(chan, k’an or kan, depending on the language), is well known (Miller and Taube 

1993:150). Extensive portrayals of the bicephalic sky band serpent during the Classic 

Period and the feathered serpent in Post-Classic Maya iconography give further 

credence to the interpretation of the snake as a sky-related symbol. [But not always.] 

 Also present on the roof crests of some carved structures are Tlalocs.  

Although the meaning of Tlaloc symbolism is poorly understood, particularly in the 

Post-Classic, certain depictions of the Tlaloc monster are clearly associated with rain 

and water. [Source?]

 The monumental buildings that display the diminutive iconography described 

above also feature sky symbols, on a grand scale, over the doors. The bicephalic 
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serpent graces several structures at Uxmal, the clearest example stretching across the 

upper facade of the Palace of the Governor. By far the most prevalent iconographic 

symbol to adorn the architecture at this and other Post-Classic Puuc sites is the rain 

deity, Chac. Symbols of clouds and lightning appear on the Palace of the Governor as 

well as other structures.[What other structures?]

 Thus, from the Formative to the Post-Classic, ceremonial architecture, and 

its iconographic embellishments, represented the levels of the cosmos – the sky, 

underworld, and the surface of the earth -- on a three-dimensional, monumental scale.  

The roots of symbolic architecture can be traced to the Olmec, who created raised 

“artifi cial mountains” a thousand years before the Maya (Schele and Freidel 

(1990:106) and Reilly (1985: 87). [plus Olmec stelae and cave iconography. Add 

other antecedents like Uaxactun and Teotihuacan. See Enrique Florescano and 1995 

Texas Workshops for a great discussion of the myth of Sustenance Mt. or Snake Mt., 

as well as Tollan, Place of Reeds; the necessary incorporation of mountain and lake to 

qualify as a sacred city; and the pan-Mesoamerican spread of this mythic and political 

criterion.]  

 

Also, WHY are vernacular houses portrayed on ceremonial architecture? It  may 
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imply that the rulers started glorifying the simpler structures, and theology, of the 

Formative period in order to maintain power over  the masses. Essentially it is what 

remains of the Classic, the earth religion and earth structures. This would bring the 

discussion back to earth. It would also incorporate evolution, of beliefs, ceremonies, 

etc – and the geometry. In Chapter III you should mention that early temples were 

vernacular structures.
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Chaos and Order

In my mind, there’s a difference between a sacred landscape and a cosmogram. Please 

clarify.

Is the forest sacred? Today the forest, mountain, and cave belong to the wilderness or 

the Earth Lord, although animal souls live inside the sacred mountains. See Vogt, et.al. 

Are you going to talk about archaeo-astronomical data anywhere?

The “rope event”? The rope as a serpent or umbilical.

In order to tie this chapter together, you have to discuss the key creation myths, as well 

as cultural shifts over time; for example, what it means to go from sun gods on the 

facades  to kings and captives to rain gods. 

Do the geometric proportions change?  

There is insuffi cient discussion of iconography. MORE DETAIL. After all, Linda’s 

theories were based on a general reading of the architecture and a close reading of 

iconography, plus epigraphy. She hadn’t done the measurements. 
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CHAPTER VI 
GEOMETRY AND NATURE

Flowers 

Shells

Human Proportions

[See Laughlin for the relationship between body parts and plant parts,, plus words for 

measurements.]
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