What can you do with bytes ? — Chapter 2 — Everyday bytes

2. Everyday bytes

L0070}V 14T T o] o =Tt £ 1
Serializing/deserializing custom objects.......cn e ————_——— 3
Embedding r@SOUNCeS.. ..o sssssssssssssssssssssssssassssnssassssnssnsassnssnss 5
L L= et 4T N oA =, 6
Progressive image 10ading ... s s s sassnis 7
Loadbytes lImitations....uu s s s s ssssssssssses 10
Compressing and uncompressing data.......ccces——————— 11
Generating an image file (PNG Or JPEG)........ccomimnmminnmssmsmmssssmmsssmssssmsmsssssssssssssssassssssasssssssssssassssnss 15
Saving a binary stream (through a remote server) ... ———— 20
Saving a binary stream (without a remote Server) ... —————— 22
L CT=T =T L= TH o D L 22
From Bytes t0 SOUNM ... s s s n s s s e e 27
From compressed bytes to SOUNd.......cciiii——————— 36
Parsing binary data ... —————————————— 38
LI LT LT = T T o 38
AdVANCEOA SWF PAISING c.ciuroiseimsersssssmsmissssississsssssssnssssssssmsasssssssssssssssassssssssss sas s s samsasssssmsssassessamssssssssssassensassnssnss 51

In the previous chapter we discovered the important concepts to manipulate binary data in the Flash
Player. It is now time to put all those concepts into practice to use them in real world projects. From
binary asset embedding to sound manipulation to SWF parsing, we will see how to make this
ByteArray API our best friend, to produce things we could never do before in ActionScript.

We will continue our ByteArray adventure through different examples you may come through during
your every day work with Flash.

Copying objects

One of the very common things that the ByteArray class is used for, is object duplication. Remember
that an AMF serializer and deserializer is available through the ByteArray API. The writeObject
API is what we need :

// creates an empty ByteArray
var stream:ByteArray = new ByteArray();

// creates an object
var parameters:0bject = { age : 25, name : "Bob" };

// serializes the object as amf and stores it into the ByteArray
stream.writeObject (parameters);

To retrieve the serialized instance we use the readObject API:

// creates an empty ByteArray
var stream:ByteArray = new ByteArray();

// creates an object

What can you do with bytes ? — Chapter 2 — Everyday bytes

var parameters:0Object = { age : 25, name : "Bob" };

// serializes the object as amf and stores it into the ByteArray
stream.writeObject (parameters);

// resets the position
stream.position = 0;

// reads the object copy
var objectCopy:0Object = stream.readObject() ;

We can then include this logic inside a custom function :

function copyObject (objectToCopy:*):*

{ var stream:ByteArray = new ByteArray();
stream.writeObject (objectToCopy) ;

stream.position = 0;

return stream.readObject () ;

}
Anytime, we need to copy we can use our copyObject function :

// creates an object
var parameters:0Object = { age : 25, name : "Bob" };

var parametersCopy:0Object = copyObject (parameters);

/* outputs

name : Bob

age : 25

*/

for (var p:String in parametersCopy)
trace(p, " : ", parametersCopylp])

function copyObject (objectToCopy:*):*

{
var stream:ByteArray = new ByteArray();
stream.writeObject (objectToCopy) ;

stream.position = 0;

return stream.readObject () ;

}

By modifying the original object properties, we can see that we created a proper copy of
parameters :

// creates an object
var parameters:0bject = { age : 25, name : "Bob" };

var parametersCopy:Object = copyObject (parameters);

parameters.name = "Stevie";

/* outputs

name : Bob

age : 25

*/

for (var p:String in parametersCopy)
trace(p, " : ", parametersCopylp])

function copyObject (objectToCopy:*):*
{

What can you do with bytes ? — Chapter 2 — Everyday bytes

var stream:ByteArray = new ByteArray();
stream.writeObject (objectToCopy);

stream.position = 0;

return stream.readObject () ;

}

Let’s dig further and discover how we can save and restore more complex types, still with the help of
our favorite API, ByteArray.

Serializing/deserializing custom objects

Note that this code will not work for custom types that you may define in your application. Very
simple, scenario, let’s say you need to use a User object as following :

package
{
public class User
{
private var firstName:String;
private var lastName:String;

public function set firstName (firstName:String) :void
{
_firstName = firstName;

}

public function set lastName (lastName:String) :void
{
_lastName = lastName;

}

public function get firstName () :String
{
return firstName;

}

public function get lastName () :String
{
return lastName;

}

}

You may need to store your User instance on a server as a binary file or in a local Sharedobject.
If you try to store such a User instance inside your byte array and retrieve it later, when reading it,

the Flash Player will look up internally if any User type has been registered before, if not it will be
deserialized as a simple Object

// creates an instance of User
var myUser:User = new User ();

// sets the members
myUser.firstName = "Stevie";
myUser.lastName = "Wonder";

// outputs :[object User]
trace (myUser);

// create a ByteArray to store the instance
var bytes:ByteArray = new ByteArray();

// stores the instance

What can you do with bytes ? — Chapter 2 — Everyday bytes

bytes.writeObject (myUser);

// resets the position
bytes.position = 0;

// outputs : false
trace (bytes.readObject() is User);

Now, let’s use the registerClassAlias to inform the Flash Player to register the User type for
automatic deserialization :

// creates an instance of User
var myUser:User = new User ();

// sets the members
myUser.firstName = "Stevie";
myUser.lastName = "Wonder";

// outputs :[object User]
trace (myUser);

// registers the type User for deserialization
registerClassAlias ("userTypeAlias", User);

// create a ByteArray to store the instance
var bytes:ByteArray = new ByteArray();

// stores the instance
bytes.writeObject (myUser);

// resets the position
bytes.position = 0;

// reads the stored instance and automatically deserializes it to the User type
var storedUser:User = bytes.readObject () as User;

// outputs : true
trace (storedUser is User);

// outputs : Stevie Wonder
trace (storedUser.firstName, storedUser.lastName);

By using this technique we can store the state of any custom object type and restore it later. As you
can see we are now dealing with a copy of our custom object type :

storedUser.firstName = "Bobby";
storedUser.lastName = "Womack";

// outputs : Stevie Wonder
trace (myUser.firstName, myUser.lastName);

// outputs : Bobby Womack
trace (storedUser.firstName, storedUser.lastName);

Keep in mind that some native types cannot be serialized/deserialized by AMF. This is the case for
the graphical objects like DisplayObject, etc. So if you try to serialize a MovieClip for instance,
(which would be extremeltey powerful) this will fail silently :

// creates a ByteArray
var bytes:ByteArray = new ByteArray();

// try storing a DisplayObject type
bytes.writeObject (new MovieClip ());

// resets the position
bytes.position = 0;

What can you do with bytes ? — Chapter 2 — Everyday bytes

// outputs : undefined

trace (bytes.readObject());
Support for display objects type by the AMF3 would be an extremely useful addition to the list of
types supported by AMF.

Embedding resources

Another classic stuff that you may find useful is embedding external resources like XML files or
Pixel Bender Kernel filters. A common problem is embedding runtime dependencies into the SWF so
that it does not require any external file. Some hosting services refuse SWF’s having external
dependencies, so imagine you developed a tiny application or game and you quickly need to remove
any external dependencies at the last minute, you can use the Embed tag for that.

In the code below, we use the Embed tag to embed an external Pixel Bender filter :

[Embed (source="myFilter.pbj", mimeType="application/octet-stream")]
var myShaderKernel:Class;

At compile time, the Pixel Bender filter will be Embedded as a ByteArray, notice the usage of the
mimeType application/octet-stream, which allows us to embed the resource as a ByteArray.

We can also do that more commonly with XML to embed the XML stream without changing the
source code of just pasting the XML stream inside the source code, this will be done at compile time
and will be cleaner :

import flash.utils.ByteArray;

[Embed (source="test.xml", mimeType="application/octet-stream")]
var xmlStream:Class;

// instanciate the stream as a ByteArray
var xmlBytes:ByteArray = new xmlStream() ;

// read the XML String from the byte stream
var xmlString:String = xmlBytes.readUTFBytes(xmlBytes.bytesAvailable);

// instanciate a XML object by passing the content
var myXML:XML = new XML (xmlString);

/%

outputs :

<menu>
<item/>
<item/>
<item/>

</menu>

*/

trace (myXML);

// outputs : 3
trace (myXML.item.length());

Everything can be embedded this way, we are embedding here raw binary data that we can
manipulate later with the ByteArray APIL.

But, I admit it, the previous code can be a little verbose, so by using a specific mimeType you can
force the transcoder to map to a specific type and do the conversion for you. In the following code,
we embed the XML the same way but by using the correct mimeType and the code becomes even
simpler :

What can you do with bytes ? — Chapter 2 — Everyday bytes

import flash.utils.ByteArray;

[Embed (source="test.xml", mimeType="text/xml")]
var xmlStream:Class;

// instanciate a XML object by passing the content
var myXML:XML = new XML (xmlStream.data);

/*

outputs

<menu>
<item/>
<item/>
<item/>

</menu>

*/

trace (myXML);

// outputs : 3
trace (myXML.item.length());

Prtetty convenient. Let’s see now how we can inject bytes at runtime and reconstruct content from
bytes. The Adobe Flash Player offers a very powerful API for this that we are going to cover now.

Injecting bytes

More commonly, this can be done with images, fonts, or even a SWF. There is no SWF type inside
the Flash Player, but guess what, there is a LoadBytes API on the Loader object.

This will allows us to inject the SWF as a ByteArray inside a Loader object and run it :

import flash.utils.ByteArray;
import flash.display.Loader;

[Embed (source="test-loading.swf", mimeType="application/octet-stream")]
var swfStream:Class;

// instanciate the stream as a ByteArray
var swfBytes:ByteArray = new swfStream();

// instanciate a Loader
var mylLoader:Loader = new Loader () ;

// inject the embedded stream inside the Loader
// the SWF is executed automatically
myLoader.loadBytes (swfBytes) ;

To display it, we just need to add the Loader to the display list :

import flash.utils.ByteArray;
import flash.display.Loader;

[Embed (source="test-loading.swf", mimeType="application/octet-stream")]
var swfStream:Class;

// instanciate the stream as a ByteArray
var swfBytes:ByteArray = new swfStream();

// instanciate a Loader
var mylLoader:Loader = new Loader () ;

// show the Loader object
addChild (myLoader);

// inject the embedded stream inside the Loader
// the SWF is executed automatically

What can you do with bytes ? — Chapter 2 — Everyday bytes

|myLoader.loadBytes(swaytes);

For types like images or sounds, you do not even have to specify the mimeType, the transcoder
automatically maps the stream to the correct type without any tricks :

import flash.utils.ByteArray;
import flash.display.Bitmap;

[Embed (source="ferrari-demo.png")]
var myImageStream:Class;

// instanciate the image as a classic Bitmap instance
var myImage:Bitmap = new myImageStream() ;

// show it!
addChild (myImage);

Let’s play a little more with images, in the following section we are going to work with dynamic
image loading, but in a new way.

Progressive image loading

Another great API related to bytes in the Flash Player is called URLStream, this API allows us to
download content in the Flash Player and get access to the bytes as they are loaded. Think about a
Socket API grabbing automatically content as if they were pushed by a remote server.

What is great about this is that almost all the APIs available on ByteArray are also available on
URLStream. So what is the use case where you may need this APl ? Well, first, let’s try the
following code, it may give you some cool ideas immediately :

// creates a URLStream object
var stream:URLStream = new URLStream();

// listen to the ProgressEvent.PROGRESS event to grab the incoming bytes
stream.addEventListener (ProgressEvent.PROGRESS, onProgress);
stream.addEventListener (Event.COMPLETE, onComplete);

// download the google.com index page
stream.load (new URLRequest ("http://www.google.com"));

function onProgress (e:ProgressEvent):void

{

trace ("progress");

}

function onComplete (e:Event):void

{

trace ("complete");

}

We see that the ProgressEvent.PROGRESS 1is dispatched multiple times, and the
Event.COMPLETE event once at the end. Nothing fancy here right ?

But you can actually have access to the bytes as they are coming in, whereas Loader just gives you
access to the file once loaded. All you can do during the progress with such an object, is getting
information on the total bytes to load and currently loaded.

Let’s modify our previous code with the following change :

function onProgress (e:ProgressEvent):void

{
trace (stream.readUTFBytes (stream.bytesAvailable));

What can you do with bytes ? — Chapter 2 — Everyday bytes

|}

We are now evaluating the bytes as a string as they are coming in. You should get in the output
window the raw HTML content from the google page. Something like the following output (truncated
for obvious purpose) :

<!doctype html><html><head><meta http-equiv="content-type" content="text/html; charset=IS0-8859-
1"><title>Google</title><script>window.google={kEI:"xTp8TZg4HpPWtQOd4Kz4Ag", KEXPI:"28479,28501,28595,290
35,29265,29279",kCSI:{e:"28479,28501,28595,29014,29135,29265,29279", ei: "xTp8TZg4HpPWtQOd4Kz4Ag", expi:"28

501,28595,29014,29135,29265,29279"},ml:function() {}, kHL:"en", time: function () {return (new

Date) .getTime () }, log: function(c,d,

b) {var a=new Image,e=google,g=e.lc,f=e.li;a.onerror=(a.onload=(a.onabort=function () {delete
glf]}))iglfl=a;b=b||"/gen 20472atyp=i&ct="+c+"&cad="+d+"&zx="+google.time () ;a.src=b;e.li=f+1},1lc:[],11:0,’
1t:{}..

That means we progressively have access to the bytes. This is an interesting feature cause this would
allow us for instance, to retrieve the dimensions of an image before being completely loaded by
parsing the header as soon as it is available.

We can also create a progressive loader, that could be used to show progressively an image being
loaded. To reproduce that effect, we can write the following code :

// creates a URLStream object
var stream:URLStream = new URLStream() ;

// listen to the ProgressEvent.PROGRESS event to grab the incoming bytes
stream.addEventListener (ProgressEvent.PROGRESS, onProgress);
stream.addEventListener (Event.COMPLETE, onComplete);

// download the remote image
stream.load (new URLRequest ("http://dl.dropbox.com/u/7009356/IMG 4958.jpg"));

// store the incoming bytes
var buffer:ByteArray = new ByteArray() ;

// Loader to display the picture
var loader:Loader = new Loader() ;

// show it
addChild (loader);

function onProgress (e:ProgressEvent) :void

{
// we keep writing the bytes coming in
stream.readBytes (buffer, buffer.length);
// we clear the previously loaded content
loader.unload() ;
// we inject the bytes to display the image
loader.loadBytes (buffer);

}

function onComplete (e:Event):void

{

trace ("complete");

}

As the bytes are coming in we are displayling them through the 1oadBytes API, the Flash Player
shows what can be displayed at the time we inject the bytes. The following picture illustrates the
picture partially loaded :

What can you do with bytes ? — Chapter 2 — Everyday bytes

Figure 2.1
Image partially loaded.

Then, step by step, the image loads to the point the image is finally loaded and displayed :

Figure 2.2
Image completely loaded.

Now you may wonder the true value of this, but this gives you a better idea of what you can do with
bytes when it comes to URLStream. As we just saw, loadBytes is a very powerful API but has its
limitations. In the following section we will discover why developers can be sometimes limited with
it.

What can you do with bytes ? — Chapter 2 — Everyday bytes

Loadbytes limitations

Keep in mind that 10adBytes is asynchronous, so when injecting the bytes you will need to wait for
the Event.COMPLETE event before being able to retrieve anything from the loaded SWF, like size,
class definitions etc. The code below illustrates the idea :

import flash.utils.ByteArray;
import flash.display.Loader;

[Embed (source="1library.swf", mimeType="application/octet-stream")]
var library:Class;

// instanciate the stream as a ByteArray
var swiBytes:ByteArray = new library();

// instanciate a Loader
var mylLoader:Loader = new Loader () ;

// show the Loader object
addChild (myLoader);

// loadBytes is asynchronous, we need to wait for the complete event before retrieving content from the
SWE
myLoader.contentLoaderInfo.addEventListener (Event.COMPLETE, onComplete);

// inject the embedded stream inside the Loader
// the SWF is executed automatically
myLoader.loadBytes (library) ;

// handler
function onComplete (e:Event):void

{

trace ("loading complete");

}

The definitions can be retrieved only when the loading is complete :

// handler
function onComplete (e:Event):void
{
// retrieve a class definition
var classDefinition:Class = e.currentTarget.applicationDomain.getDefinition ("MyDefinition") :

}

And this limitation is true for every kind of file you are loading in the Loader object. A lot of
developers expect to load an image and retrieve its dimensions in a synchronous way, but as with our
runtime shared library, the dimensions of the image can be retrieved only when loading is complete
and the image parsed by the Flash Player :

import flash.utils.ByteArray;
import flash.display.Loader;

[Embed (source="image. jpeg", mimeType="application/octet-stream")]
var imageStream:Class;

// instanciate the stream as a ByteArray
var jpegBytes:ByteArray = new imageStream();

// instanciate a Loader
var mylLoader:Loader = new Loader () ;

// show the Loader object
addChild (myLoader);

// loadBytes is asynchronous, we need to wait for the complete event before retrieving image dimensions

What can you do with bytes ? — Chapter 2 — Everyday bytes

myLoader.contentLoaderInfo.addEventListener (Event.COMPLETE, onComplete);

// inject the image stream inside the Loader
myLoader.loadBytes (jpegBytes) ;

// handler retrieving the image size
function onComplete (e:Event):void
{
// outputs : width : 300 height : 400
trace ("width : " + e.currentTarget.width, "height : " + e.currentTarget.height);

}

In case you need a synchronous behavior, you will need to process the parsing manually. For this
purpose I wrote in the past a synchronous JPEG decoder (http://www bytearray.org/?p=1089) through
the use of Adobe Alchemy.

Alchemy is a research project that allows users to compile C and C++ code that is
targeted to run on the open source ActionScript Virtual Machine (AVM?2). The
purpose of this preview is to assess the level of community interest in reusing existing
C and C++ libraries in Web applications that run on Adobe® Flash® Player and
Adobe AIR®.

With Alchemy, Web application developers can now reuse hundreds of millions of
lines of existing open source C and C++ client or server-side code on the Flash
Platform. Alchemy brings the power of high performance C and C++ libraries to Web
applications with minimal degradation on AVM2. The C/C++ code is compiled to
ActionScript 3.0 as a SWF or SWC that runs on Adobe Flash Player 10 or Adobe AIR
L5.

Let’s cover now some cool methods available on the ByteArray class related to compression.

Note

e The registerClassAlias is akey API to do custom serialization/deserialization.
* Remember that loadBytes is asynchronous.

* The Embed tag allows us to embed anything with a SWF.

Compressing and uncompressing data
The ByteArray object implements two APIs for data compression :

* compress : compresses the data using the zlib algorithm.
* deflate: compresses the data using the deflate algorithm.

Two API are available for uncompressing :

* uncompress : decompresses the byte array using the zlib algorithm.

e inflate :uncompresses the data using the inflate algorithm.

The specification of the two algorithms can be found here:

e Zlib : http://www.ietf.org/rfc/rfc1950.txt.
e Deflate : http://www.ietf.org/rfc/rfc1951.txt

What can you do with bytes ? — Chapter 2 — Everyday bytes

Those methods can be useful when writing encoders or decoders and data is being compressed using
zlib or deflate. This will make your job easier by relying on native compression or decompression. A
very common use case can benefit from runtime compression and decompression. Let’s take the
following scenario, you need to save on the user’s computer a big amount of data as an XML stream.

To save the data locally we are going to use the flash.net.SharedObject API which allows us
to save permanent data as cookies. In the following example, we are loading a big amount of XML
data (1.5mb) as a ByteArray stream :

var loader:URLLoader = new URLLoader () ;
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.load(new URLRequest ("donnees.xml"));
loader.addEventListener (Event.COMPLETE, onComplete);
function onComplete (e:Event):void

{ // access the XML stream

var streamXML:ByteArray = e.currentTarget.data;

// outputs : 1547.358
trace(streamxXML.length / 1024);

}

Once data is loaded, we save it locally through the help of the Sharedobject and the f1ush API:
var loader:URLLoader = new URLLoader () ;

loader.dataFormat = URLLoaderDataFormat.BINARY;

loader.load(new URLRequest ("donnees.xml"));

loader.addEventListener (Event.COMPLETE, onComplete);

// crates a ShareObject called "cookie"
var sharedCookie:SharedObject = SharedObject.getLocal ("cookie");

function onComplete (pEvt:Event) :void
{
// access the XML stream
var streamXML:ByteArray = pEvt.currentTarget.data;

// outputs : 1547.358
trace(streamxXML.length / 1024);

// copies the XML stream in the shared object
sharedCookie.data.xmlData = streamXML;

// saves the data
sharedCookie. flush() ;
}

When the flush API is called, the Flash Player attempts to save the data, but the amount of data is too
high to be saved transparently. The Flash Player triggers the Local Storage window and request the
user approval to save the data. Remember that we are trying to save more than a megabyte of data
which is uncommon.The following image illustrates such a panel :

What can you do with bytes ? — Chapter 2 — Everyday bytes

Local Storage

Requested: up 10 10 MB
Currently Used: 213 KB

Adobe Flash Player Settings

local Is requesting permission to store
information on your comp uter.

9

Figure 2.3

é [@ Aow |[& Deny |

The Local Storage window requesting 10mb of space.

We can see that 10 mb are requested to save the data, in reality the amount of data is 1 548kb as the
following figure illustrate, but the Flash Player requests more to make sure you will be fine for
further savings :

Local Storage

your comp uter?

—
[[' ']‘J 1

Figure 2.4

Adobe Flash Player Settings

How much information can local store on

[1 Never Ask AgaifCurrently used: 1548KB

b Il J(ET

9

10 MB

Space required to save our uncompressed XML stream.

A very simple workaround to limit the amount of data saved locally, is to compress the XML stream
through the compression APIs available on the ByteArray object. In the following code, we are
compressing the stream using the zlib algorithm through the help of the compress API. We can see a
size reduction of 700% :

{

function onComplete (pEvt:Event):void

// access the XML stream

var streamXML:ByteArray = pEvt.currentTarget.data;

// outputs : 1547.358
trace(streamxXML.length / 1000);

// compression du flux XML
streamXML. compress () ;

// affiche : 212.24
trace(streamxXML.length / 1024);

// copies the XML stream in the shared object
sharedCookie.data.xmlData = streamXML;

// saves the data
sharedCookie.flush() ;

What can you do with bytes ? — Chapter 2 — Everyday bytes

|}
If we use this technique, the amount of data requested by the Flash Player falls to 1mb :

Adobe Flash Player Settings

Local Storage o

local is requesting permission to store
information on your comp uter.

Requested: up 10 1
Currently Used: 0K

é [@ Aow |[& Deny |

Figure 2.5

The Local Storage window requesting Imb of space.

MB
B

Once saved, we can see that the amount of data required to save our XML stream is now 213kb :

Adobe Flash Player Settings

Local Storage o
How much Information can local store on
your comp uter?

m 1 MB
] ' ' L\) ' [|

[] Never Ask Again Currently used: 213KB

bt AN T

Figure 2.6

Space required to save our compressed XML stream.

To read the data back, we just need to call the uncompress API then extract the String through the
readUTFBytes API:

function onComplete (pEvt:Event):void

{
// access the XML stream
var streamXML:ByteArray = pEvt.currentTarget.data;

// outputs : 1547.358
trace (streamxXML.length / 1000);

// compression du flux XML
streamXML.compress () ;

// affiche : 212.24
trace(streamxXML.length / 1024);

// copies the XML stream in the shared object
sharedCookie.data.xmlData = streamXML;

// saves the data
sharedCookie.flush() ;

// retrieves the saved XML data from the shared object

What can you do with bytes ? — Chapter 2 — Everyday bytes

var binaryXMLStream:ByteArray = sharedCookie.data.xmlData;

// uncompresses the data
binaryXMLStream.uncompress () ;

// reads the stream as a UTF string
var xmlString:String = binaryXMLStream.readUTFBytes (binaryXMLStream.bytesAvailable);

// creates an XML structure back
var xmlData:XML = new XML (xmlString);

}

A valid XML object is then recreated from the st ring we extracted from the ByteArray. Thanks to
the compression, we were able to reduce the size of the XML stream or around 1 335kb. By using the
deflate algorithm through deflate, we end up with similar results.

Note

* The compress API allows to compress data using the zlib algorithm.

* The deflate API allows us to compress data using the delate algorithm.

* The uncompress API allows us to uncompress data compressed wit the zlib algorithm.
e The inflate API allows us to uncompress data compressed wit the deflate algorithm.

e Text content is a very good candidate for compression. A lot of space can be saved this way.

Generating an image file (PNG or JPEG)

We are now going to save a JPEG file through a custom JPEG encoder. The first encoder we are
going to use is the corelib JPEG encoder. The corelib package is a set of libaries provided by Adobe
for ActionScript 3 developers. It includes a lot of nice classes to do things like PNG or JPEG
encoding, JSON serialization or cryptography stuff and more.

You can download the corelib at the following link :
https://github.com/mikechambers/as3corelib

The corelib package contains a JPEG encoder we are going to use here to produce an image file from
a BitmapData object, transformed to a JPEG binary stream :

import com.adobe.images.JPGEncoder;

// creates a big red non transparent image
var bitmap:BitmapData = new BitmapData (1024, 1024, false, 0x990000);

// creates the JPEG encoder with a quality of 100
var jpegEncoder:JPEGEncoder = new JPEGEncoder (100);

// encode the JPEG from the BitmapData object
var jpegBytes:ByteArray = jpegEncoder.encode (bitmap);

// outputs : 2718
trace(jpegBytes.length);

By using some common optimizations techniques like the use of the Vector class introduced in
Flash Player 10 or bitwise and strong typing optimizations we can highly optimize the encoding
process.

Let’s test the performance of the current one from the corelib package :

What can you do with bytes ? — Chapter 2 — Everyday bytes

import com.adobe.images.JPGEncoder;

// creates a big red non transparent image
var bitmap:BitmapData = new BitmapData (1024, 1024, false, 0x990000);

// creates the JPEG encoder
var jpegEncoder:JPEGEncoder = new JPEGEncoder (100);

var savedTime:Number = getTimer();

// encode the JPEG from the BitmapData object
var jpegBytes:ByteArray = jpegEncoder.encode (bitmap);

// outputs : 1542
trace (getTimer() - savedTime);

1542 ms are required to encode the JPEG image. Not bad. Let’s try now with an optimized version
available at this link : http://www .bytearray.org/?p=775. By using this version we highly reduce the
encoding time :

// creates a big red non transparent image
var bitmap:BitmapData = new BitmapData (1024, 1024, false, 0x990000);

// creates the JPEG encoder (using this time the optimized version)
var jpegEncoder:JPEGEncoder = new JPEGEncoder (100);

var savedTime:Number = getTimer () ;

// encode the JPEG from the BitmapData object
var jpegBytes:ByteArray = jpegEncoder.encode (bitmap);

// outputs : 396
trace (getTimer() - savedTime);

Of course, the beauty of this, is that once the JPEG bytes have been generated you can preview the
JPEG image directly inside the Flash Player. We just used recently the 1oadBytes API to inject
bytes.

In the following code, we instantiate an image from our library and compress it to a JPEG file using a
quality of 100 :

// instantiate our custom image from the library
var bitmap:BitmapData = new CustomImage ()

// creates the JPEG encoder
var jpegEncoder:JPEGEncoder = new JPEGEncoder (100);

var savedTime:Number = getTimer ();

// encode the JPEG from the BitmapData object
var jpegBytes:ByteArray = jpegEncoder.encode (bitmap);

// outputs : 454
trace (getTimer () - savedTime);

At the same time we can also check the final image size :

// instantiate our custom image from the library
var bitmap:BitmapData = new CustomImage ();

// creates the JPEG encoder
var jpegEncoder:JPEGEncoder = new JPEGEncoder (100);

var savedTime:Number = getTimer () ;

// encode the JPEG from the BitmapData object

What can you do with bytes ? — Chapter 2 — Everyday bytes

var jpegBytes:ByteArray = jpegEncoder.encode (bitmap);

// outputs : 454
trace (getTimer () - savedTime);

// outputs : 310.6435546875

trace (jpegBytes.length / 1024);
Imagine now that you want the user of your application to preview the quality of the image that is
going to be generated. You can use the 1oadBytes API to inject the JPEG image and have instant
feedback over the quality of the final image :

// instantiate our custom image from the library
var bitmap:BitmapData = new CustomImage ();

// creates the JPEG encoder
var jpegEncoder:JPEGEncoder = new JPEGEncoder (100);

// encode the JPEG from the BitmapData object
var jpegBytes:ByteArray = jpegEncoder.encode (bitmap);

// outputs : 310.6435546875
trace (JjpegBytes.length / 1024);

// creates a Loader object for preview
var loaderPreview:Loader = new Loader() ;

// inject the JPEG bytes
loaderPreview.loadBytes (jpegBytes);

// show the image
addChild (loaderPreview) ;

When running, you get the following result :

800

jpeg-compression.swf

What can you do with bytes ? — Chapter 2 — Everyday bytes

Figure 2.5
Image dynamically compressed to high quality JPEG.

You can see that the quality is really high here, but now let’s change the quality down to 10 :

// creates the JPEG encoder
var jpegEncoder:JPEGEncoder = new JPEGEncoder (10);

When testing, we can see that the encoder really reduced the image quality :

8006

jpeg-compression.swf

Figure 2.5
Image dynamically compressed to low quality JPEG.

If we check the image size, we see that lower the image quality reduced as expected the image size :

// instantiate our custom image from the library
var bitmap:BitmapData = new CustomImage ();

// creates the JPEG encoder
var jpegEncoder:JPEGEncoder = new JPEGEncoder (10);

// encode the JPEG from the BitmapData object
var jpegBytes:ByteArray = jpegEncoder.encode (bitmap);

// outputs : 25.126953125
trace (JjpegBytes.length / 1024);

// creates a Loader object for preview
var loaderPreview:Loader = new Loader () ;

// inject the JPEG bytes
loaderPreview.loadBytes (jpegBytes);

// show the image

What can you do with bytes ? — Chapter 2 — Everyday bytes

|addChild (loaderPreview);

We just transformed an existing image from our library to a JPEG binary stream, but thanks to the
BitmapData.draw API we can literally rasterize anything inside the Flash Player to a bitmap and
compress this as a JPEG file.

Many scenarios can benefit from this, think about a tool which would take snapshots during the
playback of a video, or a drawing tool, allowing the user to draw content and export his drawing as an
image. To see some more examples of applications leveraging the BitmapData API, check the
following links :

e Drawing Things : http://www.bytearray.org/?p=29
* AS3 Live JPEG Encoder : http://www.bytearray.org/?p=90
* FLV Encoder : http://www.zeropointnine.com/blog/flv-encoder-with-audio/

In the following example, we create an empty bitmap and rasterize the stage, we would basically
capture everything on stage and take a snapshot of it, ready to be saved for later use :

import com.adobe.images.JPGEncoder;

// creates a big red non transparent image
var bitmap:BitmapData = new BitmapData (stage.stageWidth, stage.stageHeight);

// rasterize everything on stage
bitmap.draw (this);

// creates the JPEG encoder
var jpegEncoder:JPEGEncoder = new JPEGEncoder (100);

// encode the JPEG from the BitmapData object
var jpegBytes:ByteArray = jpegEncoder.encode (bitmap);

Remember that any display object can be passed to the BitmapData.draw API. But back to our
image encoding. For info, we can optimize this encoding time even more by leveraging Alchemy.
Through this compiler (http://labs.adobe.com/technologies/alchemy/) we are going to use a native
code JPEG encoder library such as JPEGLib and compile this to an ActionScript 3 library. We are
going to be able to leverage specific compiler optimizations which are not done by ASC but LLVM
used by the Alchemy compiler, and produce highly optimized AS3 bytecode.

For more informations about this, check the following link: http://segfaultlabs.com/devlogs/alchemy-
asynchronous-jpeg-encoding-2

We can also, generate a PNG file. For this, we will use a PNG encoder, also available in the corelib
package :
import com.adobe.images.PNGEncoder;

// creates a transparent image matching the stage dimensions
var bitmap:BitmapData = new BitmapData (stage.stageWidth, stage.stageHeight, true, 0);

// rasterizes the stage into the bitmap
bitmap.draw (this);

var savedTime:Number = getTimer ();

// encode the PNG from the BitmapData object
var pngBytes:ByteArray = PNGEncoder.encode (bitmap);

// outputs : 333
trace (getTimer () - savedTime);

What can you do with bytes ? — Chapter 2 — Everyday bytes

As we shall see later, each file can be identified by its header. Hence, by reading the PNG
specification (http://www.w3.org/TR/PNG), we see that any valid PNG file must start with a
signature composed of the following decimal values :

|137 80 78 71 13 10 26 10

If we read the header from the stream we just generated, we see that it matches :
import com.adobe.images.PNGEncoder;

creates a transparent image matching the stage dimensions
var bitmap:BitmapData = new BitmapData (stage.stageWidth, stage.stageHeight, true, 0);

// rasterizes the stage into the bitmap
bitmap.draw (this);

var savedTime:Number = getTimer () ;

// encode the JPEG from the BitmapData object
var pngBytes:ByteArray = PNGEncoder.encode (bitmap);

// outputs : 333
trace (getTimer () - savedTime);

// resets the stream position
pngBytes.position = 0;

// outputs : 137
trace (pngBytes.readUnsignedByte());

// outputs : 80
trace (pngBytes.readUnsignedByte());

// outputs : 78
trace (pngBytes.readUnsignedByte());

// outputs : 71
trace (pngBytes.readUnsignedByte());

// outputs : 13
trace (pngBytes.readUnsignedByte());

// outputs : 10
trace (pngBytes.readUnsignedByte());

// outputs : 26
trace (pngBytes.readUnsignedByte());

// outputs : 10
trace (pngBytes.readUnsignedByte());

Now we need to save this stream, and there are multiple ways to do this. Let’s see the different
techniques we can use.

Saving a binary stream (through a remote server)

In this first example, we are going to export the binary stream we just generated through the help of a
server. O export the stream, we need to pass the binary data to a remove script, to offer the ability to
doanload the stream through a dialog box. This is the trick we used before Flash Player 10, when the
FileReference API did not allow to save content locally on the user’s computer.

To do this, we are going to define an export.php script containing the code below :

What can you do with bytes ? — Chapter 2 — Everyday bytes

<?php
if (isset ($GLOBALS["HTTP RAW POST DATA"])) ({
$flux = SGLOBALS["HTTP RAW POST DATA"];
header ('Content-Type: image/png');
header ("Content-Disposition: attachment; filename=".$ GET['name']);
echo $flux;

} else echo 'An error occurred.';
>

We are saving the export.php script of our server, then we pass the binary stream through the help
of the data property on the URLRequest object :

import com.adobe.images.PNGEncoder;

creates a transparent image matching the stage dimensions
var bitmap:BitmapData = new BitmapData (stage.stageWidth, stage.stageHeight, true, 0);

// rasterizes the stage into the bitmap
bitmap.draw (this);

var savedTime:Number = getTimer () ;

// encode the PNG from the BitmapData object
var pngBytes:ByteArray = PNGEncoder.encode (bitmap);

// creates an HTTP header
var enteteHTTP:URLRequestHeader = new URLRequestHeader ("Content-type", "application/octet-stream");

// remote script URL
var requete:URLRequest = new URLRequest("http://localhost/export image/export.php?name=sketch.jpg") ;

// add the custom HTTP header to our HTTP rquest
requete.requestHeaders.push (enteteHTTP) ;

// send the data through POST
requete.method = URLRequestMethod.POST;

// pass the PNG stream
requete.data = pngBytes;

// connect to the remote script
navigateToURL (requete, " blank");

Note that in the code above, thanks to the URLRequestHeader object, we are indicating to the Flash
Player not to treat the data being sent remotely as a String but as raw binary data.

Make sure to test the previous code inside a browser. The standalone version of the
Flash Player does not allow us to send data through POST but only GET. We would
end up with our image sent in the browser URL as a String.

If we wanted to save the image on the server, we would modify the remote server as following:
<?php
if (isset ($GLOBALS["HTTP RAW POST DATA"])) ({

$flux = $GLOBALS["HTTP RAW POST DATA"];

Sfp = fopen($ GET['name'], 'wb');

fwrite ($Sfp, $im);
fclose ($£p) ;

?>

What can you do with bytes ? — Chapter 2 — Everyday bytes

As you can imagine, the script can be modified in many different ways, the image could also be saved
or processed server side.

Saving a binary stream (without a remote server)

We are now going to save a file directly, without any server side interaction. This will be made
possible through the FileReference class improved in Flash Player 10 giving the ability to save
any stream locally through the FileReference.save APL

In the code below we do not rely on any server side script, the bytes are directly saved to the user’s
local disk by showing up a save as window :

import com.adobe.images.PNGEncoder;

creates a transparent image matching the stage dimensions
var bitmap:BitmapData = new BitmapData (stage.stageWidth, stage.stageHeight, true, 0);

// rasterizes the stage into the bitmap
bitmap.draw (this);

var savedTime:Number = getTimer () ;

// encode the PNG from the BitmapData object
var pngBytes:ByteArray = PNGEncoder.encode (bitmap);

// creates a FileReference object
var save:FileReference = new FileReference();

// écoute de 1'événement MouseEvent.CLICK
stage.addEventListener (MouseEvent.CLICK, sauvegardelmage);

function sauvegardeImage (pEvt:MouseEvent) :void
{
// triggers the save on the user's local disk
save.save (pngBytes, "myImage.png");

}

When the mouse is clicked on the stage, the save window is displayed, allowing the user to save the
file where he wants to.

Note

* Flash Player 9 was unable to export a binary stream without a server side script.
* Since Flash Player 10, we can use the save APl on the FileReference object.

* When sending binary data through http, we need to use the URLRequestHeader object to specify
that data sent needs to be treated as binary.

* Binary data is stored in the HTTP RAW POST DATA property of the $GLOBALS object:
SGLOBALS["HTTP RAW POST DATA"].

Generate a PDF

In order to demonstrate in an other way, the power of the ByteArray API, we are going to generate
dynamically another file now, a PDF file. For this, we will be using the AlivePDF library, simple and
efficient which relies mainly on the ByteArray API internally. Other libraries are available today for
this, Alessandro Crugnola’s library called PurePDF ported from iPDF is an excellent library. To
download PurePDF check the following link : http://code.google.com/p/purepdf/

What can you do with bytes ? — Chapter 2 — Everyday bytes

It is actually possible to generate a PDF file with a simple string. A PDF file is made of a complex
String as below :

$PDF-1.4

1 0 obj

<< /Type /Catalog

/Outlines 2 0 R

/Pages 3 0 R

>>

endob’j

2 0 obj

<< /Type Outlines

/Count 0

>>

endob’j

3 0 obj

<< /Type /Pages

/Kids [4 0 R]

/Count 1

>>

endob’j

4 0 obj

<< /Type /Page

/Parent 3 0 R

/MediaBox [0 0 612 792]
/Contents 5 0 R

/Resources << /ProcSet 6 0 R >>
>>

endob’j

5 0 obj

<< /Length 35 >>

stream

..Page-marking operators..
endstream

endob’j

6 0 obj

[/PDF]

endob’j

xref

07

0000000000 65535
0000000009 00000
0000000074 00000
0000000120 00000
0000000179 00000
0000000300 00000
0000000384 00000
trailer

<< /Size 7

/Root 1 0 R

>>

startxref

408

$SEQOF

85585 8383 338

However, inserting content like images or any other binary data inside a PDF requires handling
binary data, and this is where the ByteArray API comes to the rescue.

You can download the AlivePDF library at the following address :
http://code.google.com/p/alivepdf/downloads/list

We will be using version 0.1.5RC here, once downloaded, we need to import the required classes,
then we instantiate the PDF object :

|import org.alivepdf.pdf.PDF;

What can you do with bytes ? — Chapter 2 — Everyday bytes

import
import
import
import
import
import
import
import

org.
org.
org.
org.

org

org.

org

org.

alivepdf.
alivepdf.
alivepdf.
alivepdf.
.alivepdf.
alivepdf.
.alivepdf.
alivepdf.

var myPDF:PDEF = new

layout.Layout;
layout.Orientation;
layout.Unit;
layout.Size;
display.Display;
saving.Method;
fonts.CoreFont;
1links.HTTPLink;

PDF (Orientation.PORTRAIT, Unit.MM);

Then we define the displaying mode :

|myPDF.setDisplayMode(Display.FULL PAGE, Layout.SINGLE PAGE);

Then we add a page thanks to the addpage API:

|myPDF.addPage();

Then we can save the PDF remotely thanks to the create.php script, which is exactly similar to the

one we just created for saving our image server-side :

|myPDF.save (Method.REMOTE, 'http://localhost/pdf/create.php', Download.ATTACHMENT, 'monPDF.pdf');

The save method requires the URL of the create.php script, to be found in the AlivePDF source
package. By testing the code above with our script properly available on our remote server, we end up

with the following result :

Of course, our PDF will be empty with a blank page in it. To add some content to our PDF, let’s

7

File Download ﬂ

Do you want to open or save this file?

|\ Name: myPDF.pdf
|t Type: Adobe Acrobat Document, 1.09KB
From: www.bytearray.org

Open] [Save] [Cancel J

While files from the Intemet can be useful, some files can potentially
ham your computer. If you do not trust the source, do not open or
save this file. What's the risk?

Figure 2.7

Save-as dialog window to save the PDF .

import the following classes :

import org.alivepdf.fonts.Style;
import org.alivepdf.fonts.FontFamily;
import org.alivepdf.colors.RGBColor;

Then we add some text and a clickable link on the page :

// we add a page
myPDF.addPage () ;

// we set the text style color

What can you do with bytes ? — Chapter 2 — Everyday bytes

myPDF.textStyle (new RGBColor (0x000000), 1);

// we create a system font
var coreFont:CoreFont = new CoreFont (FontFamily.HELVETICA);

// we set the PDF document to use this font at this size
myPDF.setFont (coreFont, 20);

// we add some text
myPDF.addText ("Here is some text !", 70, 12);

// we add a clickable link
myPDF.addLink (70, 4, 52, 16, new HTTPLink ("http://alivepdf.bytearray.org"));

By testing the code above, we end up this time with a PDF with our clickable text on the first page
redirecting to alivepdf.bytearray.org when clicked.

iment v

N &g 9 Eg) (% =) stickyNote || TextEdits + ¢

Here is some text !

Figure 2.8
Clickable text available on the first page.

Let’s add an image now. We have our embedded bitmap associated to the class Logo, we simply pass
this Bitmap object to the addImage API and we are done :

// we add a page
myPDF.addPage () ;

// create a BitmapData object
var pixels:Logo = new Logo (0,0);

// embeds it into a Bitmap
var logoImage:Bitmap = new Bitmap (pixels);

// add it to the current page
myPDF.addImage (logoImage);

The next image illustrates the result :

What can you do with bytes ? — Chapter 2 — Everyday bytes

ns v {5y Multimedia ~ /? Comment ~

Find 'kﬁlmﬁ%[@lﬁ?

Figure 2.9
Image inside the PDF.

By using the FileReference.save API, we can very simply save our PDF locally with the
following code :

var save:FileReference = new FileReference();
stage.addEventListener (MouseEvent.CLICK, saveImage);
function savelImage (e:MouseEvent) :void

{

// triggers the saving of the PDF
save.save (myPDF.save (Method.LOCAL), "myPDF.pdf");

}

We now have a nice solution for PDF dynamic generation on the client-side. Much appreciated for
the bandwidth saving and code reduction, as no server-side scripting is involved.

What can you do with bytes ? — Chapter 2 — Everyday bytes

From bytes to sound

I personally love generating files through the use of the ByteArray API. It is always cool to see the
Flash Player generating a valid file that the user will be able to save to his computer and use
immediately. In the following example, we are going to write a simple WAV encoder.

In reality, there is no real encoding algorithm involved here, but just a way to pack the raw PCM
samples according to the WAV specification described below (taken from the following link :
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/) :

The Canonical WAVE file format

. File offset Field Size
field hame
endian — (hytes) (bytes)
big ° ChunkID 4 The "RIFF” chunk descriptor
. 4 -
little . ChunksSize 4 The Format of concern here is
big Format 4 "WAVE", which requires two
; 12 sub-chunks: "fmt * and "data"
hig Subchunk11D 4 1
16
little Subchunk1 Size 4
20
little AudioFormat 2
: 22 The "fmt " sub-chunk
little NumcChannels 2
little = SampleRate 4 describes the format of
; 28 the sound information in
Itie . ByteRate 4 the data sub-chunk
little BlockAlign 2
; 34
little BitsPerSample = J
36
hig SubchunkzID 4 A
; 40 The "data” sub-chunk
little Subchunk2 Size 4
44 @ Indicates the size of the
little @ sound information and
data % contains the raw sound
< data
-
(a]
Figure 2.10

The WAV format.

We are going to focus on the WAV encoder and understand how it works. At the end of this section,
saving a sound to our hard drive will be as easy as this :

// volume in the final WAV file will be downsampled to 50%
var volume:Number = .5;

// we create the WAV encoder to be used by MicRecorder
var wavEncoder:WaveEncoder = new WaveEncoder (volume) ;

// we create the MicRecorder object which does the Jjob

What can you do with bytes ? — Chapter 2 — Everyday bytes

var recorder:MicRecorder = new MicRecorder (wavEncoder);

// starts recording
recorder.record() ;

// stop recording
recorder.stop () ;

Same here, by using FileReference or a network API, you will be able to save the bytes to any
location and reuse it. As with the PDF format, generating a file means that you should follow the
specification of the file format. Of course, generating a file without any specification requires you to
reverse engineer the specification. A task which can be really difficult for some formats. In our case
today, it will be pretty easy, we will follow the WAV specification and create at runtime a valid
WAV file.

To achieve this, we need first to retrieve the bytes we want to save. Those bytes will come from the
Flash Player as raw PCM samples. Thanks to the new SampleDataEvent introduced in Flash Player
10.1, we will be able to listen to such an event, store the raw sound data coming from the
Microphone and then pack those bytes into a WAV container :

// retrieve the Microphone
var microphone:Microphone = Microphone.getMicrophone () ;

// listen when data is coming in the Microphone object
microphone.addEventListener (SampleDataEvent.SAMPLE DATA, onSampleData);

The rate property of the Microphone object is set to 44, to match the 44-kHz sample rate used by
Sound objects :

// retrieve the Microphone
var microphone:Microphone = Microphone.getMicrophone () ;

// make the samples rate match the Sound object requirements
microphone.rate = 44;

// listen when data is coming in the Microphone object
microphone.addEventListener (SampleDataEvent.SAMPLE DATA, onSampleData);

// our buffer to store the raw PCM data
var buffer:ByteArray = new ByteArray() ;

function onSampleData (event:SampleDataEvent) :void
{

// as long as there are bytes coming in, store them
while (event.data.bytesAvailable > 0)
buffer.writeFloat (event.data.readFloat()) ;

}

As soon as the Microphone gets data, we start storing this in our buffer. Those bytes contains raw
PCM samples. Not that we are storing the bytes here as mono.

To have a better understanding of the whole process, let’s have a look at our complete code :

import flash.events.MouseEvent;
import flash.events.SampleDataEvent;

// retrieve the Microphone
var microphone:Microphone = Microphone.getMicrophone () ;

// make the samples rate match the Sound object requirements
microphone.rate = 44;

// listen when data is coming in the Microphone object

What can you do with bytes ? — Chapter 2 — Everyday bytes

microphone.addEventListener (SampleDataEvent.SAMPLE DATA, onSampleData);

// our buffer to store the raw PCM data
var buffer:ByteArray = new ByteArray();

function onSampleData (event:SampleDataEvent) :void
{
// as long as there are bytes coming in, store them
while (event.data.bytesAvailable > 0)
buffer.writeFloat (event.data.readFloat());
}

stage.addEventListener (MouseEvent.CLICK, onClick) ;

function onClick (e:MouseEvent) :void

{
// stop writing data coming in
microphone.removeEventListener (SampleDataEvent.SAMPLE DATA, onSampleData);
// reset position
buffer.position = 0;
// create an empty Sound object
var sound:Sound = new Sound() ;
// listen when the Sound object requests sound data
sound.addEventListener (SampleDataEvent.SAMPLE DATA, playbackSampleHandler) ;
sound.play() ;
}
function playbackSampleHandler (event:SampleDataEvent) :void
{
for (var i:int = 0; i < 8192 && buffer.bytesAvailable > 0; i++)
{
// write the data stores back in the speakers when the Sound object requests samples
var sample:Number = buffer.readFloat() ;
event.data.writeFloat (sample) ;
event.data.writeFloat (sample) ;
}
}

A little while ago, I built a tiny library (MicRecorder - http://www .bytearray.org/?p=1858) to provide
such a functionality. As mentioned earlier, capturing audio from the microphone and saving it as a
WAV file, is then limited to the following straightforward code :

// volume in the final WAV file will be downsampled to 50%
var volume:Number = .5;

// we create the WAV encoder to be used by MicRecorder
var wavEncoder:WaveEncoder = new WavekEncoder (volume);

// we create the MicRecorder object which does the Jjob
var recorder:MicRecorder = new MicRecorder (wavEncoder);

// starts recording
recorder.record() ;

// stop recording
recorder.stop () ;

Let’s have a look at how we can provide this feature as a library. Below is the description of our
MicRecorder class :

package org.bytearray.micrecorder
{

import flash.events.Event;

What can you do with bytes ? — Chapter 2 — Everyday bytes

import flash.events.EventDispatcher;
import flash.events.SampleDataEvent;
import flash.events.StatusEvent;
import flash.media.Microphone;
import flash.utils.ByteArray;

import flash.utils.getTimer;

import org.bytearray.micrecorder.encoder.WaveEncoder;
import org.bytearray.micrecorder.events.RecordingEvent;

VAks
* Dispatched during the recording of the audio stream coming from the microphone.
*

* (@eventType org.bytearray.micrecorder.RecordingEvent.RECORDING
*

* * (@dexample

* This example shows how to listen for such an event

* <div class="listing">

* <pre>

*

* recorder.addEventListener (RecordingEvent.RECORDING, onRecording);
* </pre>

* </div>

*/

[Event (name="'recording', type='org.bytearray.micrecorder.RecordingEvent')]

VAks
* Dispatched when the creation of the output file is done.

*

* @eventType flash.events.Event.COMPLETE

*

* @example

* This example shows how to listen for such an event
* <div class="listing">

* <pre>

*

* recorder.addEventListener (Event.COMPLETE, onRecordComplete);
* </pre>

* </div>

*/

[Event (name="'complete', type='flash.events.Event')]

Jx
* This tiny helper class allows you to quickly record the audio stream coming from the Microphone ai
save this as a physical file.
* A WavEncoder is bundled to save the audio stream as a WAV file
* @author Thibault Imbert - bytearray.org
* @version 1.2
*
*/
public final class MicRecorder extends EventDispatcher
{
private var gain:uint;
private var rate:uint;
private var silencelevel:uint;
private var timeOut:uint;
private var difference:uint;
private var microphone:Microphone;
private var buffer:ByteArray = new ByteArray();
private var output:ByteArray;
private var encoder:IEncoder;

private var completeEvent:Event = new Event (Event.COMPLETE) ;
private var recordingEvent:RecordingEvent = new RecordingEvent (RecordingEvent.RECORDING, 0);

/**

*

* @param encoder The audio encoder to use

What can you do with bytes ? — Chapter 2 — Everyday bytes

* @param microphone The microphone device to use
* @param gain The gain

* @param rate Audio rate

* @param silencelevel The silence level

* @param timeOut The timeout

*

*

/
public function MicRecorder (encoder:IEncoder, microphone:Microphone=null, gain:uint=100,
rate:uint=44, silencelevel:uint=0, timeOut:uint=4000)

{
_encoder = encoder;
_microphone = microphone;
_gain = gain;
_rate = rate;
_silencelevel = silencelevel;
_timeOut = timeOut;

}
Jx*

* Starts recording from the default or specified microphone.
* The first time the record() method is called the settings manager may pop-up to request acce
the Microphone.
*/
public function record() :void

{
if (microphone == null)
_microphone = Microphone.getMicrophone () ;

_difference = getTimer();

_microphone.setSilencelLevel (_silencelLevel, timeOut);
_microphone.gain = gain;

_microphone.rate = rate;

_buffer.length = 0;

_microphone.addEventListener (SampleDataEvent.SAMPLE DATA, onSampleData);
_microphone.addEventListener (StatusEvent.STATUS, onStatus);

private function onStatus (event:StatusEvent) :void

{

_difference = getTimer();

}
Jx*

* Dispatched during the recording.
* (@param event
*/
private function onSampleData (event:SampleDataEvent) :void

{

_recordingEvent.time = getTimer() - difference;
dispatchEvent (recordingEvent);

while (event.data.bytesAvailable > 0)
_buffer.writeFloat (event.data.readFloat());

}
Jx*

* Stop recording the audio stream and automatically starts the packaging of the output file.
*/
public function stop() :void

{

_microphone.removeEventListener (SampleDataEvent.SAMPLE DATA, onSampleData);

_buffer.position = 0;
_output = encoder.encode(buffer, 1);

What can you do with bytes ? — Chapter 2 — Everyday bytes

dispatchEvent (completeEvent);
}
/**

*

* (@return
*

*/
public function get gain() :uint
{
return gain;

}
/**

*

* @param value
*

*/
public function set gain(value:uint) :void
{
_gain = value;

}
/**

*

* (@return
*

*/
public function get rate() :uint
{
return rate;

}
/**

*

* @param value
*

*/
public function set rate(value:uint) :void
{
_rate = value;

}
/**

*

* (@return
*

*/
public function get silencelevel () :uint
{
return silencelevel;

}
/**

*

* @param value
*

*/
public function set silencelevel (value:uint) :void
{
_silencelevel = value;

}

/**

What can you do with bytes ? — Chapter 2 — Everyday bytes

* (@return
*

*/
public function get microphone () :Microphone
{
return microphone;

}
/**

*

* @param value
*

*/

{

_microphone = value;

}
/**

*

* (@return
*

*/
public function get output () :ByteArray
{
return output;

}
/**

*

* @return
*
*/
public override function toString() :String
{
return " [MicRecorder gain=" + gain + "
timeOut=" + timeOut + " microphone:" + microphone +
}
}

}

public function set microphone (value:Microphone) :void

rate=" + rate + " silencelevel=" + silenceLevel

H]vv;

To make this MicRecorder object work, we need our encoder object to pass into its constuctor. First

we define an IEncoder interface :

package org.bytearray.micrecorder
{
import flash.utils.ByteArray;

public interface IEncoder
{
function encode (samples:ByteArray,
}
}

Then we define our WavEncoder class as following :

package org.bytearray.micrecorder.encoder
{

import flash.events.Event;

import flash.utils.ByteArray;

import flash.utils.Endian;

import org.bytearray.micrecorder.IEncoder;

public class WaveEncoder implements IEncoder
{
private static const RIFF:String =
private static const WAVE:String =

"RIFF";
"WAVE” ,.

channels:int=2,

bits:int=16, rate:int=44100) :ByteArray;

What can you do with bytes ? — Chapter 2 — Everyday bytes

private static const FMT:String = "fmt ";
private static const DATA:String = "data";

private var bytes:ByteArray = new ByteArray();
private var buffer:ByteArray = new ByteArray();
private var volume:Number;

/**

*

* @param volume
*
*/
public function WaveEncoder (volume:Number=1)
{
_volume = volume;

}

*

/

@param samples
@param channels
@param bits
@param rate
@return

b S S S

~

public function encode (samples:ByteArray, channels:int=2, bits:int=16, rate:int=44100) :ByteAr
{

var data:ByteArray = create(samples);

_bytes.length = 0;
_bytes.endian = Endian.LITTLE ENDIAN;

_bytes.writeUTFBytes (WaveEncoder.RIFF);
_bytes.writeInt(uint(data.length + 44));
_bytes.writeUTFBytes (WaveEncoder.WAVE) ;
_bytes.writeUTEFBytes (WaveEncoder.FMT);
_bytes.writeInt(uint(16));

_bytes.writeShort(uint(1));

_bytes.writeShort (channels);

_bytes.writelInt(rate);

_bytes.writeInt(uint(rate * channels * (bits >> 3)));
_bytes.writeShort (uint(channels * (bits >> 3)));
_bytes.writeShort (bits);

_bytes.writeUTFBytes (WaveEncoder.DATA) ;
_bytes.writelnt(data.length);

_bytes.writeBytes(data);

_bytes.position = 0;

return bytes;

}

private function create(bytes:ByteArray) :ByteArray
{
_buffer.endian = Endian.LITTLE ENDIAN;
buffer.length = 0;

gytes.position 0;

while (bytes.bytesAvailable)
_buffer.writeShort (bytes.readFloat() * (0x7fff * volume));
return buffer;

What can you do with bytes ? — Chapter 2 — Everyday bytes

The interesting part is the encode function which creates the header and pack the raw PCM bytes
inside the WAV container. See, as with the SWF processing, we followed carefully the WAV
specification and implemented a WAV encoder in a few lines of code.

Now, to be honest there is one thing that may drive you crazy if you had to recreate this WAV
encoder. There is a magic number involved here, do you see it ?

while(bytes.bytesAvailable)
_buffer.writeShort (bytes.readFloat () * (OX7£££ * ~volume));

The WAYV specification we have here does not really inform us about how we needto write the PCM
samples in the WAV file. According to the picture (figure 2.10), we need to write the data. Not very
clear. By reading the website (https://ccrma.stanford.edu/courses/422/projects/WaveFormat/) where
this picture is extracted from, we can read at the bottom of the page, the following note :

8-bit samples are stored as unsigned bytes, ranging from 0 to 255. 16-bit samples are stored as 2's-
complement signed integers, ranging from -32768 to 32767 .

If we convert the hexadecimal value Ox7FFF to decimal, we realize that this is the value we use here.
The raw PCM samples we are reteieveing from the microphone are ranging from -1 to 1, so
remember that they need to be multiplied by this magic value to be brought to life in your speakers.

By using FileReference or a network API, you will be able to save the bytes to any location. The
following code illustrates how we would do this thanks to MicRecorder :

var save:FileReference:FileReference = new FileReference () :;

private function onSave (e:Event) :void
{

save.save (recorder.output, "recorded.wav");

}

Of course, more sound format can be played or generated dynamically. A little while ago, when AIR
2.0 was introduced, I published an Adobe AIR application (http://www .bytearray.org/?p=1142)
encoding the raw PCM waves to MP3 through the use of the Lame MP3 library. I was able to the
native library through the use of the native process feature.

More recently, Hook (a digital production company) released on their blog an OGG Vorbis
encode/decoder library ported to Flash thanks to Alchemy. For more details, make sure to check the
following address : http://labs.byhook.com/2011/02/22/ogg-vorbis-encoder-decoder-for-flash/

In the following section, we will be playing with a brand new API which was added in the latest
developments builds of the Flash Player.

What can you do with bytes ? — Chapter 2 — Everyday bytes

From compressed bytes to sound

Recently, we introduced at Adobe, a new program called Incubator
(http://1abs.adobe.com/technologies/flashplatformruntimes/incubator/). This idea behind this initiative
is to give developers early access to features we are considering for future releases and to get
feedback from the community, Before Flash Player 11, there was no way to inject external sound
bytes into a Sound object. Let’s say you had an MP3 byte stream, you would not be able to inject it
into a Sound object and play it. What people have been doing for the past years is generating an
empty SWF file, inject the sound in it, and play it through the 10adBytes APIL.

In the Incubator builds (version 11.0.0.58 available here for download :
http://labs.adobe.com/downloads/flashplatformruntimes_incubator.html) we introduced a new API
available on the sound object which allows us to inject an MP3 stream into the Sound object.
Remember that this API may change in the future or may never be released, but well, it is fun, so let’s
try it!

Here is the signature of the method we are going to try, this API loads an MP3 sound data from
aByteArray into a Sound object :

|loadMP3FromByteArray(bytes:ByteArray, bytesLength:uint) :void

In the code below, we use a FileReference object to select a file locally and inject it to the Sound
object through the 1oadMP3FromByteArray APIL:

package

{
import flash.display.Sprite;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.media.Sound;
import flash.net.FileReference;

public class TestLoadSound extends Sprite

{
private var file:FileReference = new FileReference();
private var sound:Sound = new Sound() ;
private var t:String;

public function TestLoadSound ()

{
stage.addEventListener (MouseEvent.CLICK,onClick) ;
file.addEventListener (Event.SELECT, onSelect);
file.addEventListener (Event .COMPLETE, onComplete);

}

private function onComplete (event:Event) :void

{
// inject the selected sound bytes
sound.loadMP3FromByteArray(file.data, file.data.length);
sound.play() ;

}

private function onSelect (event:Event) :void

{
file.load();

}

private function onClick (event:MouseEvent) :void

{

file.browse () ;

}

What can you do with bytes ? — Chapter 2 — Everyday bytes

What can you do with bytes ? — Chapter 2 — Everyday bytes

When the file is selected, the sound plays nicely. Done! Pretty cool hu?

Ok, let’s have a look now at how we can parse a more complex data structure. We are using Flash, so
let’s have a look at how we can parse a SWF file. Adobe published the SWF specification a few years
ago, we are going to rely on it to parse a SWF and see what is inside.

Parsing binary data

Parsing binary data can be very useful. In the following example, we are going to parse a SWF file
and extract information we need from it. Since the introduction of ActionScript 3 in Flash Player 9,
the ApplicationDomain class allows developers to use and isolate and retrieve class definitions at
runtime.

The SWF example

The limitation is that there is no way to actually extract definitions you do not know the names. For
instance, let’s say that you know the name of a definition, you can just use the
ApplicationDomain.getDefinition APIL Now, let’s say we need to retrieve any linked classes
attached to a symbol in the library of a SWF, to iterate through them, retrieve each definition, and use
them. The data we are looking for is actually the SYMBOL class tag defined in a SWF.

In order to achieve this, we need to understand how a SWF is structured, as always the first thing to
do is to study the file format specification you are going to work with. If there is no specification
available publicly, then your task can be tougher depending on the file format. Fortunately, the SWF
specification is available at this link : http://www.adobe.com/devnet/swf.html

Let’s take a look at how a SWF is structured. The most important thing to start with is the file header.
It cover actually a lot of information. The header of a file is what defines the type of file and what to
expect in it.

Here is below, according to the official SWF specification, the header of a SWF :

Field Type Comment

Signature UI8 Signature byte :

“F” indicates uncompressed
“C” indicates compressed
(SWF 6 and later only

Signature UI8 Signature byte always “W

Signature UI8 Signature byte always “S”

What can you do with bytes ? — Chapter 2 — Everyday bytes

Version UI8 Single byte file version (for
example, 0x06 for SWF 6

FileLength UI32 Length of entire file in bytes.

FrameSize RECT Frame size in twips

FrameRate Ull6 Frame delay in 8.8 fixed
number of frames per second.

FrameCount Ul16 Total number of frames in file.

As you can see, the types here are either unsigned bytes (UI8) or unsigned integers (UI16) and we can
see what to expect in the comment column. As previously covered, Flash Player does not handle
those types at the ActionScript level, this means that we will need to use a uint (32 bit) to store a UI8
(8 bit uint) which is a waste of memory but we still do not have today more primitive types in AS3 to

work with such data.

Let’s make a simple test, you are now familiar with all the binary concepts and the ByteArray APIs.
We first need to grab some SWF bytes to work with. Remember tha from an existing SWF you can

access at runtime the current SWF bytes your code runs into.

To do this, just use the bytes property on the LoaderInfo object available from any
DisplayObject attached to the SWF display list, here we will be using the stage :

import flash.display.Sprite;

addChild (s);

// outputs : FWSb
trace (s.loaderInfo.bytes);

import flash.display.DisplayObject;

var s:DisplayObject = new Sprite();

// outputs : [object ApplicationDomain]
trace (s.loaderInfo.applicationDomain);

Notice how the Flash Player automatically tries to describe to a St ring representation the ByteArray
retrieved through the bytes property. We can see in the outputs the first characters like FWS.

Now, let’s reference the bytes and try retrieving the first characters and also the SWF version, to do
this, it is very trivial. We will just use the ByteArray.readUTFBytes () method to retrieve the

first 3 chars and we should get our string :

import flash.utils.ByteArray;

// outputs : [object ApplicationDomain]
trace (this.loaderInfo.applicationDomain);

What can you do with bytes ? — Chapter 2 — Everyday bytes

// grab the current SWF bytes
var swiBytes:ByteArray = this.loaderInfo.bytes;

// outputs : FWS
trace (swfBytes.readUTFBytes(3));

We actually retrieved 3 bytes, which correspond to the signature as ech byte represents one char. We
end up with a String containing « FWS ». Pretty simple, right ?

To grab the current SWF version we could just keep consuming the bytes, as we can see on the SWF
specification, the SWF version follows the signature, so let’s keep reading the next byte :

import flash.utils.ByteArray;

// outputs : [object ApplicationDomain]
trace (this.loaderInfo.applicationDomain);

// grab the current SWF bytes
var swiBytes:ByteArray = this.loaderInfo.bytes;

// outputs : FWS
trace (swfBytes.readUTEBytes(3));

// outputs : 11
trace (swfBytes.readUnsignedByte())

We actually detect here which SWF version has be compiled. Here we can see that our SWF version
is 11 which is the SWF version being used for Flash Player 10.2. Then, according to the specification,
we have the size of the SWF in bytes. As you can imagine, this is useful when you want to read the
rest of the file or just separate multiple SWF’s from one block of bytes.

The specification clearly mentions that this is where it started getting tricky :

The next four bytes represent an unsigned 32-bit integer indicating the file size. Here’s where it starts
getting tricky and machine architecture gets involved. The next four bytes are Ox4F000000 so that
would imply that the file length is 1325400064 bytes, a very large number which doesn’t make sense.
What we failed to do is swap all the bytes.

In reality, it is not that hard, we just need to keep in mind endianness and respect it, a concept that we
covered in the first chapter (The first bits) of this book. So we just read the next 4 bytes (UI32)
in little-endian form.

Note that we switch back to big endian once we are done with the file length :

import flash.utils.ByteArray;

// outputs : [object ApplicationDomain]
trace (this.loaderInfo.applicationDomain);

// grab the current SWF bytes
var swiBytes:ByteArray = this.loaderInfo.bytes;

// outputs : FWS
trace (swfBytes.readUTEBytes(3));

// outputs : 11
trace (swfBytes.readUnsignedByte());

swfBytes.endian = Endian.LITTLE ENDIAN;

What can you do with bytes ? — Chapter 2 — Everyday bytes

// outputs : 2372
trace (swfBytes.readUnsignedInt());

swfBytes.endian = Endian.BIG_ENDIAN;
Now, let’s read what the specification also says about the SWF header :

CWS indicates that the entire file after the first 8 bytes (that is, after the FileLength field) was
compressed by using the ZLIB open standard. The data format that the ZLIB library uses is described
by Request for Comments (RFCs) documents 1950 to 1952. CWS file compression is permitted in
SWF 6 or later only.

Does that ring a bell 7 As we just saw, the signature informs us about the compression being used for
the SWEF. If the first char of the header signature is C (0x43) it means we need to uncompress the data
before going further. The good news is that we actually have native compression or uncompression
on the ByteArray class, thanks to the compress and uncompress APIs !

We can then add the following change in our code, to make sure that if the SWF is compressed, we

uncompress it properly before reading further :

import flash.utils.ByteArray;

// outputs : [object ApplicationDomain]
trace (this.loaderInfo.applicationDomain);

// grab the current SWF bytes
var swiBytes:ByteArray = this.loaderInfo.bytes;

// stores the compressed state (C or F)
var compressed:uint = swfBytes.readUnsignedByte () ;

// skip WS
swfBytes.position += 2;

// outputs : 11
trace (swfBytes.readUnsignedByte());

swfBytes.endian = Endian.LITTLE ENDIAN;

// outputs : 2372
trace (swfBytes.readUnsignedInt ());

swfBytes.endian = Endian.BIG ENDIAN;

// creates an empty ByteArray to store the uncompressed SWF bytes
var swfBuffer:ByteArray = new ByteArray();

// copies the bytes
swfBytes.readBytes (swfBuffer);

const COMPRESSED:uint = 0x43;
// if the SWF we are working on is compressed, we uncompress the swfBuffer

if (compressed == COMPRESSED)
swfBuffer.uncompress () ;

What can you do with bytes ? — Chapter 2 — Everyday bytes

The next part of the stream, what is called the RECT in the specification is tricky to parse. Let’s have
a closer look at the details of the RECT chunk. In the specification here is what is said :

Field Type Comment

Nbits UB[5] Bits used for each subsequent
field.

xMin SB[Nbits] X minimum position for

rectangle in twips.

xMax SB[Nbits] X maximum position for

rectangle in twips.

yMin SB[Nbits] y minimum position for

rectangle in twips.

yMax SB[Nbits] y maximum position for

rectangle in twips.

Now, let’s see what a RECT looks like in binary notation :

0111 1000 0000 0000 0000 0101 0101 1111 0000 0000
0000 0000 0000 1111 1010 0000 0000 0000

There are five fields in a rectangle structure: Nbits, Xmin, Xmax, Ymin, Ymax. The unsigned Nbits
field occupies the first five bits of the rectangle and indicates how long the next four signed fields
are :

01111 -> 15

In this case, this means that each attribute, basically describing our stage dimensions, requires 15-bit
space:

000000000000000 <« 0 = Xmin
010101011111000 <« 11000 = Xmax
000000000000000 <« 0 = ¥Ymin
001111101000000 <« 8000 = Ymax

Which gives us the following code to parse the RECT and the frame rate and frame count :

import flash.utils.ByteArray;

// outputs : [object ApplicationDomain]
trace (this.loaderInfo.applicationDomain);

// grab the current SWF bytes
var swfBytes:ByteArray = this.loaderInfo.bytes;

What can you do with bytes ? — Chapter 2 — Everyday bytes

// stores the compressed state (C or F)
var compressed:uint = swfBytes.readUnsignedByte () ;

// skip WS
swfBytes.position += 2;

// outputs : 11
trace (swfBytes.readUnsignedByte());

swfBytes.endian = Endian.LITTLE ENDIAN;

// outputs : 2372
trace (swfBytes.readUnsignedInt ());

swfBytes.endian = Endian.BIG ENDIAN;

// creates an empty ByteArray to store the uncompressed SWF bytes
var swfBuffer:ByteArray = new ByteArray();

// copies the bytes
swiBytes.readBytes (swfBuffer);

const COMPRESSED:uint = 0x43;
// 1if the SWF we are working on is compressed, we uncompress the swfBuffer
if (compressed == COMPRESSED)

swfBuffer.uncompress () ;

var firstBRect:uint = swfBuffer.readUnsignedByte () ;

var size:uint = firstBRect >> 3;
var offset:uint = (size-3);

var threeBits:uint = firstBRect & 0x7;
var buffer:uint = 0;

var pointer:uint = 0;
var source:uint = swfBuffer.readUnsignedByte() ;

var xMin:uint (readBits (offset) | (threeBits << offset)) / 20;
var yMin:uint = readBits(size) / 20;
var wMin:uint = readBits(size) / 20;
var hMin:uint = readBits(size) / 20;

// outputs : 0 550 0 400
trace (xMin, yMin, wMin, hMin);

var frameRate:uint

swfBuffer.readShort() & OxFF;
var numFrames:uint = swfBuffer.readShort() ;
var frameCount:uint = (numFrames >> 8) & OxXFF | ((numFrames & OxFF) << 8);

// outputs : 24 1
trace (frameRate, frameCount);

swfBuffer.endian = Endian.LITTLE ENDIAN;

function readBits (numBits:uint) :uint

{
buffer = 0;
var currentMask:uint;
var bitState:uint;
// for the number of bits to read
for (var i:uint = 0; i<numBits; i++)
{

// we create a mask which goes from left to right

What can you do with bytes ? — Chapter 2 — Everyday bytes

currentMask = (1 << 7) >> pointer++;
// we store each bit state resulting from the mask operation
bitState = uint((source & currentMask) != 0);
// we store that bit state by recreating a value
buffer |= bitState << ((numBits - 1) - i);
// when we are running out of byte we read a new one and reset the pointer for the mask
if (pointer == 8)
{
source = swfBuffer.readUnsignedByte() ;
pointer = 0;
}
}

return buffer;

}

So you may be thinking, well, what is going on here. A lot of code, but it is actually not hard, we just
need to go step by step. After reading the SWF version we need to read the file size in little endian
form, we could do the conversion manually but here we use the endian property to illustrate the
value of it.

Right after this, we just parsed the RECT chunk, We did this through the readBits function we
defined, which allows us to read a specific number of bits passed as parameter. As we saw in the
previous chapter, there is no native API in the Flash Player allowing you to read a specific number of
bits, to do this, we need to write our own helper function.

As defined in the table before, the RECT structure begins with 5 bits defining the number of bits that
we need to read for each attribute (xMin, xMax, yMin and yMax). So we first read those 5 bits from
the byte by a simple shifting to the right :

|var size:uint = firstBRect >> 3;

As we only need the first 5 bits, the 3 last bits can be ignored here, which gives us the following
result :

| 01111 -> 15

Our readBits function will start reading from the next byte, so we need to store those 3 shifted bits
and inform the readBi ts function that we need to read 15 bits minus 3 for the first attribute (xMin) :

var firstBRect:uint = SWEFBytes.readUnsignedByte () ;

var size:uint = firstBRect >> 3;
var offset:uint = (size-3);

var threeBits:uint = firstBRect & 0x7;
Then we read our 4 attributes. Note how we rebuild our first attribute from the 12-bit (15-3) read and

shift the 3 bits we already saved to recompose our final value :

var source:uint = SWFBytes.readUnsignedByte() ;

var xMin:uint
var yMin:uint
var wMin:uint
var hMin:uint

(readBits (offset) | (threeBits << offset)) / 20;
readBits (size) / 20;
readBits (size) / 20;
readBits (size) / 20;

// outputs : 0 550 0 400
trace (xMin, yMin, wMin, hMin);

What can you do with bytes ? — Chapter 2 — Everyday bytes

Then we parsed the frame rate and frame count. Not that for the frame count, we did the conversion
from big endian to little endian manually :

var frameRate:uint = SWEBytes.readShort() & OxFF;

var numFrames:uint SWEBytes.readShort () ;
var frameCount:uint = (numFrames >> 8) & OxFF | ((numFrames & OxFF) << 8);

// outputs : 24 1
trace (frameRate, frameCount);

We are now done with the header, let’s see what is next. Here is what the SWF specification says
about what is next :

Following the header is a series of tagged data blocks. All tags share a common format, so any
program parsing a SWF file can skip over blocks it does not understand. Data inside the block can
point to offsets within the block, but can never point to an offset in another block. This ability enables
tags to be removed, inserted, or modified by tools that process a SWF file.

Again, from the SWF specification, we can find the folllowing figure explaining how a SWF is
structured :

Header "'“”:'g"“"‘ Tag Tag Tag End tag

SWF File Structure

Figure 2.11
SWEF structure.

So let’s define our SWETag object so that we can better work with a tag in our code :

package
{
public class SWFTag
{
private var _tag:uint;
private var offset:uint;
private var endOffset:uint;

public function SWFTag (tag:uint, offset:uint)
{

_tag = tag;

_offset = offset;
}

public function get tag() :uint
{
return tag;

}

public function set tag(tag:uint) :void
{
}

public function get offset () :uint
{

return offset;

}

What can you do with bytes ? — Chapter 2 — Everyday bytes

public function set offset (offset:uint) :void

{
_offset = offset;

}

public function get endOffset () :uint
{

return _endOffset;

}

public function set endOffset (endOffset:uint) :void
{

_endOffset = endOffset;
}

And here is our final code :

import flash.utils.ByteArray;

// outputs : [object ApplicationDomain]
trace (this.loaderInfo.applicationDomain);

// grab the current SWF bytes
var swiBytes:ByteArray = this.loaderInfo.bytes;

// stores the compressed state (C or F)
var compressed:uint = swfBytes.readUnsignedByte () ;

// skip WS
swfBytes.position += 2;

// outputs : 11
trace (swfBytes.readUnsignedByte());

swfBytes.endian = Endian.LITTLE ENDIAN;

// outputs : 2372
trace (swfBytes.readUnsignedInt ());

swfBytes.endian = Endian.BIG ENDIAN;

// creates an empty ByteArray to store the uncompressed SWF bytes
var swfBuffer:ByteArray = new ByteArray();

// copies the bytes
swiBytes.readBytes (swfBuffer);

const COMPRESSED:uint = 0x43;
// 1if the SWF we are working on is compressed, we uncompress the swfBuffer
if (compressed == COMPRESSED)

swfBuffer.uncompress () ;

var firstBRect:uint = swfBuffer.readUnsignedByte() ;

var size:uint = firstBRect >> 3;
var offset:uint = (size-3);

var threeBits:uint = firstBRect & 0x7;
var buffer:uint = 0;

var pointer:uint = 0;
var source:uint = swfBuffer.readUnsignedByte() ;

var xMin:uint = (readBits (offset) | (threeBits << offset)) / 20;

What can you do with bytes ? — Chapter 2 — Everyday bytes

var yMin:uint = readBits(size) / 20;
var wMin:uint readBits (size) / 20;
var hMin:uint = readBits(size) / 20;

// outputs : 0 550 0 400
trace (xMin, yMin, wMin, hMin);

var frameRate:uint swfBuffer.readShort () & OxXFF;

var numFrames:uint = swfBuffer.readShort () ;
var frameCount:uint = (numFrames >> 8) & OxFF | ((numFrames & OxFF) << 8);

// outputs : 24 1
trace (frameRate, frameCount);

swfBuffer.endian = Endian.LITTLE ENDIAN;
var parsedTags:Vector.<SWFTag> = browseTables () ;

function readBits (numBits:uint) :uint

{
buffer = 0;
var currentMask:uint;
var bitState:uint;
// for the number of bits to read
for (var i:uint = 0; i<numBits; i++)
{

// we create a mask which goes from left to right

currentMask = (1 << 7) >> pointer++;
// we store each bit state resulting from the mask operation
bitState = uint ((source & currentMask) != 0);

// we store that bit state by recreating a value
buffer |= bitState << ((numBits - 1) - 1);
// when we are running out of byte we read a new one and reset the pointer for the mask
if (pointer ==)
{
source = swfBuffer.readUnsignedByte() ;
pointer = 0;

}

return buffer;

function browseTables () :Vector.<SWETag>
{
var currentTag:int;
var step:int;
var dictionary:Vector.<SWETag> = new Vector.<SWFTag>() ;
var infos:SWETag;

while ((currentTag = ((swfBuffer.readShort() >> 6) & Ox3FF)) != 0)
{

infos = new SWETag (currentTag, swfBuffer.position);

swfBuffer.position -= 2;
step = swfBuffer.readShort () & O0x3F;

trace (currentTag);

if (step < Ox3F)
{

swfBuffer.position += step;

} else

{
step = swfBuffer.readUnsignedInt () ;
infos.offset = swfBuffer.position;

What can you do with bytes ? — Chapter 2 — Everyday bytes

swfBuffer.position += step;

}

infos.endOffset = swfBuffer.position;
dictionary.push (infos);

}

return dictionary;

var linkedSymbols:Vector.<String> = new Vector.<String>();
var symbolClassTag:uint = 76;
for each (var tag:SWETag in parsedTags)

if (tag.tag == symbolClassTag)

{
var tagOffset:uint = tag.offset;
swfBuffer.position = tagOffset;
var count:uint = swfBuffer.readShort();

for (var i:uint = 0; i< count; i++)
{
swfBuffer.readUnsignedShort () ;

var char:uint = swfBuffer.readByte();
var className:String = new String();

while (char !'= 0)

{
className += String.fromCharCode (char) ;
char = swfBuffer.readByte();

}

linkedSymbols.push (className);
}

// outputs : Symboll, Symbollcopy,parse fla.MainTimeline
trace (linkedSymbols);

Let’s output the current tag being introspected, in the following code we add a trace statement for
currentTag

function browseTables () :Vector.<SWETag>
{
var currentTag:int;
var step:int;
var dictionary:Vector.<SWETag> = new Vector.<SWFTag>() ;
var infos:SWETag;

while ((currentTag = ((SWEBytes.readShort () >> 6) & Ox3FF)) != 0)
{
infos = new SWETag (currentTag, SWEBytes.position);

SWEBytes.position -= 2;
step = SWFBytes.readShort() & Ox3F;

trace (currentTag);
if (step < Ox3F)

{
SWEBytes.position += step;

} else

What can you do with bytes ? — Chapter 2 — Everyday bytes

step = SWEBytes.readUnsignedInt () ;
infos.offset = SWFBytes.position;
SWEBytes.position += step;

}

infos.endOffset = SWEBytes.position;
dictionary.push (infos);

}

return dictionary;

}

By testing the previous code, we get the following output :

69
77
9

86
82
76
1

That looks pretty good, by looking at the SWF specification we can see that those numbers makes
sense. According to our specification, we are actually reading the tags, and here is the associated
information associated to each tag :

e 1 ShowFrame

* 9 SetBackgroundColor

* 09 FileAttributes

* 76 SymbolClass

e 77 Metadata

* 82 DoABC

e 86 DefineSceneAndFrameLabelData

We now have our index table of tags, by using a simple loop, we can iterate over them and now
exactly where each tag begins and ends in our SWF stream, we basically created an index :

for each (var tag:SWFTag in parsedTags
{

/* outputs :

69 15 19

77 25 1311

9 1313 1316

86 1322 1333

82 1441 4358

76 4364 4415

1 4417 4417

*/

trace (tag.tag, tag.offset, tag.endOffset);

}

We now have a vector filled with SWETag objects, describing where each tag begins and end. That
way, we can now very easily iterate over this vector and just jump into the location we need. In the
following code, we iterate over the Vector .<SWFTag> to find the tag we need (SYMBOLCLASS) :

var symbolClassTag:uint = 76;

for each (var tag:SWFTag in parsedTags

What can you do with bytes ? — Chapter 2 — Everyday bytes

if (tag.tag == symbolClassTag)

{
var tagOffset:uint = tag.offset;
SWEBytes.position = tagOffset;
var count:uint = SWEBytes.readShort();

for (var i:uint = 0; i< count; i++)
{
SWEBytes.readUnsignedShort () ;

var char:uint = SWFBytes.readByte();
var className:String = new String();

while (char !'= 0)

{
className += String.fromCharCode (char) ;
char = SWEBytes.readByte();

}

/* outputs

Symboll

Symbollcopy

parse fla.MainTimeline

*/ -

trace (className);

In order to save the name of the class names we introspected, we created a Vector.<String> to
save our class names:

var linkedSymbols:Vector.<String> = new Vector.<String>();
const symbolClassTag:uint = 76;

for each (var tag:SWETag in parsedTags)
{
if (tag.tag == symbolClassTag)
{
var tagOffset:uint = tag.offset;
SWEBytes.position = tagOffset;
var count:uint = SWEBytes.readShort();

for (var i:uint = 0; i< count; i++)
{
SWEBytes.readUnsignedShort () ;

var char:uint = SWFBytes.readByte() ;
var className:String = new String();

while (char !'= 0)

{
className += String.fromCharCode (char) ;
char = SWEBytes.readByte();

}

linkedSymbols.push (className) ;

}

// outputs : Symboll,Symbollcopy,parse fla.MainTimeline
trace (linkedSymbols) ;

What can you do with bytes ? — Chapter 2 — Everyday bytes

Perfect, now we can now use those names to actually retrieve all linked classes defined in our current
SWF. Now, it gets really valuable when loading runtime shared libraries containing linked classes
that you need to all introspect for instance.

SWFExplorer is a library I wrote a little while ago relies on this code and works the following way :

var explorer:SWFExplorer = new SWFExplorer();
explorer.load (new URLRequest ("library.swf"));
explorer.addEventListener (SWFExplorerEvent.COMPLETE, assetsReady);

function assetsReady (e:SWFExplorerEvent) :void

{

// outputs : org.groove.Funk,org.funk.Soul,org.groove.Jazz
trace(e.definitions);

// outputs : org.groove.Funk,org.funk.Soul,org.groove.Jazz
trace(e.target.getDefinitions ());

// ouputs : 3
trace(e.target.getTotalDefinitions());

Internally, SWFExplorer relies on the same concept and almost same code, you can download the
library here : http://www bytearray.org/?p=175

Advanced SWF parsing

If you want to go further and do much more advanced parsing of SWF files, you can use the great
library from Claus Wahlers called AS3SWF which allows you to completely dissecte a SWF with
support for all SWF tags. Let’s make a simple test. First, download AS3SWF at the following link :
https://github.com/claus/as3swf

Once the SWC linked, create a a blank .fla document and use the following code on the timeline :

import com.codeazur.as3swf.SWF;
var swf:SWEF = new SWF (root.loaderInfo.bytes);

trace (swf) ;

By running the code above, we get the following advanced description :

[SWE']

Header:
Version: 11
FileLength: 197456
FileLengthCompressed: 197456
FrameSize: (550,400)
FrameRate: 24
FrameCount: 1

Tags:

[77:Metadata] <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/">
<xmp:CreatorTool>Adobe Flash Professional CS5.5</xmp:CreatorTool>
<xmp:CreateDate>2011-03-11T00:17:09-08:00</xmp:CreateDate>
<xmp:MetadataDate>2011-03-11T00:17:58-08:00</xmp:MetadataDate>
<xmp:ModifyDate>2011-03-11T00:17:58-08:00</xmp:ModifyDate>

[69:FileAttributes] AS3: true, HasMetadata: true, UseDirectBlit: false, UseGPU: false, UseNetwork:

£

What can you do with bytes ? — Chapter 2 — Everyday bytes

</rdf:Description>
<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc: format>application/x-shockwave-flash</dc:format>
</rdf:Description>
<rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#">
<xmpMM: InstanceID>xmp.11d:CA4C9A390A20681188C6BIB04EIIE63C</xmpMM: InstanceID>
<xmpMM : DocumentID>xmp.did: CA4C9A390A20681188C6BIB04EIIE63C</xmpMM: Document ID>
<xmpMM:OriginalDocumentID>xmp.did:C94C9A390A20681188C6BIBO4EIIEG3C</xmpMM: OriginalDocumentID>
<xmpMM:DerivedFrom rdf:parseType="Resource">
<stRef:instanceID>xmp.11d:C94C9A390A20681188C6BIB04AEIIE63C</stRef:instanceID>
<stRef :documentID>xmp.did:C94C9A390A20681188C6BIB0AEIIE63C</stRef :document ID>
<stRef:originalDocumentID>xmp.did:C94C9A390A20681188C6BIB04EIIEG63C</stRef :originalDocumentID>
</xmpMM: DerivedFrom>
</rdf:Description>
</rdf :RDF>
[09:SetBackgroundColor] Color: #FFEFFF
[86:DefineSceneAndFramelabelDatal
Scenes:
[0] Frame: 0, Name: Scene 1
[82:DoABC] Lazy: true, Length: 196066
[76:SymbolClass]
Symbols:
[0] TagID: 0, Name: as3swc fla.MainTimeline
[01:ShowFrame]

[00:End]
Scenes:

Name: Scene 1, Frame: 0
Frames:

[0] Start: 0, Length: 7

Now, let’s add a single shape on the first frame of an .fla document and retry our code :

[SWE]
Header:
Version: 11
FileLength: 197527
FileLengthCompressed: 197527
FrameSize: (550,400)
FrameRate: 24
FrameCount: 1
Tags:
[69:FileAttributes] AS3: true, HasMetadata: true, UseDirectBlit: false, UseGPU: false, UseNetwork:
[77:Metadata] <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/">
<xmp:CreatorTool>Adobe Flash Professional CS5.5</xmp:CreatorTool>
<xmp:CreateDate>2011-03-11T00:17:09-08:00</xmp:CreateDate>
<xmp:MetadataDate>2011-03-11T00:20:42-08:00</xmp:MetadataDate>
<xmp:ModifyDate>2011-03-11T00:20:42-08:00</xmp:ModifyDate>
</rdf:Description>
<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc: format>application/x-shockwave-flash</dc:format>
</rdf:Description>
<rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#">
<xmpMM: InstanceID>xmp.11d:CB4C9A390A20681188C6BIB04EIIE63C</xmpMM: InstanceID>
<xmpMM : DocumentID>xmp.did: CB4C9A390A20681188C6BIB04EIIE63C</xmpMM: Document ID>
<xmpMM:OriginalDocumentID>xmp.did:C94C9A390A20681188C6BIBO4EIIEG3C</xmpMM: OriginalDocumentID>
<xmpMM:DerivedFrom rdf:parseType="Resource">
<stRef:instanceID>xmp.11d:C94C9A390A20681188C6BIB04EIIE63C</stRef:instanceID>
<stRef :documentID>xmp.did:C94C9A390A20681188C6BIB04EIIE63C</stRef :document ID>
<stRef:originalDocumentID>xmp.did:C94C9A390A20681188C6BIBR04EIIEG63C</stRef :originalDocumentID>
</xmpMM: DerivedFrom>
</rdf:Description>
</rdf :RDF>
[09:SetBackgroundColor] Color: #FFEFFF
[86:DefineSceneAndFramelabelData]
Scenes:

What can you do with bytes ? — Chapter 2 — Everyday bytes

[0] Frame: 0, Name: Scene 1
[83:DefineShape4] ID: 1, ShapeBounds:

FillStyles:
[1] [SWFFillStyle] Type: 0 (solid), Color: ££000000

[2] [SWFFillStyle] Type: 0 (solid), Color: £ffcc9933
LineStyles:
[1] [SWFLineStyle2] Width: 20, StartCaps: round, EndCaps: round, Joint: round, Color: ££000000
ShapeRecords:
[SWFShapeRecordStyleChange] MoveTo: 7500,6079, FillStylel: 2, LineStyle: 1
[SWFShapeRecordStraightEdge] Horizontal: -6240
[SWFShapeRecordStraightEdge] Vertical: -4979
[SWFShapeRecordStraightEdge] Horizontal: 6240
[SWFShapeRecordStraightEdge] Vertical: 4979
[SWFShapeRecordEnd]
[26:PlaceObject2] Depth: 1, CharacterID: 1, Matrix: (1,1,0,0,0,0)
[82:DoABC] Lazy: true, Length: 196066
[76:SymbolClass]
Symbols:
[0] TagID: 0, Name: as3swc fla.MainTimeline
[01:ShowFrame]
[00:End]
Scenes:
Name: Scene 1, Frame: 0
Frames:
[0] Start: 0, Length: 9
Defined CharacterIDs: 1
Depth: 1, CharacterId: 1, PlacedAt: 5, IsKeyframe

(1250,7510,1090,6089) , EdgeBounds: (1260,7500,1100,6079)

Brilliant! You can see that there are no limits to what you can do with the ByteArray API, from
simole object copy, to sound generation of complex parsing, there are lot of things to explore !

Now let’s prepare for the next chapter entitled Encoders where we will dig into file encoders and
unveil the mysteries behind custom file generation. So more cool stuff to come!

