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Series Editor’s Preface

The “Benchmark Papers in Acoustics” constitute a series of volumes that

make available to the reader in carefully organized form important papers in all

branches of acoustics. The literature of acoustics is vast in extent and much of it,

particularly the earlier part, is inaccessible to the average acoustical scientist and

engineer. These volumes aim to provide a practical introduction to this literature,

since each volume offers an expert’s selection of the seminal papers in a given

branch of the subject, that is, those papers which have significantly influenced the

development of that branch in a certain direction and introduced concepts and

methods that possess basic utility in modern acoustics as a whole. Each volume

provides a convenient and economical summary of results as well as a foundation

for further study for both the person familiar with the field and the person who
wshes to become acquainted with it.

Each volume has been organized and edited by an authority in the area to

which it pertains. In each volume tliere is provided an editorial introduction

summarizing the technical significance of the field being covered. Each article

is accompanied by editorial commentary, with necessary explanatory notes, and an
adequate index is provided for ready reference. Articles in languages other than
English are either translated or abstracted in English. It is the hope of the pub-
lisher and editor that these volumes will constitute a working library of the most
important technical literature in acoustics of value to students and research workers.

The present volume. Acoustics: Historical and Philosophical Development, has been
edited by the series editor. It is intended to serve as an introduction to the series
as a whole, in the sense that it emphasizes through its 39 articles the historical and
philosophical growth of the whole subject from very early times up to approximate-
ly 1900. The nature of the book is discussed in greater detail in the Introductory
Essay.

R. Bruce Lindsay
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Introduction

Acoustics: Science, Technology, and Art

Acoustics is the name given to that branch of science which deals with the

phenomena of sound. Appropriately enough in a certain sense the word acoustics

comes from the Greek meaning hearing, though audible sound now forms only a

small part of its field of application. What is sound? When a person opens his mouth

and speaks, he is said to utter sound and another person in the vicinity, with so-called

normal hearing, is said to hear him. The key idea is motion, motion which is first

produced in the air near the mouth of the speaker and is later reproduced near

the ear of the listener through the agency of wave propagation.

We live immersed in a world of sound, produced not only by ourselves and

other living things but also by inanimate nature on all sides. It is not surprising

then that acoustics has a long history and that as a subject it appears in many guises,

impinging as it does on such a wide variety of aspects of our total human experience.

As a way of looking at and manipulating human experience, acoustics functions

as a science, a technology, and an art. What does this mean? Acoustics is a science

in the sense that it strives to describe, create, and understand a portion of human
experience. It describes by seeking to establish order and regularity in the world
of sound and ultimately talking about this by means of acoustical laws, i.e., statements

of patterns of experience like the relation connecting the reverberation time in a
room with its volume and the amount of absorbing material in it. It creates by establish-

ing through experiment new and previously undetected sound phenomena, such
as, for example, the dependence of the range of an underwater sound signal on
the frequency and the mode of variation of sound velocity with depth. Finally it

seeks to understand by developing theories of sound propagation, as for example,
the one relating propagation to the molecular constitution of the medium. In these
respects, acoukics is like all science, and plays its role in the unified structure of
science as a whole.

But this does not exhaust the impact of acoustics on human thought and activity.

1



For acoustics is also a branch of technology, which is deliberate activity on the part

ofman to modify his environment so as to make living more comfortable and interest

ing The scientific principles of acoustics have been applied, for example, to the

recording and reproduction of sound, thus creating a vast new industry which has

served to bnng the pleasures of music to millions who normally would be able to

hear it but rarely

Finally, acoustics is not only a science and a technology but also an art This

ts shown by its concern for music, outofwhich indeed the science ofacoustics developed

and whose associauon with technical acoustics is becoming ever closer

It is clear that acoustics is a wide ranging discipline Its many ramifications are

well displayed in the accompanying ciroilar chart, which will repay attention The

The science of acoustics

2



center circle represents fundamental physical acoustics, the basis of all aspects of

sound. Sound is essentially mechanical radiation in material media. By mechanical

radiation we mean the propagation of disturbances in matter which are connected

with relative motions of the points of the medium. This is to be distinguished from

electromagnetic radiation in which the propagated disturbances are changes in an

electromagnetic field. In the term mechanical radiation we also include the origin

of the disturbance, that is, the source of the sound, as well as its reception by suitable

artificial devices in addition to the ear.

Surrounding the inner circle are two annular rings, containing wedge-shaped

sections. The annular ring region is further divided into four quadrants correspond-

ing to the engineering, earth sciences, life sciences, and arts aspects of the subject. The

segments in the first annular ring refer to the various branches of acoustics into

which acoustical research and the associated professional literature are divided.

Indeed, the various captions here correspond rather closely to the index classification

for an acoustical journal such as theJournal of the Acoustical Society ofAmerica.

The outer annular ring contains captions relating to the various technical and

artistic fields to which acoustics in its many branches has been and is being applied.

Even a casual glance at the chart serves to emphasize the enormous range of application

of acoustics. There is scarcely a phase of human experience into which acoustics

does not enter in some significant measure. Its interdisciplinary character is well

brought outwhen we note that it not only enters into oceanography through underwat-
er sound, but also into speech and music through psychoacoustics and general com-
munication principles. It not only impinges on mechanical engineering via its emphasis

on vibration and shock phenomena, but it makes great contributions to medicine

through the agency of bioacoustics. At the same time it is clear that no chart can
do complete justice to the interdisciplinary ramifications of acoustics. Thus the chart

puts ultrasonics in the upper right quadrant to emphasize its important connection
with engineering problems. But ultrasonics could equally well have been placed also in

the lower left quadrant, since its relation to medicine through its use as a diagnostic

tool as well as in therapy forms a large part of its use.

The diversified character of acoustics exhibited in the chart implies that the
subject must have had a somewhat elaborate historical development. An overall under-
standing of the science of acoustics can best be gained by reference to this development.
It is the purpose of this volume to provide a picture of the growth of ideas of acoustics
in terms of some of the important papers which acoustical scientists and engineers
have published over the years.

The first article is a general review of the history of acoustics. It summarizes
briefly the principal steps in the development of acoustics from the earliest times
m terms of the three fundamental aspects of the production, propagation, and recep-
tion of sound. The principal figures who have contributed to the evolution of our
ideas on sound are named, along with their dates, and brief indications of their
important contributions are provided. Emphasis is laid on the unique role of Lord
Rayleigh, whose great work “The Theory of Sound,” first published in 1877-1878,
set the stage for what may be called the modern age of acoustics.

This summary history is followed by an anthology of 39 articles representing
andmarks in the evolution of acoustics as a science. These are arranged in chronologi-
cal order, beginning with the ideas of the early Greek and Roman philosophers.



The choice of order has been deliberaie, no attempt is made to segregate the material

iih respect to the various branches of the subject In this tvay it is possible to trace

the kinds of acoustical problems which were thought w orthy of study at any particular

epoch This arrangement bnngs out clearly the increase in elaborateness and sophisti-

cation of the questions investigated as lime went on No work subsequent to 1900

has been included Classic papers m 20ih century acoustics tvill be found m other

volumes of the series in their respective helds

It IS hoped that the reader will glimpse the interesting way in which the desire

to understand certain sound phenomena (e g , the behavior of musical instruments)

led to the attempt to apply fundamental mechanical principles to their elucidation

(e g , the invention of the theory of mechanical vibrations) The desire to solve such

problems as the sound from a vibrating stnng and a blown organ pipe provided

an impetus for the development of more powerful mathematical methods, this will

be clearly evident from a study of the articles m this volume It is fascinating to

note hot\ even the greatest minds working on the problem of sound propagation

through a medium like air were puzzled for over a century by the failure of Newton’s

theoretically established value of the veloaty of sound m air to agree with that expen*

menially measured One can hardly refrain from a feeling of uonder m noting how
the great Laplace, primarily a mathematiaan and cosmologisi and not at all what

we uould cal) an acoustical scientist, solved the problem m a few pages (actually

u was not quite so simple as thatl)

Most of the Items in the anthology are articles which onginally appeared m
journals of learned societies, but frequently extracts are taken from books, as providing

a simpler source Occasionally more informal material is introduced, such as Euler’s

famous 1759 letter to Lagrange, said to constitute a turning pointm the whole develop-

ment of the theory of sound propagation, and Colladon’s entertaining account of

how he measured the velocity of sound in the water of Lake Geneva, taken from

his very readable autobiography

AU maienal is presented in English, the earlier works in Latin, French, and Ger-

man having been translated by the editor of this volume, save where otherwise indi-

cated Each entry is prefaced by a bnefbiographical note as an indication of the signif-

icance of the extract Frequent editorial notes help to clear up obscure points m the

text, particularly with reference to older, unfamiliar terminology

In such an anthology the choice of entries is obviously arbitrary to a considerable

extent, reflecting as it does the views of the editor as to what is really significant

Nevertheless, the editor believes that those articles chosen for inclusion will be recog-

nized by authorities m the field as landmarks in the early development of acoustics

The reader will observe that most of the names appearing m the bibliography of

the historical review article “The Story of Acoustics ’ are represented somewhere

m this anthology

In the translation and editing of such a large body of matenals errors are bound

to occur The editor realizes that he has doubtless sinned in seseral places He will

be grateful to all who will bring such errors to his attention
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1
The Story of Acoustics

R. Bruce Lindsay

Brown University, Providence, Rhode Island 02912

The historical progress of the science of acoustics is surveyed from the earliest recorded phenomena and

theories to the present status of the subject. Considerable attention is paid to the development of both mathe-

matical and experimental tools for studying the production, propagation, and reception of sound, particu-

larly in the 18th and 19th centuries. The impact of Rayleigh’s work on modem acoustics is estimated.

Contemporary developments are treated only briefly. The endeavor has been made to refer in almost all

cases to original sources.

INTRODUCTION

Although the history of science was long neg-

lected by professional historians, this unhappy

situation is now being rectified through an awareness of

the significant influence the growth of science has had

on the development of civilization. No apology is there-

for necessary for a concern with this field of scholarship.

The question has indeed been raised whether knowledge

of the history of science has any value for the practicing

scientist, and arguments have been presented on both

sides. It appears to the present writer that the weight of

the historical evidence itself is in favor of the affirm-

ative view in this matter. A knowledge of the evolution

of the concepts basic to a given branch of science can

often suggest useful ways of approaching current expe-

rience, and actually has done so in numerous instances.

It is with this premise in mind that the following brief

survey of the history of acoustics is presented.

We begin by observing that acoustics occupies a some-

what anomalous position in the hierarchy of the sciences.

Though hearing is obviously one of the most important
of human sensations, and it has been a common ob-

servation from the earliest times that we live in a world
of sound, the intensive historical study of the develop-
ment of human ideas on this subject has until compara-
tively recent times been greatly neglected. Why is this?

It was suggested a good many years ago [7P] that the
accepted root ideas on the origin, propagation and re-

ception of sound were proposed at a very early stage in

the development of human thought. It seems clear that
the ancient Greek philosophers were convinced that the
origin of sound is to be sought in motion of the parts of
bodies, that it is transmitted through the air by means
of some undefined motions of the latter, and that this
motion in the neighborhood of the ear produces the

sensation of hearing. These ideas were vague enough,

but they were much closer to what came to be the

accepted theory of sound than the ancient notions of

the motion of large scale objects, to say nothing of the

primitive theories of light and heat. The latter branches

of physics suffered many vicissitudes of treatment in

which theory succeeded theory until the present point

of view was attained. But in acoustics all that was really

needed was the elaboration and refinement of the basic

idea by the necessary mathematical analysis and its

application to new phenomena as they were discovered.

On its theoretical side in particular, the history of

acoustics thus tends to be merged in the general evolu-

tion of mathematical mechanics as a whole.

This indeed seems at first to be a plausible point of

view, closely connected with the somewhat perverse

attitude of many modern physicists that the essential

physics of sound was worked out so long ago that it is

no longer a physical subject but rather a branch of

electrical engineering or possibly also of physiology. But
this opinion is in fact a distorted one and has no more
justification than the associated claim that the subject

has no history worth mentioning, since the fundamental
notions were laid down early and have not suffered

serious change in the passage of time. In this review, we
refute this point of view by surveying in some detail the

fascinating history of those parts of mechanics and other
branches of physics that have a definite bearing on
acoustical theory as well as acoustical practice.

The problems of acoustics are most conveniently di-

vided into three main groups: viz, (1) the production
of sound, (2) the propagation of sound, and (3) the
reception of sound. The following historical outline is

organized accordingly.

the journal of the Acoustical Society of America 629
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R B LINDSAY

t PRODUCTION OF SOI7ND

The fact that when a solid body is struck a sound is

produced must ha\ e been observed from the very eath

est tunes The additional observation that under certain

cucurastances the sounds so produced are particularly

agreeable to the ear furnished the basis for the creation

of music, which must have originated long before the

begmnmg of recorded historj
, and which was, of course

also closely associated with the pleasant sounds that,

again under favomble circumstances, may be emitted

from the mouths of human beings either directly to

the ambient air or by means of a tube of approprute

shape But music was an art for millenta before, so far

as we know from the available record, its nature began

to be examined m a scientific manner It is usually

assumed that the first Greek philosopher to stud> the

origin of musical sounds was Pythagoras, who estab

lished his school m Crotonein southern Italy in thedtb

century B C He is supposed to have been impressed by
the fact that, of two «trctched strings fastened at the

ends, the note of higher pitch is emitted by the shorter

one, and that indeed, if one has twice the length of the

other, the shorter will emit a note an octave above the

other The story is probably legendary “su

ally cited to provide a basis for the obsession that Pytha

goras and his followers appeared to have for integral

numbers as fundamental for the understanding of et

penence It seems clear that the germ of the idea that

pitch depends somehow on the frequency of vibration

of the sound producing object was in the minds of

Greek philosophers of the Pythagorean school, such as

Arcbytasof Tarentum in southern Italy, who flourished

around 375B C Afairlyclearpresentationof tbispomt
of view is to be found m the wntmgs on music of the

Roman philosopher, Boethius, in the 6th century A D
For the modem scientific basis of this relation, it has

been customary to fooA to (jibi'eo GaAi'ei (t564-i64Z)

At the verj end of the “First Day" of the great Italian’s

Dialogues concerning Two New Sciences, first published

m 1638, there is a remarkable discussion of the vibration

of bodies [^7]] Beginning with the well known observa

tions on the isochronism of the simple pendulum (m
which Galileo does mdeed make the mistake, perhaps

excusable in his day, of concluding that the period of

the pendulum is independent of the amplitude no mat
ter how large the latter is) and the dependence of the

frequency of vib'-aUon on the length of the suspension,

the author goes on to describe the phenomenon of syro

pathetic vibration or resonance, by which the vibration

of one body can produce similar vibration in another

distant body He reviews the common notions about
the relation of the pitch of a vibrating strmg to its length

and expresses the opmion that the physical meaning of

the relation is to be found m the number of vibrations

per unit time, i e , what we now call the frequeniy He
says that his view of this was confirmed by two observa

tions The first w as that of a glass goblet placed with its

base fixed to the bottom of a large vessel and filled with
water almost up to the bnra of the goblet By nibbing
the edge of the goblet with the finger, the goblet can
be made to vibrate and emit a sound At the same tune
npples are observed to run across the surface of the
water And when, as occasionally happens, the note
from the goblet nses an octave m pitch, the npples m
the water are divided in two,” i e , what we should now
call the wavelength is halved The second observation

was the result of an accident m which he happened to

scrape a brass plate with an iron chisel in oider to re

move sOTie spots from it Once m a while, the scraping

would be accompanied by a sharp whistling sound of

definite musical character In this case, he always ob
served a long row of parallel fine streaks on the surface

of the brass, equidistant from each other He further

noticed that the pitch of the whistling note could be

increased by increasing the speed of scraping and, m
this case, the separation of the streaks decreased

Galileo states that he was able to tune spmet strings

with the aid of these chisel scraping tones and found

that, when the musical interval between two $uch

strings was judged by ear to be a fifth, the average spa^

ings between the lines on the brass plate for the curre

sponding scraping tones were in the ratio of three to

two It seems clear from a careful readuig of Galileo’s

writings that he bad a clear understanding of the de

pendence of the frequency of a stretched string on the

length, tension, and density, though much of his knowl

edge was undoubtedly learned from predecessors He
made an interesting comparison between the vibrations

of strings and those of pendulums m the endeavor to

make clear why sounds of certain frequencies— e

,

those whose frequencies are in the ratio of two small

integers—appear to the ear to combine pleasantly

whereas others not possesing this property suuncf dis

cordant Gahleo observed that a set of pendulums of

different lengths, set oscillating about a common axis

and viewed m the original plane, presents to the eye

(at least it did to his eye) a pleasing pattern if Ibeir

frequencies are simply commensurable, whereas it forms

a compheated jumble otherwise One must admit that

this was a kinematic observation of great ingenuity and

formed the basis of a suggestive analogy

It is well to keep in mind that the history of science,

like all history, depends to a considerable extent on the

historian It is not surprising, therefore, that Galileo's

achievements in acoustics have been questioned Cliflcrd

TnicsdeU ^7PJ in his elaborate history of the mechanics

of elastiaty expresses the opmion that the importance

of Galileo’s contribution to the mechanics of vibration

has been exaggerated He points out that, though much

of the material on general mechanics in Galileo’s famous

book dates from the early 17th century, when Galileo

evidently first thought it out consistently, most of his

results on vibrations appeared m the dialogues for the
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first time. In the meantime, several investigators had

apparently come up with the fundamental ideas that

Galileo so engagingly expresses. The Frenchman, Isaac

Beeckman (1588-1637), had evidenUy thought a good

deal about the vibration of strings and printed some of

his speculations* as early as 1618. Here, he manifested

his confidence in the relation between^pitch and fre-

quency and gave arguments in its favor. He is usually

credited with the initiation of Rene Descartes into the

study of physics. Even earlier than Beeckman was the

Italian, Giovanni Battista Benedetti (1530-1590), who

in a work on musical intervals published in Turin in

1585 stated clearly his belief in the equality between the

ratio of pitches and the ratio of the frequencies of the

vibrating motions corresponding to the production of

the sounds. More elaborate were the studies of the

French Minim priest, Marin Mersenne (1588-1648).

In 1625, Mersenne published some results that he had

obtained from the experimental observation of the vi-

brations of a stretched string. Here, he recognized that,

other things being equal, the frequency of the vibration

is inversely proportional to the length of the string,

while it is directly proportional to the square root of the

cross-sectional area. Truesdell considers that Mersenne

definitely anticpated Galileo in these important conclu-

sions about vibrating strings [49,502-

Later experimenters, like Robert Hooke (1635-1703),

whose law of elasticity is one of the most widely known
in physics, tried to connect frequency of vibration with

pitch by allowing a cog wheel to run against the edge of

a piece of cardboard, a common lecture demonstration

to this day

The man who made the most thorough-going pioneer

studies of frequency in relation to pitch was undoubtedly
the Frenchman, Joseph Sauveur (1653-1716). He can

claim the distinction of first suggesting that the name
acoustics be applied to the science of sound [642- It is

well known that this term comes from the Greek word
meaning hearing, and is, therefore, to a certain extent

appropriate, though modem acoustics far transcends

the sounds that we can actually hear. Sauveur was
aware of the significance of the beats that are observed
when two organ pipes (or similar sound sources) of
slightly different pitches are sounded together, and
actually used them to calculate the fundamental fre-

quencies of two such pipes that were adjusted by the ear
to be a semitone apart—i.e., having frequencies in the
ratio . By experiment, he found that when sounded
together the pipes gave six beats a second. By treating
this number as the difference between the frequencies
of the pipes, Sauveur reached the conclusion that these
latter numbers were, respectively, 90 and 96 cps.
Sauveur also experimented with strings and, in 1700,
calculated by a somewhat dubious method the fre-
quency of a given stretched string from the measured
sag of the central point.

* See Ref.

t See Ref.
p. 24.

p. 57.

It was reserved to the English mathematician. Brook

Taylor (1685-1731), the well-known author of Taylor’s

theorem on infinite series to be the first to provide

a strictly dynamical solution of the vibrating string.

This was published in 1713 and was based on an as-

sumed curve for the shape of the string when vibrating

in what we now call its fundamental mode (i.e., when

all parts of the string are simultaneously on the same

side of the equilibrium horizontal position). This curve

was taken to be of such a character that every point

would reach the horizontal position at the same time.

From the equation of this curve and the Newtonian

equation of motion, he was able to derive a formula for

the frequency of the fundamental vibration that agreed

with the experimental law of Mersenne and Galileo. It

is of particular interest to note that, as Truesdell has

pointed out, this seems to be the first time that the

Newtonian equation of motion F=ma was applied to

an element of a continuous medium.

Though Taylor treated only a special case and was

clearly unable to progress to the treatment of the gen-

eral string with all its modes because of his lack of the

calculus of partial derivatives, he did pave the way for

the more elaborate mathematical techniques of the

Swiss, Daniel Bernoulli [Z2 (1700-1782) (one of a family

that produced eight scientists who achieved distinction

in the 18th century), the Frenchman, Jean Le Rond
d’Alembert [162 (1717-1783), and the Swiss, Leon-

hard Euler| (1707-1783). These gentlemen managed to

set up the partial differential equation of motion of the

vibrating string and to solve it in what is essentially

the modern fashion. It is interesting to reflect here on

how the lack of adequate mathematical tools retarded

the progress of the science of sound as it held back
similarly the advance of mechanics in general. Unfor-

tunately, neither the fluxions of Sir Isaac Newton
(1642-1727) nor the differentials of Baron Gottfried

Wilhelm von Leibniz (1646-1716) were quite adequate
for the handling of the motions of continuous media.
To come back to the physical side of the problem of

the vibrating string as a source of sound, it had already

been observed, notably by John Wallis [772 (1616-

1703) in England as well as by Sauveur [642 France,

that a stretched string can vibrate in parts so that at

certain intermediate points, which Sauveur called nodes,

no motion ever takes place, whereas very violent motion
takes place at intermediate points called loops. It was
soon realized that such vibrations correspond to higher
frequencies than that associated with the simple vibra-
tion of the string as a whole without nodes, and indeed
that these frequencies are integral multiples of the fre-

quency of the simple vibration. The associated emitted
sounds were called by Sauveur the harmonic tones, while
the sound corresponding to the simple vibration was

JThe most complete study of the contributions of Euler to
acoustics the relation of^his work to that of his contemporaries

Clifford Truesdell in his introductions to the new edition
of Euler s writings. In particular, see Ref. {702 -
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named the fundamental The notation thus introduced

(around 1700) has survived to the present day Sauveur

noted the additional important fact that a vibrating

stnng could produce the sounds corresponding to several

of Its harmonics at the same time The dynamical ex

planation of this was given by Daniel Bernoulli in his

famous memoir for the Royal Academy of Berlin ^2]

In this, he showed that it is possible for a stnng to

vibrate in such a way that a multitude of simple

harmonic oscillations are present at the same time and

that each contributes independently to the resultant

vibration, the displacement at any point of the stnng

at any instant being the algebraic sum of the displace-

ments associated with the various simple harmonic

modes He thus propounded the famous prmaple of the

coexistence of small oscillations, also referred to as the

principle of superposition Bernoulli tried to give a proof

of the principle but did rot succeed His grasp ofmathe
matics was not so great as his understanding of physical

ideas The real significance of the superposition principle

was pointed out almost immediately by Euler’ [253
namely, that the partial diderential equation that

governs the motion of the ideal fnctionless stnng is

linear With this understanding, the superposition pnn
ciple can be proved as a theorem

The whole history of the vibrating string in the middle

of the 18th century and even up to 178S consists of

a series of controversies in which ingenious investigators

like Bernoulli, Euler, and d'Alembert argued vehe

mcntly with each other in their journal memoirs They
took their work very seriously and unfortunately did

not hesitate to cast aspersions on each other m rather

harsh language This was the period in which the mathe
mattes needed for the description of the motion of con

tmuous media, so fundamental hr the progress of

I

acoustics as an exact science, was being bom and the

travail was not easy The standard texts tend to gloss

over ihs unpleasant things that even the great saentisis

of the time said about each other in their correspondence

and their articles, as w ell as the serious errors that they

often made The possibility of expressing an> arbitrary

function—e g ,
the initial shape of a vibrating strmg

m terms of an infinite senes of sines and cosines, implied

by the superposition theorem—was hard to accept in

terms of mid 18th century mathematics It was only

in 1822 that J B J Fourier £26^ (1768-1530), m his

analytical theory of heat, based his celebrated theorem

on this type of expansion with consequences of the

greatest value for the advancement of acoustics

Among the 18th century mathematicians who tackled

the problem of the sibratmg stnng was / L Lagrange

(1736-1813), the Italian from Turm, who spent roost

of his active career m France He was the author of the

treatise, iflcanique analyltque [4I2, in which roe

chanics was reduced to a branch of mathematical analy

Sis, and in the preface of which the author boasted that

•This memoir, Ref w»s received
j ist after that by

Bernoulli mentioned in Kef ^

he had included no figures, for such were unnecessary

The reader who has studied theoretical physics will

recall generalued coordinates and Lagrange’s equations

In an extensive memoir [42] presented to the Turm
Academy m 1759, Lagrange decided to adopt what he
claimed was a different and novel approach to the stnng
problem He assumed the strmg to be composed of a
finite number of equally spaced identical mass particles

tied together by equal segments of stretched weightless

stnng He then solved the problem of the motion of this

system as a dynamical system with many degrees of

freedom, and established the existence of a number of

independent frequencies equal to the number of the

particles When he passed to the limit and allowed the

number of particles to become infimitely great and the
mass of each correspondingly small (so that the product

equalled the finite mass of the strmg), these frequencies

were found to be precisely the harmonic frequenaes of

the stretched contmuous string Lagrange felt that his

device avoided the analytical difficulties associated \vith

the motion of the continuous stnng and that he had
made a decisive advance A few observations are in

order here In the first place, Euler [27] had already

in 1744 solved the mechanical problem of the motion of

n particles on a string, where n is any integer, though

he had not been successful m the passage to the limit

In the second place, it has been pointed outbyTruesdeU

that Lagrange’s passage to the limit was mathematically

faulty and, to be made rigorous, demanded essentially

the Same kind of mathematical assumptions that he

objected to in the analysis of his contemporaries,

Bernoulli, Euler, and d’Alembert, for the continuous

string Be this as it may, Lagrange’s method was

adoptwf by J W Strutt Lord Rayleigh (I842-I919) m
bis Theory of Sound [^7] and has found its way into

most modem texts m mechanics and acoustics It is

not indeed the most direct way in which to handle the

wbraling slnog, and undoubtedly Lagrange exagger

ated the significance of his accomplishment But his

method has the merit of variety and this is important in

science, the more waysm which we can look at the same

phenomenon, the better is our grasp of it TruesdeU,

indeed, considers that Lagrange’s contributions to

acoustics and to mechanics in general have been

overrated

d’Alembert usually gets the credit for having been

the first to develop, in 1747, the partial differential

equation of the vibrating string m the form that we now

refer to as the wave equation [fd] He also found its

general solution in the form of waves traveling in both

directions along the string From this point of view,

the vibrations of the stnng are due to a combination of

such travehng waves to form so called standing or sta

lionary waves As we have pointed out above, there was

a lot of controversy about the meaning and validity

of all this, just as there exists controversy today Over

the development of modern theories like those of rela

tivity and quantum mechanics
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It must not be thought that the vibrating string,

important as it was, took up all the attention of the

ISth-centurj’’ savants. They were interested in other

sound-producing motions as well. In the Lagrange 1759

memoir, for example, there is a treatment of the sounds

produced by organ pipes and musical wind instruments

in general. The basic experimental facts were already

known and Lagrange was able to predict theoretically

the approximate harmonic frequencies of closed and

open pipes. The boundary conditions gave some trouble,

as indeed they still do. In any case, problems of this

kind impinge rather closely on the propagation of sound,

treated a little further on. We pause only to note that

Euler made great contributions to this field also; it is

only recently that their magnitude has been appreciated.

In a little treatise [2J], “Physical Dissertation on

Sound,” written in Basel in 1727 when Euler was only

about twenty years old, the essential features of the

overtones of pipes are set forth in essentially modern

form. This was, of course, far earlier than the work of

Lagrange, just noted. Euler was at that time particularly

interested in musical instruments like the flute. Around

1759, there was considerable activity by both Euler and

Lagrange on the subject of sound oscillations in tubes

and much correspondence between them. Around 1766,

Euler produced an elaborate treatise on fluid mechanics,

the fourth section [24] of which was entirely devoted to

sound waves in tubes. It is a bit hard for us today to

appreciate the tremendous zeal with which such prob-

lems were tackled and solved by the great mechanically

minded mathematicians of this era. It is scarcely an
exaggeration to call this the golden age of mathematical
physics.

The mathematical scientists of the 18th century, of

course, realized that other solid bodies besides strings

emit sound when disturbed. For example, they were, of

course, familiar with cells, and there must have accumu-
lated by that time a vast amount of empirical knowledge
about sound sources of this kind. But the successful ap-
plication of the mathematical methods described in the
preceding paragraphs to the vibrations of metal bars,

plates, and shells naturally demanded a knowledge of
the relation between the deformation of the solid body
and the impressed deforming force. Fortunately, this

problem had already been tackled and solved in its

simplest form by Robert Hooke [J2], who in 1660 dis-
covered and in 1675 announced in the form of the ana-
gram CEIIINOSSSTTUV the law, which in the Latin
form he e.xpressed as “ut tensio sic vis,” connecting the
stress and strain for bodies undergoing elastic deforma-
tions. It says that within the so-called elastic limit the
strain of an elastic body (i.e., the fractional increase in
length for a linear rod or bar) is directly proportional
to the stress (i.e., the force per unit area of cross section
of the rod or bar in the direction of the stretch). This
aw forms the basis for the whole mathematical theory
of elasticity, including elastic vibrations giving rise to
sound. Its applicadon to the vibrations of bars sup-

ported and clamped in various ways appears to have

been made as early as 1734-1735 by Euler and Daniel

Bernoulli.* The mathematical methods used were later

systematized and extended by Lord Rayleigh in his

Theory of Sound [67]. The fundamental idea was to

begin with the expression for the energy of a deformed

bar and to use the so-called variational technique, which

leads to the well-known equation of the fourth order

in space derivatives.

The corresponding analytical solution for the vibra-

tions of a solid elastic plate proved much more difficult

and came much later, though much useful experimental

information was obtained in the latter part of the 18th

century by the German scientist, E. F. F. Chladni

(1756-1824). In 1787, he published his celebrated

treatise Entdecknngen iiber die Tlieorie des Klanges [<?],

in which he described his method of using sand sprinkled

on vibrating plates to show the nodal lines, i.e., lines of

zero displacement. These Chladni figures have long been

recognized as things of gi’eat beauty. In a general way,

they could be accounted for by considerations similar

to those explaining the existence of nodes in a vibrating

string. The exact forms, however, defied analysis for

many years, even after the publication of Chladni’s

classic work [7], Die Akustik, in 1802. The Emperor

Napoleon provided for the Institute of France a prize

of 3000 francs to be awarded for a satisfactory mathe-

matical theory of the vibrations of plates. This prize

was awarded in 1815 to the celebrated woman mathe-

matician Mile. Sophie Germain, who produced the cor-

rect fourth-order equation. Her choice of boundary con-

ditions proved, however, to be incorrect. It was not

until 1850 that G. R. Kirchhofl [J6] (1824-1887) gave

a more accurate theory. Modem technology with its

concern for the vibrations of such things as airplane

fuselages, etc., still supports active research on the

vibrations of plates and solid shells of various shapes.

The first solution of the analogous problem of the

vibrations of a flexible membrane, important for the

understanding of the sounds emitted by drums, is usu-
ally attributed to the French mathematician, S. D.
Poisson [55] (1781-1840), though he failed to complete
the case of the circular membrane ,which was handled
by R. F. A. Clebsch [P] (1833-1872) in 1862.

It has been pointed out by Truesdell [70] that this

attribution to Poisson neglects a very important work
by Euler seventy years earlier [22]. Euler derived the
appropriate- partial differential equation for the vibrat-
ing membrane and e.xpressed it properly for both rec-

tangular and circular shapes, but he made a curious slip

in assigning boundary conditions and hence failed to
get the right answer for the normal modes (by a factor
of two). Poisson apparently never was familiar with this
paper by Euler. He got the correct normal modes for
the rectangular membrane. It is significant that much
of the theoretical work on vibration problems during

* See Ref. [70'], p. 165.
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the 19th century w as earned out by persons who called

themselves mathematiaans This was natural, since

much of the application of the mathematics of that

period concerned physical problems of this kind, but

it was also rather unfortunate, for the choice of bound

ary conditions did not always reflect actually expen

mentally realizable situations The ability to exate vt

brations in media of arbitrary nature, sixe, and shape

and with arbitrary frequency over a wide range had to

await the development of electroacoustics, largely a

product of 20th century research [JJ] It is true that

electneal oscillations and oscillating electric arcuits

were discovered and invented in the middle of the 19th

century, but methods of coupling them to mechanical

systems so as to make them produce mechanical oscil

lations did not anse m a practical fashion until after

1900 While tuning forks remained the only practical

frequency standards for sound sources, no great progress

in applying the mathematical thcorj of acoustics to

practical cases could be expected The basic physical

principles for Ibis purpose were indeed well known in

the 19th century Thus, the force on a current carrymg

conductor in a magnetic field bad been discovered in

the 1820’s. The piezoelectric tiled emerged from the

expenments of the Curie brothers C/4,/53 1"'

IS the properly, displajed by some crystals (notably

quartz), of having electric charges appear on the faces

when subjected to mechanical stresses of various kinds,

and conversely of changing dimensions (i e
,
etbibiting

strain) when placed in an electric field It was early

recognized that herein lay the possibility of developing

both controlled sources and receivers of sound waves,

but (he actual exploitation of the efiect for this purpose

did sot take place until the second decade of the 20th

century The same situation prevailed with the mag
netostnction effect, i e

,
the tendency of magnetizable

materials to change dimensions when placed m a mag
netic field This was discovered by J P Joule fdOj
(1818-1892) in 1842 The advent of the vacuum tube

oscillator and amplifier made the employment of these

effects possible m the production and reception of

sound at all frequencies and intensities on a precision

basis

The rest of the slory of the production of sound, which
is largely that of the evolution of electroacoustics, may
profitably be left to the end of this sketch, which dis

cusses briefly the contributions of Lord Rayleigh and
his successors However, we ought not to overlook here

one of the most important methods for the production

of sound namelj
,
the vocal chords leading to speech in

human beings and the noises emitted by lower annuals.

It IS a cunous fact that, though these examples of sound

production are in may ways the most obvious of all,

little attention was paid to them during the bistoncal

evolution of acoustics just surveyed Perhaps it would

be more correct to say that human speech did not engage

the attention of the mathematicians and phy^cists, who

were principally concerned with the production of
sound The very fact of the obviousness of speech may
wellhave led to lack of mterestmiton the part of those

who felt themselves concerned with the physically ob
jective aspects of sound Speech, after all, seemed closer

to language and therefore m the province of the jihilo-

logists and etymologists

At the same tune, the basic mechanism of hijman
speech—i e , the combination of vibrating vocal Cords

and mouth cavities—was considered largely a matter
for aiutomists and physiologists At any rate, it {$ of

interest to note that as early as 1629 the Englishman

W Babington, observed the motions of the vocal chords

by means of light reflected from mirrors m the mouth
Tills was the beginnmg of the development ofwhat came
to be called the laryngoscope, finally perfected by the

Czech physiologist, J N Czermac,w 1857 Some eighty

years later, movies of the vocal chords were made by
D W Farnsworth at the Bell Telephone Laboratories

The nature of the vowel sounds of speech and singmg

was first thoroughly investigated by Hermann von
Helmholtz (1821-1894) m I860, with the use of the

famous resonators that bear bis name His results were

set forth in the tTeiUse[?5JDteLehrevo»den Tonmp
findungen alj physiohixsche Gfundlage fur die Ttieone

der Mustk, published in IS62 This ranks as one of the

great masterpieces of acoustics It is mentioned again

later in connection with the reception of sound by the

ear It is true that earlier investigations (in 1837) by

the Englishman Sir Charles Wheatstone (1802-1875)

had led to the development of a harmonic theory for

the production of vowel sounds In accordance with this,

(he vocal chords vibrate so as to produce both a fuada

mental frequency and numerous harmonics. It was

assumed that these vibrations when conununicated to

the air arc reinforced by resonancem the mouth cavities

Another theory apparently first proposed by W T
Wiliis, m England in 1829, assumed that the ongm of

the vowel sound was not in the continuous vibration of

the vocal chords, but rather in puffs of air emitted by

them These transient puffs set the air m the mouth

cavities in vibration and the resonance there gives the

emitted sound its characteristic quahty von Helmholtz

later pointed out that both ideas have elements of cor

rectness, and modem research has confirmed this (ipm

ion Some early workers held that the whole oral cavity

acts as a single resonator, while others, notably Alex

ander Graham Bell, the inventor of the telephone, and

von Helmholtz himself C^S,SSJ believed that vowe!

sounds depend on two characteristic resonances, cor

responding to the action of the mouth as a double

resonator, i e
,
two resonators coupled together von

Helmholtz points out in his famous treatise that the

knowledge that the oral cavities can be tuned to differ

ent frequencies goes back to the early I7th century,

though it is clear there was at that time no hi^ly deve!

oped instrumental study of the phenomenon
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n. PROPAGATION OF SOUND

From the earliest recorded observations, there has

been general agreement that sound is conveyed from

one point in space to another through some activity of

the air. Aristotle indeed emphasizes that there is actual

motion of air involved, and it is possible to read into

the description in his treatise, “De Anima,” and^ to the

treatise “De Audibilibus” often ascribed to him the

notion that sound is due to compressional waves in air*

The usual dfficulty of interpretation that forever

plagues the history of science occurs again here in annoy-

ing fashion, since it is difficult to be sure that Aristotle

and his contemporaries had really grasped the idea that

in the propagation of sound the air does not move as a

whole—i.e., as a stream—in the direction of propagation.

It seems clear that the famous Roman architectural

engineer, Marcus Vitruvius Pollio.t of the first century

B.C. had an adequate grasp of the wave theory of sound

in the analogies that he drew with surface waves on

water. However, since in the transmission of sound the

air certainly does not appear to move, it is not surprising

that other and much later philosophers denied these

views of Aristotle and Vitruvius. Even during the

Galilean period, the Frenchman, Pierre Gassendi

(1592-1655), in his revival of the atomic theory, attri-

buted the propagation of sound to the emission of a

stream of very small, invisible particles from the sound-

ing body, which, after moving through the air, are able

somehow to affect the ear. Otto von Guericke [74'}

(1602-1686) expressed great doubt that sound is con-

veyed by a motion of the air, observing that it is trans-

mitted better when the air is still than when there is

a wind. Moreover, around the middle of the 17th cen-

tury, he tried the experiment of ringing a bell in a jar

that was evacuated by means of his air pump, and
claimed that he could still hear the sound. As a matter
of fact, the first to try the bell in vacuo experiment was
apparently the Jesuit, Athanasius Kircher (1602-1680).
He described it in his book, Musurgia Universalis,

published in 1650, and concluded from his observation
that air is not necessary for the transmission of sound
[JiJ. Undoubtedly, the trouble with the investigations
of von Guericke and Kircher was the failure to avoid
transmission through the walls of the vessel coupled
with the rather inadequate vacuum they were able to
obtain. In 1660, Robert Boyle [5] (1627-1691) in
England repeated the experiment with a much improved
air pump and more-careful arrangements, and finally
observed the now well-known decrease in the intensity
of the sound as the air is pumped out. He definitely
concluded that the air is a medium for the transmission
of sound, though presumably not the only one. As a
matter of fact, this e.xplanation of the experiment,
though hallowed by tradition, is a mistaken one. A more
careful examination of the situation shows that the oh-

* See Ref. [/O],

t See Ref. [io],
p. 288 ff.

p. 307 f.

served decrease in the intensity of the sound is due not

so much to the failure of the low pressure air to transmit

sound as to the increasing difficulty of getting the sound

out of the bell (or other sound source) into the air and

then out again from the air to the glass container. The

so-called impedance mismatch between source and sur-

rounding fluid medium becomes greater as the density

of the medium decreases. Of course, the experiment does

demonstrate a very important connection between the

source and tke medium in acoustic propagation, and

the modern theory of sound implies that without

doubt some material medium is necessary for acoustic

transmission.

Granted that air is a sound-transmitting medium, the

question at once arises : How rapidly does the propaga-

tion take place? As early as 1635, Gassendi \46}, while

in Paris, made measurements of the velocity of sound in

air using firearms and assuming that the light of the

flash is transmitted instantaneously. His value came

out to be 1473 Paris feet per second or 478.4 m/sec in

the later terminology of the metric system, which, of

course, Gassendi did not use, as it was not introduced

until the time of the French Revolution. Somewhat
later, by more careful measurement, Mersenne {46}

showed that Gassendi’s figure was too high; his value

was 1380 Paris feet per second or about 450 m/sec.

Gassendi did note one important fact
; namely, that the

velocity is independent of the pitch of the sound, thus

discrediting the view of Aristotle, who had taught that

high notes are transmitted faster than low notes. On the

other hand, Gassendi made the mistake of believing that

the wind has no effect on the measured velocity of sound.

In 1650, the Italian, G. A. Borelli (1608-1679) and his

colleague V. Vivian! (1622-1703) of the Accademia del

Cimento of Florence tried the same type of experiment

C5i] and obtained 1077 Paris feet per second or 350
m/sec. All these measurements suffered from lack of

reference to the temperature, humidity, and wind
velocity. Though the Englishman W. Derham
(1657-1735) made extensive measurements of the veloc-

ity of sound in the early part of the 18th century
(published in 1708) in which he concluded that the ve-
locity is independent of all environmental conditions
except wind, his results were definitely shown to be
wrong by the Italian, G. L. Bianconi {6,47} (1717-
1781), in Bologna, who in 1740 demonstrated definitely

that the velocity of sound in air increases with the
temperature. The first open-air measurement (no wind)
that can be considered at all precise in the modem sense
was probably that carried out under the direction of
the Academy of Sciences of Paris in 1738, using a cannon

p the source of sound. When reduced to 0°C, the result
in modern units was 332 m/sec. Careful repetitions dur-
ing the two succeeding two centuries gave results differ-

ing from this value by less than 1%. The best modern
value (1942) is indeed 331.45-f0.05 m/sec under stand-
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ard coni tions of temperature and pressure This is

a tribute to the care with which those Pans academicians

earned out their work Actually, very few early jAysical

measurements have stood the test of time as well as

these of the veloaty of sound in air

The problem of the measurement of the velocity ol

sound m solid media was tackled by Chladni, whose in

vestigalions of the nodal lines in vibrating plates have

already been men tioaed He used similar means to study

propagation in metal rods and by measuring intemodal

distances was able to calculate sound veloaty in such

specimens In 1808, the French physicist, J B Biol [JJ

(] 774-1862), most famous for bis work m optics, made
actual measurements of the velocity of sound m an iron

water pipe in Pans by direct limmg of the sound travel

The pipe was nearly 1000 m long By comparmg the

limes of arrival of a given sound through the metal and

through the air, respectively, he estabbshed m particu

lar that the velocity of the compressional wave in the

solid metal is many times greater than that in the air

This was indeed to be expected from the very much
greater clastiaty of metal in comparison with air Biot’s

experimental values agreed in order of magnitude with

those of Chladni

The first serious attempt to measure the velocity of

sound in a liquid like water was apparently that of the

Swiss physiast, Daniel Colladon (1802-1893), who, as

sisted by the mathematician, Charles Sturm (1603-

1&55), conducted studies in Lake Geneva in 1826 Some
might suppose that it was merely curiosity about the

actual veloaty of sound m lake water that motivated

Colladon But this was not the case In 1625, the

Academy of Sciences in Pans announced as the subject

of Its prue competition for 1826 the measurement of

the compressibility of the principal Uquids Colladon

decided to compete, and actually measured success

fully the static comprcssiblbly of water and some
bquids He must have been somewhat fascinated by its

refativefy Ibw vaihe and tie CDrrespondngfy large mag
nitude of its reciprocal, the bulk modulus He was, of

course, aware of the theoretical relation between the

compressibility and the speed of sound The suggestion

was therefore immediate that a check on the accuracy

of his compressibility measurements could be sought in

Uie acoustic velocity The tests were earned out in

Lake Geneva in November 1826, and the results ap
peared m the famous “MSmoire sur la compression des

hquides et la Vitesse du son dans I’eau”, which was
awarded the Grand Pnre of the Academy {.IZ} The
compressibihly of water as computed from the velocity

of sound turned out to be very close to the staticaDy

measured value ActuaDj
,
the whole story of this study

of Colladon and Sturm is found set forth m fascinating

fashion m ColLidon’s autobiography Q/I] {Soutemn el

rntmoiTts Autobioiraphe de J Daniel Colladon) Here,

the man who'did the work and indeed became in later

life a well known phj'sicist and engineer tells mfonnally

how he did it, includmg such homely details a$ the

troubles that he encountered in carrying the powder
needed for his hght flashes across the frontier between
Switzerland and France The average veloaty found m
this measurement was 1435 m/sec at 8*C
Though the propagation of sound through air had

already been compared, as we have seem above, with
the motion of ripples on the surface of water, the first

attempt to theorize seriously in mathematical fnmi
about a wave theory of sound was apparently made by
Sir Isaac Newton (1642-1727), who in the second

book (1687) of his famous FfiKO^iamatiema/ico (propo-

sitions 47-49) compares the transmission of sound with

pulses produced when a vibrating body moves the

adjacent portions of the surrounding medium and these

in turn move those next adjacent to themselves and so

on Newton then went on to make some rather arbitrary

assumptions, the prinapal one being that, when a pulse

IS propagated through a fiuid, the particles of the fiuid

always move m simple harmonic motion, or, as he puts

it 'are always accelerated or retarded according to the

law of the oscillating pendulum ” He proves indeed the

theorem that, if this is true for one particle, it must be

true for all adjacent ones It is not necessary to go

through the complete demonstration, which has always

been difBcult to follow The end result is that the ve

locity of sound is equal to the square root of the riitio

of the atmospheric pressure to the density of the ait

As was to be expected, Newton’s "derivation” ivas

subjected to much cniicism by the natural philosophers

of continental Europe, among whom were Euler, Jtihn

Bernoulli (younger brother of Daniel), and Lagrat^ge

We have already commented on L Euler’s treatise,

"Physical Dissertation on Sound” (232 ^ ^^27 In this

remarkable work, he set forth his ideas of the physical

pnnaples underlying sound propagation as well as soijnd

production with great clanty, and attacked Newton's

method as being entirely too specialized He presented

an expression for the velocity of soundm air that is Very

close to tiat ofNewton, though it must fte aifiitrtoaf

his method is not clear In a later treatise of 1 749, Euler

developed Newton's theory in much clearer analytic

form and obtained Newton’s result

It gradually became clear that the problem of sound

propagation would never be completely solved until the

wave equation for sound waves in a fluid could be set

up and solved It will be recalled that d'Alembert (l62

bad first derived this equation for a continuous string

in 1747, at that time, he commented on the fact that

it shouldbe possible to apply the same equation to sound

waves However, he did not get far with the details,

these were worked out by Euler, who seems in this case,

as in other problems m both solid and fluid dynamics,

to have "known it all
”

The claims and counterclaims, the epistolary crui

asms of one another fay those zealous 18th century

savants, make the task of the historian of science a

fasematmg but a difficult one Though Euler [202 seems

to have laid the foundation for the theory of the projja
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gation of sound waves in air in three great memoirs to

the Berlin Academy in 1759, it was Lagrange who, in

memoirs to the Turin Academy at about the same time,

revised Newton’s reasoning and generalized it to the

case of sound waves of arbitrary character as distinct

from simple harmonic waves. Actually, of course, he

arrived at the same result as Newton for the velocity of

sound in air. The reader is entitled to look upon this as

evidence of either Newton’s genius or else his good luck!

This matter of the theoretical calculation of the velocity

of sound in a gas forms a celebrated chapter in the

history of physics. It is well known that, when the

relevant data for air at 60°F (= 16.25'’C) are substituted

into the Newtonian equation for the velocity c=\/plp

(where p is the gas pressure and p the corresoonding

density), the result is 945 ft/sec or about288 Vsec.

Though this is definitely lower than the early Paris ex-

perimental results already mentioned, Newton at first

considered that the order of magnitude agreement was

satisfactory. However, when more and more accurate

measurements confirmed the higher value, Newton evi-

dently became worried, and in the second edition (1713)

of his Priiicipia mathemalica revised his theory to try

to produce better agreement with experiment

What he did is not at all clear, but he evidently felt

that some correction must be made for the impurity of

the actual air. It would be an interesting exercise in

the history of science to try to reconstruct the line of

thought of a great mind like that of Newton in grappling

with this problem.

Nothing more seems to have been done on the problem

of the velocity of sound until Pierre Simon Laplace

(1749-1827) in 1816 suggested that in the Newtonian
and Lagrangian determinations an error had been made
in using for the volume elasticity of the air (the recip-

rocal of tire compressibility) the pressure itself, which
is equivalent to assuming that the elastic motions of

the air particles take place at constant temperature

[443 . In view of the rapidity of the motions involved in

the passage of the sound wave, however, it seemed to

Laplace more reasonable to suppose that the compres-
sions and rarefactions follow the adiabatic law; i.e.,

heat does not have a chance to flow out of the com-
pressed region before compression gives way to rarefac-

tion. But in this case the adiabatic elasticity is higher
than the isothermal value in the ratio 7, where 7 is the
ratio of the specific heat of the gas at constant pressure
to that at constant volume. According to this line of
reasoning, the formula of Newton should be changed to

<^=(yp/p)^', since 7>1 always, the newly calculated
velocity of sound would necessarily be greater than the
old and, therefore, closer to the e.x'perimental value. In
1816, when Laplace put forth his theory, though the
e.xistence of two specific heats of a gas was recognized,
the value of 7 was not Imown very precisely. Using the
value 1.5 for air as obtained by the e.xperimentalists
LaRoche and Berard, Laplace found that c=345.9
m/sec at 6°C, compared with the best experimental

value then available of 337.18 m/sec for this tempera-

ture. This was close enough for Laplace to feel he was

on the right track. He returned to the problem later and

included a chapter on the velocity of sound in his famous

Mecanigue cdisle (1825) [4J3. By that time, the well-

known heat experimentalists, Clement and Desormes,

had performed the classical experiment on the deter-

mination of 7 (1819) and had found the value 1.35, lead-

ing to 332.9 m/sec for the sound velocity at 6°C. Some

years later, the more accurate value 1.40 led to complete

agreement between Laplace’s theory and experiment.

This theory is now so well established that it is common

practice to determine 7 for various gases by precision

measurements of the velocity of sound.

The latter half of the 18th century and the first

quarter of the 19th witnessfed numerous attempts to

theorize about waves in continuous media, based largely

on the general solution for the wave equation (the

equation that says in effect that the second time deriva-

tive of the quantity that “waves” is equal to the second

space derivative of this same quantity multiplied by the

square of the wave velocity) discovered, as noted above,

by d’Alembert in 1747. Much attention, for example,

was paid to waves on the surface of liquids like water.

This work had value in connection with acoustics only

to the extent that it led to increased confidence in the

applicability of the wave equation to sound propagation

in fluids. By 1800, the solution of the equation for aerial

sound propagation in tubes subject to the boundary con-

ditions at the ends had been pretty well established,

and the predicted harmonic frequencies (normal modes
or partials) checked with experiment with reasonable

accuracy. There were indeed puzzling discrepancies in

detail, not to be fully cleared up until the “end correc-

tions” were understood some half-century later. Ex-
perimental techniques for sound measurement in tubes

stayed rather crude for a long time; it was not until

1866 that A. Kundt (1839-1894) developed his simple

but effective method of dust figures for studying ex-

perimentally the propagation of sound in tubes and in

particular for the measurement of sound velocity in air

and other gases from standing-wave patterns (nodes and
loops) C403 .

In the meantime, the much more difficult problem of
the propagation of a compressional wave in a three-

dimensional fluid medium had been attacked by S. D.
Poisson [5P3 in a celebrated memoir of 1820. Three
years before, in a similar lengthy memoir, Poisson
had given the most elaborate theory up to that time
of the transmission of sound in tubes, including the
theory of stationary air waves in tubes of finite length,
both open and closed 1572- He even considered the pos-
sibility of an end correction to take care of the fact that
the condensation (the fractional change in density owing
to the sound wave) cannot be considered as preciselv
zero at the open end, with the result that the observed
resonance frequencies correspond to a length slightly
greater than the actual geometrical length of the tube.
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It remained, however, for Hermann von Helmholtz to

give m 1860 a more thorough treatment of this whole

problem The speaal case of an abrupt change in cross

section was also studied by Poisson, along with the re

jQection and transmission of sound at nonnal incidence

on the boundary of two different fluids Much modem
work of practical significance was anticipated m this

great memoir of Poisson

The more difficultproblem of the reflection and trans

mission of a plane sound wave mcident obliquely on the

boundary of two different fluids was solved by the seif

taughtNottinghamgenius George Green (1793-1841)

m 1838 His memoir placed emphasis on the refraction

of sound, and served to stress both the similarities and

differences between the reflection and refraction of

sound and hght £292 recalled that sound

waves m ideal fluids, being strictly compressional are

longitudmal, whereas light waves are transverse Hence,

light waves can be polarjacd, whereas sound waves in

fluids cannot, in the ordinary sense On the other band,

elastic waves in an extended solid can be both longi

tudinal and transverse, or more accurately irrotational

and solenoidal This was reahzed by Poisson m his 1829

study of isotropic elastic media At the time, this

did not seem to have much significance for acoustics,

though it had a very important bearing on the elastic

sohd theory of hght, whidi was actively pursued durmg
the middle decades of the I9ib century This early work,

however, has taken on a new and tremendously great

significance in the middle of the 20th century, owing to

the interest in the propagation of elastic waves m struc

tures like airplane fuselages and space missiles The con

nectiOQ with modem geophysics (seismologica) waves)

is also obvious

So far, in this historical resume of the propagation of

sound, U has been tacitly assumed (hat the disturbance

m the material medium being propagated as a sound

wave (e g ,
the excess density Or pressure in a fluid) is

very small as compared with the cquilibnum value In

this case, the equation for wave propagation is (mear
This is the type of equation to which the 18th century
investigatorsm acoustics gave their full attention That
its solution gives only an approximation to the actual
sound transmission for relatively large disturbances was
finally reahzed in the 19th century However, EuUrhad
alreadycome close to the so called finite amplitude wave
equation [202 famous 1759 memoir, "On the
Propagation of Sound " Here, he worked out the equa
tion of motion of a thin shce of air subject to pressure

forces on its two sides He would have obtained the pre
cise result of 19tb century research bad faenotmndeai]
unaccountable algebraic error His physics was in this

case impeccable, but his mathematics went astray Even
Homer nods! At any rate, he realized that the nonnal
linearwave equation, contaming only second derivatives

of the wave displacement function with respect to space

and time, must be corrected by the inclusion of a non
linear term whenever the gradien t of the displacement is

an appreciable fraction of unity

It does not appear that nonlmear acoustic wave
propagation was taken up again senously until around

the middle of the 19th century, when the German
mathematician, Georg F B Riemann (1826-1866), and

the Bntish mathematician and pbysiast, S Earhshaw

(1805-1888), more or less independently investigated

certain special cases [19 df] In particular, the results

showed ^at m nonlinear propagation the velocity o(

propagation depends on the amplitude, so that jt u
only under very special conditions that s nonlinear wave

of permanent type can be realized It may be well to

point out that some understanding of this situation bad

previously been reached by Poisson [5tf] All this work

led up to the theory of shock waves developed by G G
Stokes, J CbalJjs, \V J M Rankine, H Hugoniot,

and Lord Rayleigh, among others * Nonlmear acoustics

has assumed great importance m the 20th century de

velopmcnt of the subject

in RECEPTION OF SOUND

In the story of acoustics up to very recent tunes, by
far the most important sound receiver of interest has

been the human ear, and the reception of sound was for

a long time studied largely m connection with the be

havior of this organ In this respect the human ear has

had greater influence on the development of acoustics

than human speech Hie ear is remarkably versatile

and sensitive It has been established that its normal
threshold of hearing is about 10“'* W/cm* sound inten

sity or 10“* erg/cm* sec If one takes the area of the

nonnal eardrum as about 0 66 cm*, this means that an
average mechanical energy flow of only 66X10"**
erg/sec can produce the sensation of sound A harmonic

sound in the audible range of frequency will be identi

fled if Its duration is of the order of 0 1 sec. Thus, acous

tic energy of the order of 6 6X1G*’* erg is sufficient to

exate identifiable sound la the ear Energyivise, the

ear turns out to be fully as sensitive as the eye

Many elaborate investigations of the anatomy ()f the

ear have been made over the past century or so, and its

acoustical behavior has been studied intensively How
ever, m spite of all this work, no completely accept

able theory of audition has emerged Precisely how

we hear still remains a puzzling problem in mijdern

psychophysics

After the relation between pitch and frequency had

been established, it became an interesting task to deter

mine the frequency limits of audibility The Flench

phyaast, F Savart (1791-1841), using fans and rotat

mg toothed wheels m investigations around 1830, placed

• For detwled bibliographical references, see Ref [/JJ, p 438
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the minimum audible frequency at 8 vibrations/sec and

the upper limit at 24 000 vibrations/sec (Ref. [di])

(usually now referred to as cycles per sec or Hertz, after

the famous German physicist, Heinrich Hertz, whose

studies on electromagnetic waves were epoch making).

Other investigators, such as L. F. W. A. Seebeck (1805-

1849) (not to be confused with the discoverer of the

thermoelectric effect), J. B. Biot (1774-1802), K. R.

Koenig (1832-1901), and H. L. F. von Helmholtz

(already mentioned earlier), obtained values for the

lower limit [JP,d5,7(5] ranging from 16 to 32 cps. This

serves to emphasize the rdle that individual differences

play in hearing, even more noticeable indeed in the case

of the upper frequency limit of audibility. The latter

may not only vary considerably from individual to

individual, but for each person usually decreases with

age. Of course, the values in each case depend on the

intensity, as has become clearer only in comparatively

recent times. The most elaborate studies on audibility

made during the 19th century were those of Koenig

devoted a lifetime to the design and produc-

tion of precision sources of sound of controlled fre-

quency, such as tuning forks, rods, strings, and pipes.

This was before the era of electroacoustic sources.

Koenig was also responsible for the electrically driven

fork.

The closely related problem of minimum sound in-

tensity necessary for audibility (the auditory threshold)

was apparently first studied jointly by A. Toepler

(1836-1912) and L. Boltzmann (1841-1906) around

1870. By an ingenious use of optical interference, they

were able to measure the maximum change in density

(or effectively the maximum condensation) in a just-

audible sound wave. Their experimental results lead to

an audible threshold of about i0~“ W/cm^, considerably

in excess of that obtained by modern methods [dPJ, but

at any rate suggestive of the great sensitivity of the

human ear. This collaboration of the great Viennese

theoretical physicist with Toepler on an acoustic project

is interesting in view of Boltzmann’s principal fame as

one of the creators of the statistical theory of gases.

In 1843, Georg Simon Ohm (1787-1854), the author
of the famous law of electric currents, put forward a
theory of audition according to which all musical tones
arise from simple harmonic vibrations of definite fre-

quency, and the particular quality or timbre of actual
musical sounds is due to combinations of simple tones
of commensurable frequencies He held, moreover,
that the human ear is able to analyze any complex note
into a set of simple harmonic tones, in terms of which it

may be expanded mathematically by means of Fourier's
theorem. This theorem, dating from 1822 and already
meiitioned earlier in this historical sketch, states that,
subject to certain specific mathematical restrictions,
which it is not necessary to discuss here, any arbitrary
function of a variable I, say the time, can be expanded in
a convergent series of circular functions whose argu-
ments are integral multiples of a fundamental fre-

quency. If the arbitrary function is itself periodic in

time, it can be represented in this way for all values of

the variable t, whereas if the function is not periodic

it can be so represented only over a finite time interval.

This theorem has been of great value in the so-called

analysis of sounds of all sorts.

Ohm's law stimulated a host of researches in what

has come to be called physiological and psychological

acoustics, i.e., the acoustics of hearing. The greatest of

these in the 19th century were undoubtedly those of von

Helmholtz, whose treatise, Die Lehre von den Tonemp-

findungen ah pkysiologische Grnndlage filr die Theorie

der Musik [75], already has been mentioned. It was

translated into English by A. J. Ellis under the title

Sensalions oj Tone, in 1895. Here, the author gave the

first elaborate theory of the mechanism of the ear, the

so-called resonance theory, in accordance with which

the various elements of the basilar membrane in the

cochlea resonate to certain frequencies in the sound fall-

ing on the ear. By this theory, he was able to justify

theoretically the law of Ohm. von Helmholtz became

greatly interested in the mechanical phenomenon of

resonance, and in the course of his investigations in-

vented the special type of sound resonator, since known

by his name. This is simply a spherical chamber with an

orifice. When a harmonic source of sound of appropriate

frequency is brought close to the opening, if the sizes of

the chamber and the orifice are just right, the sound will

be very much amplified by the vigorous oscillatory mo-
tion of the air in the orifice. A large chamber resonates to

a low frequency or low pitch tone and conversely. Such

resonators have had wide use in modern acoustical re-

search and applications, von Helmholtz showed that,

when two tones of different frequencies are directed at

an asymmetrical vibrator, the resulting vibration will

contain frequencies that are the sum and difference of

the original ones, and indeed many other linear combina-

tions of the original frequencies will occur. He speculated

that the eardrum is such an asymmetrical vibrator and,

hence, predicted human ability to detect such summa-
tion and difference tones. This prediction has been
verified, von Helmholtz’s pioneer researches laid the

groundwork for all subsequent research in the field of

audition. One of the greatest physicists of the 19th
century, he touched no field that he did not enrich with
his e.xperimental and theoretical genius.

Since the reception of sound by the ear in enclosed

spaces like rooms, churches, theaters, and auditoriums
in general is a common experience, it is proper that some
attention should be paid here to the development of
what has come to be called room or architectural acous-
tics. It was early recognized that some rooms are not
satisfactory for good hearing and various devices were
used to overcome the difficulties. These were at first

simply geometrical contrivances such as sounding
boards and other reflectors. A Boston physician, J. B.
Upham [7J], in 1853 wrote several papers indicating
a much clearer grasp of the more important matter in-
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volved namely, the leverberation or multiple reflection

of the sound from all the surfaces of the room He also

showed how the reverberation time could be reduced by
the installation of fabric curtains and upholstered fur

mshings In 1856, Joseph Henry (1797-1878), the dis

tmguished American physicist, who became the first

Secretary of the Smithsonian Institutuion in Washing

ton, made a study of auditonum acoustics that reflects

a clear understanding of all the factors mvolved, though

his suggestions were all of a qualitative character QJiJ

In spite of these early moves in what we now realize was

the right direction, the subject was completely neglected

by architects and during the latter half of the 19lh

century, attempts were often made to correct gross

acoustical defects in rooms by such absurdly inadequate

devices as stringing wires, etc. The modem quantitative

foundation of architectural acoustics dates from the

work of the Harvard University physicist, Wallace C
Sabine (1868-1919), who in 1900 hit upon the law con

necling the reverberation time in a room (i e ,
the time

taken for any initially built up sound intensity to decay

to any arbitrarily chosen fraction of its original value,

say the onemilbonth part) with the volume of the room
and the amount of acoustic absorbing material in it [623
This made appbed architectural acoustics possible m
the sense that any room can be designed for satisfactory

hearing of speech, and to a certain extent for music also,

though here subtle psjchological factors enter, which

provide trouble

Special devices for the amplification of sound received

by the ear have a long history Homs, for example, are

obviously of great antiquity It is uncertain just when
the suggestion arose that they might be used to ini

prove the reception of sound At all events, the Jesuit,

Athanasius Kircher, mentioned previously [J53» ^^50

designed a parabobc bom as a hearing aid as well as

a speaking trumpet, and evidently realized the impor

tance of the flare in the amplification of both received

and emitted sound Robert Hooke, who, in connection

with his duties at the Royal Society, was forever trying

out new ideas, expenmented with ear trumpets and is

even supposed to have suggested the possibibty of a

device to magnify the sounds of the body [JOJ
seems to have been reserved to the French physician,

Ren6Laennec (1781-1826), actuallj to invent and em
ploy the stethoscope for cbnical purposes (1817-1819)*

The English physiast, Sir Charles Wheatstone (1802-

1875), in 1827 developed a similar instrument that he

termed a microphone C^SJ, a name now appbed to an

electromechanical device (i e ,
one m which motion pro

duced by sound is made to induce electric currents) for

the reception of sound Electroacoustics had then hardly

been thought of Without it, modem experimental

acoustics could not exist

• Stt Rmie scierCtfyut {Pant) 4th Ser , 9 42 (1898), foe full

references to LaJnnec’s work on the stethoscope

All through the historical development of physic? one
can detect a tendency to reduce the observation of
physical phenomena and particularly expenmental
measurements to something that can be seen Practically

all physical measurements involve this pnncipl^ and
employ a pointer or a spot of light moving on a scale It

wis inevitable that attempts would be made to study
sound phenomena visually, this was, of course, ejpeci

ally necessary for the investigation of sounds whose fre

quencies he above the range of audibility of the ear the

so called ultrasonic radiation One of the first moves in

this direction was the observation by the Amencan
physicist, John LeContc (1818-1891), that musical
sounds can produce jumping in a gas flame if the pres-

sure is properly adjust^ (1858) [45] The sensitive

flame, as it later came to be called, was developed to

a high pitch of excellence by the English physicist, John
Tyndall (1820-1893), who used it for the detection of

high frequency (inaudible) sounds and for the study of

the reflection, refraction, and diffraction of sound vi aves

(71,722 It sliU provides a very effective lecture demon
Stratton, but, for practical applications, it has been su

perseded Sn the 20lh century by various type? of

electrical microphones coupled to the cathode ray

oscilloscope

In the endeavor to make visible the form of a sound

wave, Koenig [J7J about I860 invented fhemanornetnc

flame device, nbich consists of a box through which gaj

flows to a burner One side of the box is a flexible tnem

brane When sound waves strike on the membrane, the

alternating changes in pressure produce correspotidmg

fluctuations in the flame that can be made visible by

reflecting the light of the flame from a rapidly rotating

mirror Another attempt to visualize sound wavea was

made b> the I9ih century French proofreader, eijitor,

and amateur scientist, Edouard Leon Scott de Martin

ville, in 1857 m hts “phonautograph” m which a flexible

diaphragm at the throat of a receiving horn was attached

to a stylus, which in turn touched a smoked rotating

drum surface and traced out a curve corresponding to

the incident sound [77] TTits was the precursor of the

phonograph An equally ambitious attempt along simi

lar lines was made by Eh \Vhitney Blake [4] (1836-

I89a), the first Hasard Professor of Physics In Brown

University, who in 1878 made a microphone by attach

mg a small metalbc mirror to a vibrating disk at the

back of a telephone mouthpiece By reflecting a l«am

of light from the mirror, Blake succeededm photograph

mg the sounds ofhuman speech Such studies were much

advanced by the Amencan physicist, D C Miller

(1866-1941), who invented a similar instrument Ui the

“phonodeik,” and made very elaborate photographs of

sound xvave forms [52] These various devices of Scott,

Blake, and Miller were, of course, the predecessors of the

cathode ray oscilloscope, so useful m modem acoustical

research
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IV. LORD RAYLEIGH AND MODERN ACOUSTICS

The publication of Lord Rayleigh’s Theory of Sound

[67] in 1877 marks in a sense both the end of what niay

be called the classical era in acoustics and the beginning

of the modern age of sound. Rayleigh was a product of

the Cambridge University mathematical school of the

mid nineteenth century and graduated there as Senior

Wrangler in the Mathematical Tripos of 1865. He was,

therefore, well equipped to handle analytically prob-

lems encountered in his reading of von Helmholtz’s

treatise Sensations of Tone [75,7d]. This led him to con-

ceive the desirability of writing a substantial and au-

thoritative treatise on the whole field of acoustics to

bring together in one place material scattered for the

most part in articles in learned society journals. At the

same time, he took occasion to present in detail some

of his own contributions. The result was a work that

has long stood as a monument of physical literature,

with a tremendous influence on the subsequent develop-

ment of the science of acoustics, particularly on the

analytical side.

The work naturally divides itself in two parts, of

which the first relates to mechanical-vibration phenom-

ena of all kinds, including the oscillations of strings, bars,

membranes, and plates. Motions of such structures are,

of course, closely connected with the production of

sound, as has been stressed earlier in this historical

review. A valuable feature of the treatise is the insist-

ence on the establishment of general principles as well

as applications to special cases of practical significance.

Rayleigh was an accomplished applied mathematician

and developed helpful techniques for the solution of

difficult vibration problems. One of these, the basis for

the so-called Rayleigh-Ritz method, has had wide

modern applications, not merely in studying the vibra-

tions of solid structures, but also in quantum mechanics.

Rayleight never lost sight of the physical meaning in-

herent in natural phenomena and his analysis always
has the merit of being applicable in practice.

The second part of Rayleigh’s "Sound” deals prin-

cipally with acoustical propagation through fluid media.
Here he had to handle such difficult matters as, for

example, the diffraction of sound waves around obstacles

and the general scattering sound suffers when passing
through a medium with many suspended particles, e.g.,

bubbles in water. Acoustic diffraction and scattering
form mathematically a much more difficult subject than
the corresponding phenomena in light, since the wave-
length of ordinary audible sound is of the order of mag-
nitude of the dimensions of the obstacles themselves.
Much attention is also paid to the geometrical chartic-
teristics of the acoustic radiation from vibrating objects,
e.g., pulsating spheres or oscillating disks, so as to pro-
duce “beams” of sound. So thoroughly were problems of
this kind treated and so completely and clearly did
Rayleigh summarize the work of previous investigators
on such things as the attenuation of sound in fluids by

various dissipative mechanisms, that, when the second

enlarged and revised edition of Theory of Sound [d73

appeared between 1894 and 1896, it was widely felt that

the whole subject of acoustics as a branch of physics was

now complete and that there was nothing more to learn.

There were undoubtedly many who considered that the

future of the field lay in the hands of the engineers,

as indeed was already proving to be the case with the

basic theory of electricity and magnetism developed by

Ampere, Faraday, and Maxwell, whose scientific efforts

laid the foundations of electrical engineering. There was

certainly some justification for this feeling about acous-

tics at that time, not so much indeed because there were

no more interesting acoustical phenomena to investi-

gate, but because the e.xperimental means by which

these investigations could be practically carried out

were not yet available. For example, the work of Ray-

leigh and his contemporaries strongly suggested that

a host of interesting properties would be associated with

sound waves of frequency well above the audible limit.

But, when Rayleigh’s “Sound” was published, the only

practical source of such radiation was a bird whistle!

As one looks back into the physics of the 19th cen-

tury, it seems almost incredible that electromechanical

effects were not used earlier as sources of sound of a

wide range of frequency. The main difficulty, of course,

lay in the inadequacy of the means of producing elec-

trical oscillations as well as the coupling of these oscil-

lations to solid vibrators. It is true that the piezoelectric

effect was discovered by the brothers Pierre and Jacques

Curie [75] in 1880, and this suggested that, if there

were some way in w-hich to produce alternating positive

and negative electric charges on the opposite faces of

a properly cut quartz crystal, one could make it vibrate.

The successful e,xploitation of this effect as a source and
receiver of sound, however, had to await the invention of

the vacuum-tube oscillator and amplifier, which did not
come until the work of Fleming and DeForest in the

first two decades of the 20 th century.

As a matter of fact, the dawn of the 20th century saw
many fundamental problems in acoustics unsolved. On
the biological side, the nature of hearing was by no
means wholly understood, since the relation between the
anatomy of the ear and associated nervous system on
the one hand and the observed phenomena of audition
on the other was by no means clear. Detailed studies
of speech had as yet been impractical owing to inade-
quate means of speech analysis. On the physical side

—

though there existed a theory for the attenuation of
sound in fluid media like the atmosphere in terms of the
effect of the transport properties viscosity and heat
conduction—it was realized that the results predicted
by such effects were not in agreement with experiment,
being in general much smaller than the relevant ob-
served values. This was recognized indeed by Lord
Rayleigh, who made a shrewd suggestion of a plausible
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solution of the diiSculty in terms of so called relaxation

effects These were not fully explored until the century

was one quarter over [66'}

As has already been suggested, perhaps the biggest

obstacle to the further development of acoustics both

as a saence and as a branch of technology, around 1900

and for some jears thereafter, was the Jack of appro

priate sources and receivers of sound or transducers, as

lhe> came to be called It was recognized that a great

many physical phenomena—e g ,
mechanical, thermal,

electrical, magnetic—can give rise to sound radiation

and con\ersel> can act to transform sound mto other

physical effects It was also clear that such trans/orma

tion or transduction could be of enormous practical

importance One obvious example is the telephone, by
which sound can be transferred without attenuation

over much greater distances than would be possible

through the normal sound transmitting medium itself

This problem was first solved (according to the decision

of the courts in the United States of America after

length) patent litigation) by Alexander Graham Bell

around 1876 The transducing mechanism m this case

was, of course, electromagnetic m character The m
fluence of this invention on the future development of

acoustics has been incalculable In order to improve (he

telephone, huge amounts of money have been expended

on researdi into every aspect of human conununication

As a result of the work at the Bell Telephone Labora

tones, for example, we now know much more than

might ever have been reasonably expected from mere
human curiosity about the way that the human being

hears md speaks We also know how to produce sounds

of all frequencies from a few cycles per second up to

several thousand million c>cles per second and can

study efBcienil) the behavior of solid, liquid, and gase

ous media exposed to such sounds At the same lime, it

has become possible to study the interaction between

high frequency radiation, now called ultrasonic, and
other ph)-sical effects such as electric magnetic, high

and low temperature, large ranges of pressures, and the

like

It IS scarcely possible to do justice m a brief account

to the advances in acoustics m the past half century,

since It has shared in the fantastically increasing pace

of the progress of science as a whole To thelajonan the

most obvious developments have been in the technologi

cal field rather than m the pure science category Who
13 not acquainted with radio, talking motion pictures,

and television, and w ith the rfile that acoustics plays m
all of them? To these must be added the whole realm

of the recording and reproducing of sound, the produc

tion of phonograph disks and hi fi sets, not to mention

tape recorders Public address systems and other forms

of sound reinforcement devices have brought the voices

of human speakers as well as music to large audiences

Less well known but important for the national security

are the transducers designed for transmitting sound

underwater m the detection of submarines and other

objects In this field, as m the others, the interplay be

tween pure and apphed acoustics has been particularly

evident As the power, sensitivity, and effiaency of

underwater transducers have mcreased, greater knowl
edge of the acoustical properties of sea water has be
come necessary in order to make the use of Uns mote
sophisticated instrumentation really worthwhile Hence
a new field of acoustical research has been opened up as

a branch of physical oceanography In similar fashion,

the improved instrumentation for the study of speech

and hearing has stimulated the creation of wholly new
branches of physiology and psychology The construe

(ion of high powder ultrasonic transducers has introduced

a neiv tool for medical research both on the diagnostic

and therapeutic levels Even music is being influenced

by the comtemporary ways of producing and amplifying

sound The hst could be extended to every form of

human activity m which sound enters, and there are

few for which this is not true

However, it is important to point out that there exist

many as yet unsolved problems in basic acoustics These

involve particularly the interactions of high frequency

sound radiation with matter in its various phases Sue

cessful attack on them awaits the solution of the more

purely technological problem of the extension of the

practical frequency limit of ultrasonic radiation The

present limit (1966) is about JO*® cps If frequencies of

the order of 10’*-10** cps could be realized, our under

standing of the nature of the solid, liquid, and gaseous

states would be much enhanced Recent research in

which the optical laser has been used as a source of ultra

some radiation bolds out great promise This is not the

place for details They can be found m the pages of

Tj&c Jfitirnol oj tht AcewUcol Socuiy of America or in

the htcraiure referenced therein £1,34]

In fact, the whole history of acoustics during the past

third of a century will be found in the articles m the

Journal or m its bibliography

The writer desires to make grateful acknowledgments

to all the sources from which the material of this review

has been garnered He owes particular acknowledgment

to D C Miller’s Anecdotal History of the Science of

Sound ‘

£5/] r V Hunt’s Electroacouslics £3^]. as well

as C Truesdell’s historical references [70} to the works

of Euler, already referred to in the text The author

also wishes to express deep appreciation, for valuable

assistance m connection with the Bibhography, rendered

by the staff of the Physical Sciences Library of Brown

University, in particular Antigone C Coohdge

It has been asserted by some physicists who are

earned away by the glamor of high energy physics and

the properties of the solid state that the future of a so

called ' classical” field of physics like acoustics hes

wholly in its technological applications and that as

physical science it is “played out " This is an error, ss

the history of science in the last half century amply

shows and the remarks of the preceding paragraph docu

ment There is no ground for assuming that man wil

ever run out of questions about acoustics any more than

^2 T«l«me 39 numbxr 4 19M
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he will run out of questions about the nucleus and the

theoretical particles tliat inhabit it or can be created

from it. What is, of course, true is that as investigation

proceeds the boundary lines between the various types

of natural phenomena that mankind has artificially

creeled for purposes of convenience are becoming fuzzier

and more unrealistic. The aim of the science of the future

is a meaningful synthesis. In this, acoustics will claim

its rightful place.
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De Anima

De Audibilibus

ARISTOTLE

Aristotle (384-322 B.C.), the celebrated Greek philosopher and founder of the

Lyceum in Athens, wrote widely on scientific subjects, though he is best known for

his work on logic and other branches of philosophy. He dealt rather sparingly with

acoustics, at least in such of his writings that survive. His great book Physica (On
Physics) does not mention sound, though it deals extensively with the meaning and

properties of motion. Aristotle’s principal references to acoustics are found in one
of the books of his treatise De Anima (On the Soul) and in the treatise De Audibilibus.

Extracts from these are presented here. They show that Aristotle had some notion

that sound is connected with the motion of air but it is by no means clear that

he grasped the wave concept. He understood the nature of the echo. He was also

interested in the biological aspects of sound, particularly speech.

The following selections have been reprinted from “A Source Book of Greek Sci-

ence” by M. R. Cohen and I. E. Drabkin (Harvard University Press).
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Aristotl;, On the Seut II. 8. Translation of R. D. Hicks

There are two sorts of sound, one a sound which is operant, the other

potential sound- For some things wc say have no sound, as sponge, wool;

others, for example, bronze and all things solid and smooth, we say have

sound, because they can emit sound, that is, they can produce actual sound

between the sonorous body and the organ of hearing. When actual sound

occurs it is always of something on something and in something, for it is a

blow which produces it. Hence it ts impossible that a sound should be

produced by a single thing, for, as that which strikes is distinct from that

which is struck, that which sounds sounds upon something. And a blow

implies spatial motion. As we stated above, it is not concussion of any

two things taken at random which constitutes sound. Wool, when struck,

emits no sound at ail, but bronze does, and so do all smooth and hollow

things; bronze emits sound because it is smooth, while hollow things by

reverberation produce a series of concussions after the first, that which is

set in motion being unable to escape. Further, sound is heard in air, and

though more faintly, in water.* It is not the air or the water, however,

which chiefly determine the production of sound: on the contrary, there

must be solid bodies colliding with one another and with the air: and this

happens when the air after being struck resists the impact and is not dis-

persed. Hence the air must be struck quickly and forcibly if it Is to give

forth sound; for the movement of the striker must be too rapid to allow the

air time to disperse: just as would be necessary if one aimed a blow at a

heap of sand or a sandwhirl, while it was in rapid motion onwards.

Echo is produced when the air is made to rebound backwards like a

ball from some other air which has become a single mass owing to its being

within a cavity which confines it and prevents its dispersion. It seems

likely that echo is always produced, but is not always distinctly audible:

since surely the same thing happens with sound as with light. For light

is always being reflected; else light would not be everywhere, but outside

the spot where the sun*s rays fall there would be darkness- But it is not

always reflected in the same way as it is from water or bronze or any other

smooth surface; I mean, it does not always produce the shadow, by which

we define light.

* As a matter of fact, water js better than air as a medium for sound- lEddJ
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Void* is rightly stated to be the indispensable condition of hearing.

For the air is commonly believed to be a void, and it is the air which causes

hearing, when being one and continuous it is set in motion. But, owing

to its tendency to disperse, it gives out no sound, unless that which is

struck is smooth. In that case the air when struck is simultaneously re-

united because of the unity of the surface; for a smooth body presents a

single surface.

That, then, is resonant which is capable of exciting motion in a mass of

air continuously one as far as the ear. There is air naturally attached to

the ear. And because the ear is in air, when the external air is set in mo-

tion, the air within the ear moves.

[Aristotle], De Atidibilibus 800fll-33, 803M8-804fl8.* Translation of T. Lovcday and

E. S. Forster (Oxford, 1913)

All sounds, whether articulate or inarticulate, are produced by the

meeting of bodies with other bodies or of the air with bodies, not because

the air assumes certain shapes, as some people think, but because it is set

in motion in a way in which, in other cases, bodies are moved, whether by

contraction or expansion or compression, or again when it clashes together

by an impact from the breath or from the strings of musical instruments.

For, when the nearest portion of it is struck by the breath which comes

into contact with it, the air is at once driven forcibly on, thrusting forward

in like manner the adjoining air, so that the sound travels unaltered in

quality as far as the disturbance of the air manages to reach. For, though

the disturbance originates at a particular point, yet its force is dispersed

over an extending area, like breezes which blow from rivers or from the

land. Sounds which happen for any reason to have been stifled where

they arise, are dim and misty; but, if they are clear, they travel far and
fill all the space around them.

We all breathe in the same air, but the breath and the sounds which
we emit differ owing to structural variations of the organs at our disposal,

through which the breath must travel in its passage from within—namely
the windpipe, the lungs, and the mouth. Now the impact of the breath
upon the air and the shapes assumed by the mouth make most difference

'Used here not in the sense of a vacuum but of a medium like air. (Edd.]
* The connection ofsound with motion and impulse was made very early in Greek acoustical

theory. The importance of the air, or other medium, in transmitting the impulse was also
appreciated (see, e.g., the selection from Aristotle, De Anima, quoted above.) In the De Audi-

* ' Hr, which seems to be a fragment of a longer work, the explanation is somewhat different

Aristotle s. There is a definite approach to a wave theorj’, the portions of air com-
municating the impulse to proximate portions. Further development of a wave theory of

*°'*TK*^

^°***’*^ in Boethius (p. 291, below), who in all probability draws upon a Greek source.
e authorship of De Audibilibus is doubtful. Some have ascribed the work to Strato of

'^Psacus, other to Heraclides of Pontus. [Edd.]

Copyright © 1913 by the Clarendon Press and reprinted by permission of the Clarendon Press
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to the voice. This is clearly the case; for indeed all the differences in the

kinds of sounds which are produced proceed from this cause, and we find

the same people imitating the neighing of horses, the croaking of frogs, the

song of the nightingale, the cries of cranes, and practically every other

living creature, by means of the same breath and windpipe, merely by

expelling the air from the mouth in different ways. Many birds also imi.

tate by these means the cries of other birds which they hear.

As to the /arrgs, when they are sma}} and tnexpanstve and hard, they

cannot admit the air nor expel it again in large quantities, nor is the impact

of the breath strong and vigorous. For, because they are hard and inex-

pansive and constricted, they do not admit of dilatation to any great extent

nor again can they force out the breath by contracting after wide disten-

sion; just as we ourselves cannot produce any effect with bellows, when

they have become hard and cannot easily be dilated and closed.

Voices are thin, when the breath that is emitted is small in quantity.

Children’s voices, therefore, are thin, and those of women and eunuchs

and in like manner those of persons who are enfeebled by disease or ovcr-

exertion or want of nourishment; for owing to their weakness they cannot

expel the breath in large quantities. The same thing may be seen in the

case of stringed instruments; the sounds produced from thin strings are

thin and narrow and ’'fine as hair^,” because the impacts upon the air have

only a n.irrow surface of origin. For the sounds that are produced and

strike on the car are of the same quality as the source of movement which

gives rise to the impacts; for example, they are spongy or solid, soft or hard,

thin or full. For one portion of the air striking upon another portion of the

air preserves the quality of the sound, as is the case also in respect of shrill-

ness and depth; for the quick impulsions of the air caused by the impact,

quickly succeeding one another, preserve the quality of the voice, as it was

in its first origin. Now the impacts upon the air from strings are many

and are distinct from one another, but because, owing to the shortness of

the jntermittcnce, the car cannot appreciate the intervals, the sound ap-

pears to us to be united and continuous. The same thing is the case with

colours; for separate coloured objects appear to join, when they are moved

rapidly before our eyes. The same thing happens, too, when two notes

form a concord; for owing to the fact that the two notes overlap and in-

clude one another and cease at the same moment, the Intermediate con-

stituent sounds escape our notice. For in all concords more frequent

impacts upon the air are caused by the shriller note, owing to the quickness

of its movement; the result is that the last note strikes upon our hearing

simultaneously with an earlier sound produced by the slower impact.

Thus, because, as has been said, the car cannot perceive all the constituent

sounds, we seem to hear both notes together and continuously.
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Acoustics of the Theater

Vitruvius

Marcus Vitruvius Pollio (commonly called Vitruvius), Roman engineer and

architect, flourished about 25 B.C., but his precise dates are unknown, as are indeed

the details of his life. In connecdon with his engineering activities he wrote a treatise

in ten books, De Architectura (On Architecture), which has survived. He was much
interested in the acousdcs of the classical theater. We present a few extracts from
his treatise in which he can be said to have provided the first ideas on architectural

acoustics.

The following selections are reprinted from Vitruvius’ “Ten Books on Architec-

ture” (Dover Publications Inc.).
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I c3.n froni the writings of Aristoxcnus» append his scheme, and

define the boundaries of the notes^ so that with somewhat care-

ful attention anybody may be able to understand it pretty easily.

2. The voice, in its changes of position when shifting pitch,

becomes sometimes high, sometimes low, and its movements are

of two kinds, in one of which its progress is continuous, in the

other by intervals. The continuous voice does not become sta-

tionary at the “ boundaries ” or at any definite place, and so the

extremities of its progress are not apparent, but the fact that

there are differences of pitch is apparent, as in our ordinary

speech in sol, lux, flos, vox; for in these cases we cannot tell at

what pitch the voice begins, nor at what pitch it leaves off, hut

the fact that it becomes low from high and high from low is ap-

parent to the ear. In its progress by intervals the opposite is the

case. For here, when the pitch shifts, the voice, by change of

position, stations itself on one pitch, then on another, and, as it

frequently repeats this alternating process, it appears to the

senses to become stationary, as happens in singing when we pro-

duce a variation of the mode by changing the pitch of the voice.

And so, since it moves by intervals, the points at which it begins

and where it leaves off are obviously apparent in the boundaries

of the notes, but the intermediate points escape notice and are

obscure, owing to the intervals.

3. There are three classes of modes: first, that which the

Greeks term the enharmonic; second,thechromatic; third, the dia-

tonic. The enharmonic mode is an artisUc conception, and there-

fore execution in it has a specially severe dignity and distinction.

The chromatic, with its delicate subtlety and with the “crowd-
ing” of its notes, gives a sweeter kind of pleasure. In the dia-

tonic, the distance between the intervals is easier to understand,

because it is natural. These three classes differ in their arrange-

ment of the tetrachord. In the enharmonic, the tetrachord con-
sists of two tones and two “dieses.” A diesis is a quarter tone;

hence in a semitone there are included two dieses. In the chro-

matic there are two semitones arranged in succession, and the
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third interval is a tone and a half. In the diatonic, there are two

consecutive tones, and the third interval of a semitone com-

pletes the tetrachord. Hence, in the three classes, the tetra-

chords are equally composed of tv/o tones and a semitone, but

when they are regarded separately according to the terms of

each class, they differ in the arrangement of their intervals.

4. Now then, these intervals of tones and semitones of the

tetrachord arc a division introduced by nature in the case of the

voice, and she has defined their limits by measures according to

the magnitude of the intervals, and determined their character-

istics in certain different ways. These natural laws are followed

by the skilled workmen who fashion musical instruments, in

bringing them to the perfection of their proper concords.

6. In each class there are eighteen notes, termed in Greek

of which eight in all the three classes are constant and

fixed, while the other ten, not being tuned to tbe same pilch, are

variable. The fixed notes are those which, being placed between

the moveable, make up the unity of the tetrachord, and remain

unaltered in their boundaries according to the different classes.

Their names are proslambanomenos, hypate hypalon, bypale

meson, mese, nele synhemmenon, paramese, nele diczeugmenon,

nete hyperbolacon. The moveable notes are those which, being

arranged in the tetrachord between the immoveable, change from

place to place according to the different classes. They are called
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parliypate hypaton, liclianos hypaton, parhypate meson, lichanos

meson, trite synhemmenon, paranete synhemmenon, trite die-

zeugmenon, paranete diezeugmenon, trite hyperbolaeon, para-

nete hj'pcrbolaeon.

6. These notes, from being moveable, take on different quali-

ties; for they may stand at different intervals and increasing dis-

tances. Thus, parhypate, which in the enharmonic is at the inter-

val of half a semitone from hypate, has a semitone interval when

transferred to the chromatic. VTiat is called lichanos in the en-

harmonic is at the interval of a semitone from hypate; but when

shifted to the chromatic, it goes two semitones away; and in

the diatonic it is at an interval of three semitones from hypate.

Hence the ten notes produce three different kinds of modes on

account of their changes of position in the classes.

7. There are five tetrachords: first, the lowest, termed in Greek

i57raTot»;second, tlie middle, called iiia-ov\ third, theconjunct, termed

cvprjfifievov; fourth,thedisjunct,namedSfe5’eu7/i^ov; thefifth,which

is the highest, is termed in Greek wrep^okaiov. The concords,

termed in Greek avp^aviai, ofwhich human modulation will natur-

ally admit, are six in number: the fourth, the fifth, the octave,

the octave and fourth, the octave and fifth, and the double octave.

8. Their names are therefore due to numerical value; for when
the voice becomes stationary on some one note, and then, shift-

ing its pitch, changes its position and passes to the limit of the

fourth note from that one, we use the term “fourth”; when it

passes to the fifth, the term is “ fifth.
” ^

9. For there can be no consonancies either in the case of the
notes of stringed instruments or of the singing voice, between
two intervals or between three or six or seven; but, as written
above, it is only the harmonies of the fourth, the fifth, and so on
up to the double octave, that have boundaries naturally corres-
ponding to those of the voice: and these concords are produced
by the union of the notes.

‘ The remamder of this section is omitted from the translation as being an ob^ous
mteipolation.
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CHAPTER V

BOTJNDING VES3EtS IN THE THEATUB

1. In accordance willi tlie foregoing investigations on mathe-

matical principles, let bronze vessels be made, proportionate to

the size of the theatre, and let them be so fashioned that, when

touched, they may produce with one another the notes of the

fourth,.the fifth, and so on up to the double octave. Then, havmg

constructed niches in between the seats of the theatre, let the

vessels be arranged in them, in accordance with musical laws, in

such a way that they nowhere touch the wall, but have a clear

space all round them androom over their lops. They should he set

upside down, and be supported on the side facing the stage by

wedges not leas than half a foot high. Opposite each niche, aper-

tures should be left m the surface of the seat nest below, two feet

long and hall a foot deep.

2. The arrangement of these vessels, with reference to the

situations in which they should be placed, may be described as

follows. If the theatre be of no great size, mark out a horizontal

range halfway up, and in it construct thirteen arched niches

with twelve equal spaces between them, so that of the above

mentioned *'echea” those which give the note nelebyperbolaeon

may be placed first on each side, in the niches which are at the

extreme ends; next to theendsand a fourth below in pitch, the note

nete diezeugmenon; third, paramese, a fourth below; fourth, nete

sjTihemmenon; fifth, mese, a fourth below; sixth, hj’pate meson,

a fourth below; and in the middle and another fourth below, one

vessel giving the note hypate bypaton.

3. On this principle of arrangement, the voice, uttered from

the stage os from a centre, and spreading and striking against

the cavities of the different vessels, as it comes in contact with

them, will be increased in dearness of sound, and will wake an

harmonious note in umson with itself.

But if the theatre be rath» large, let its height be divided
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into four parts, so that three horizontal ranges of niches may

be marked out and constructed: one for the enharmonic, an-

other for the chromatic, and the third for the diatonic system.

Beginning with the bottom range, let the arrangement be as de-

scribed above in the case of a smaller theatre, but on the enhar-

monic system.

4. In the middle range, place first at the extreme ends the

vessels which give the note of the chromatic hyperbolaeon; next

§§ 2,3

§6

to them, those which give the chromatic diezeugmenon, a fourth

below; third, the chromatic synhemmenon; fourth, the chromatic

meson, a fourth below; fifth, the chromatic hypaton, a fourth

below; sixth, the paramese, for this is both the concord of the fifth

to the chromatic hyperbolaeon, and the concord* of the chro-

matic synhemmenon.

5. No vessel is to be placed in the middle, for the reason that
there is no other note in the chromatic system that forms a
natural concord of sound.

In the highest division and range of niches, place at the extreme
ends vessels fashioned so as to give the note of the diatonic hyper-
bolaeon; next, the diatonic diezeugmenon, a fourth below; third,
the diatonic synhemmenon; fourth, the diatomc meson, a fourth
below; fifth, the diatonic hypaton, a fourth below; sixth, the

t
*9 impossible, paramese being the concord of the fourthto the chromnbc meson, and iduitical with the chromaUc synhemmenon.
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CHAPTER Vin

ACOUSTICS OF THE SITE OF A THEATRE

1 AlJ, this having been settled with the greatest pains and

sHll we must see to it. with still greater care, that a site

sdeild where the voice has a gentle fall, and is not driven back

rrift a recoU so as to convey an indistinct meanmg to the ear.

mere are some places which from their ve^ nature interfere

^Ih the course of the voice, as for instance the

are termed in Greek circumsonant, which with

Zl are named -Earn the resommt. whu* are

termed 4vn,x»5>^£s; and the consonant, which they call <rvr^

voOvre. The dissonant are those places in which fte first sound

uttered that is carried up high, strikes against solid bodies above,

and. being driven back, checks as it smks to the bottom the rise

of the succeeding sound.
, . ,

2 The mrcumsonant are those in which the voice spreads

all mund, and then is forced into the middle, where it dissolves,

the case-endings are not heard, and it dies away there m sounds

of indistinct meaning. The resonant are those m which it comes

bto contact with some solid substance and recoils, thus produmg

an echo, and making the terminations of cases sound double.

The consonant are those in which it is supported from below,

increases as it goes up, aud reaches the ears m words which are

distinct and clear in tone. Hence, if there has been careful

attention in the selection of the site, the effect of the voice will,

through this precaution, be perfectly suited to the purposes of a

theatre.
^ , j »

The dra™gs of the plans may be distmguished from each

other by this difference, that theatres designed from squares are

meant to be used by Greeks, while Roman theatres are designed

from equUateral triangles, moever is walling to follow these

directions will be able to construct perfectly correct theatres.
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Concerning the Principles of Music

BOETHIUS

Translation by R. Bruce Lindsay

from “De Institutione Musicae”

(Latin edition of G. Friedrich, Leipzig, 1867),

Sections 1, 3, 8, 9, 10, 11

Anicius Manlius Saverinus Boethius (480-524) was a Roman philosopher whose

chief scientific fame came from his translations of and commentaries on the work

of Aristotle. In this way he served as a vehicle for bringing Greek science to the

attention of the Roman west. His best known original work is his Consolations of

Philosophy. The extracts translated and presented here on sound in music and

early experiments in acoustics were undoubtedly taken from Greek sources. They
are of interest in their foreshadowing of the wave theory of sound.

1. Preface: Music and the

Adornment of Our Manners

The perception of sensations is so clearly in the power of living things that

without this no organism could be understood. But knowledge of these things has

not through inquiry been clearly connected with the perception of the soul. For
it has not been established what sense we bring to the perception of things that

are capable of being perceived. The nature of those very senses by which we perform
our actions as well as the particular properties of perceptible things cannot be obvious
or explicable except through suitable investigation. The faculty of sight is present
in all mortals. This is stimulated by images reaching the eye or by rays emitted
to the things seen. Among the learned there is some uncertainty about this. The
common folk are assailed by the same doubt. On the other hand when one looks
at a triangle or a square he certainly recognizes what is looked at by the eyes. But
to understand the real nature of a square or rectangle it is necessary to ask a mathemati-
aan. The same can be said of other perceptions and this is particularly true of the
judgment of the ears. It is the faculty of the ear to catch sounds, not only indicating
their actual existence and recognizing the differences among various sounds, but
also to provide pleasure when the sounds are ofsweet quality. The hearer can, however,
be distressed if scattered or incoherent sounds strike the ear. There are four mathemat-
ical disciplines of which music is one; the other three are concerned mainly with
the investigation of rational truth, but music concerns not only speculation but also
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corresponding sensations and are often confused wth greater ones Thus in the

case of sound, faint sounds can be heard only iviih great difficulty, whereas very

strong sounds produce a deafening affect

10. How Pythagoras Investigated Consonance

It was then principally for the reasons set forth in the previous section that

Pythagoras abandoned thejudgment of the cars and transferred attention to measur

ing scales, having no faith m the human ear, which can suffer change in partthrough

Its own nature and in part through external acadents It can also vary with age

He had no confidence either in musical instruments from which are often produced

great variation and instability If, for example, you wish to consider strings, more

humid air will weaken the vibrations while dry air strengthens them The large

size of the string will produce a tone of lower pitch, while a thinner string will produce

a tone of higher pitch Or in some other way the onginal state of uniformity may

change Since the same situation prevailed with all other instruments, Pythagoras

thought all these unworthy of consideration and had little faith m othem So for

a long time he sought assiduously for other means by which judgments concerning

consonance could be firmly established In the meanume, while he was passing a

smith’s shop, by the pleasure of the gods he heard the hammers when struck produce

m some way out of the diverse sounds a musical harmony Astonished at this, which

had long been a subject of inquiry to him, he went into the shop and after long

consideration deaded that the diversity of sounds was due to the force of the blows

In order that he might solve this problem decisively he ordered the men to exchange

hammers But it was found that the propcrues of the sounds did not depend on

the strength of the men, but the same properties were found to exist with the

interchanged hammers When he had observed this he examined the weight of the

hammers Of five hammers, two were found with weights m ratio of 2 to I and

these produced sounds an octave apart He found that the one which was double

the weight of the other had a weight four thirds that of still another and produced

a sound higher by a fourth One hammer, which had a weight three halves that

of another, produced the consonance a fifth above The two hammers to which

the previously mentioned hammers had been shown to have the ratio 4 to 3 and

3 to 2, respectively, were found to have to each other the ratio of 9 to 8 Even

before Pythagoras the musical consonance ofoctave, fourth, and fifth were recognized,

but Pythagoras was the first to find by the wayjust described the proportions associated

with these musical harmonies In order to make clarer what has been just said, let

us. for example, assume that the four hammers (the fifth being disregarded) have

weights represented by the numbers 12, 9, 8, 6, respectively Then the hammers

with weights 12 and 6 were found to be an octave apart The hammers with weights

12 and 9 (ratio 4 to 3) are a fourth apart, and the same is true of the hammers

with weights 8 and 6, respecuvely The hammers with weights 9 and 6, respectively,

are a fifth apart

[Editor’s note The story of the hammers is apocryphal It was undoubtedly
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taken by Boethius from much earlier sources. The statements have no basis in fact,

since the weight of a vibrator by itself has nothing to do with its frequency. It is

the geometrical dimensions which, for the same line density and tension (or elastic

coefficient) are decisive. The story of how Pythagoras reached this conclusion is

explained by Boethius in Section 11.]

11. The Ways in Which the Various

Proportions of Harmonic Sounds
Were Studied by Pythagoras

On his return home from the smith’s shop Pythagoras attempted in various

ways to find out whether the whole theory of consonant sounds resides in these

proportions. He now turned to strings attaching equal weights to them, and judged
their consonances by ear. On the other hand he also varied the lengths of reeds

by doubling and halving them and by choosing other proportions, and thus by differing

observations developed a complete faith in his results. . . . Led on by these earlier

results he examined the length and thickness of strings. And thus he invented the

monochord, concerning which we shall have something to say later. The monochord
acquired this designation [Latin: regula^ not merely because of the wooden scale

by which we measure the dimensions of strings and the corresponding sounds, but
because any particular investigation of this kind made with a monochord [regula]
is so firmly established that no investigation can any longer be misled by doubtful
evidence.
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Dialogues on Music and Acoustics

GALILEO GALILEI

Galileo Gahtei (1564-1642), the Italian natural philosopher who was one of the

founders of modern physics, is usually known in the literature by his first name
His greatest contribution to science was probably in the field of mechanics, specifically

in the motion of falling bodies and projectiles His discovenes in astronomy are

more popularly known Evidently Galileo ^vas fascinated by the phenomena of sound

In hts Dialogues Concerning Two New Saences (1638) at the end of the discussion of

the Fit^t Day, he introduces hts ideas on acoustics with particular reference to the

importance of the concept of frequency Many of the points brought out are probably

not wholly original with Galileo and owe a good deal to his predecessors and contem

poranes, e g , Mersenne His clear handling of the early problems of acoustics justify

us m considering his work as a landmark in the development of the subject

40



MATHEMATICAL

DISCOURSES
CONCERNING

Tw Nem Sciences
relating to

Mechanicks and Local Motion,
I N

VOVR DIALOGUES
I. Of the Refinance of Solids III. Of Local Motion, z/wt. Equa-

againft Fraftion. ble, and naturally Accelerate.

II. Of the Caufe of their Cohe- IV. Of Violent Motion, or of
rencc. Projects.

By GALILEO GALILEI,
Chief Philoibpher aud Mathematician to the Grand Duke o/T u s c an t.

With an APPENDIX concerning the Center of Gravity of
Solid Bodies.

Done into EvgUp from the Italian^

By THO. WESTON, late Mafler^ and now ptthiijb'd hy^ John Weston,
prefent Majler, of the Academy at Greenwich.

L 0 N D 0 N:
Printed for J. H o o r. e, at tlie Flower-de-Luee, over-againft St. Dunfafft

Church in Fleet-Jlreet. M. DCC. XXX.

41



I come now to the other Qneftions relating to iPen-

duhms, Matters which to fomc would lecm very frivolous,

and more cfpecially to thofe Philofophers who are conti-

nually employ’d in the more profound Qucftions of natural

Philofophy : Yet I am far from contemning them, en-

comagtd by Exampit, in whom i tanv help

admiring this, 'u/x.. that he hath left nothing unhandicd,

as one may fay, that’s worth one’s Confideration. And
as to your Queftions, I think I can give you a Conceit of

my own, relating to feme Problems concerning MufKh,

a noble Subjedi:, of which (b many great Men, and even

Arijlotle himfelf, have written
;
and touching which he

confiders
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confiders many curious Problems : And if I, from eafy

and fenfible Experiments, can deduce Reafons of the won-
derful Accidents of Sounds, I may hope my Difcourle may
be grateful to you.

Sagr. Not only grateful, but by me in particular moll

defireable
5

for I take great Delight in all Mufical Inftru-

ments : And altho’ I have thought much concerning Con-
fonances, yet I never could comprehend whence it arifes,

that one fhould more pleafe me, and give me greater Delight

than another
5

that fome others do not only not delight

me, but, on the contrary, highly offend me. And again,

that common Problem concerning two Strings fet to an

Unifon, one of which adlually foundeth upon ftriking the

other, I, as yet, cannot folve
5
nor do I clearly nnderfrand

the Forms, and fome other Particulars relating to Con-
fonances.

Salv. I will fee whether from thefe our 'Pendtihms

I can deduce any thing to anfwer all thefe Difficulties.

And firfl as to your Queflion, vtz. Whether the fame

Teiidulum doth really and exaftly perform all its Vibra-

tions, greateft, mean, and leaft, in Times precifely equal,

I refer myfelf to that which I have long fince learnt of our

Academic, who plainly demonflrates, that a Moveable
defeending along the Chord fubtending any Arch, paffes

them all in equal Times, i, e. as well the Subtenfe of 1 80^,

(i. e. the whole Diameter) as the Subtenfe of 100°, or

6O3 10, 1, i a Degree, or of four Minutes, fuppofing

them all to terminate in the lowefl Point, which touches

the horizontal Plane : Again, concerning Defeendents by

T z the
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Sagr. So that, if I underftand you aright, I may eafi^

know the Length of a String hanging from any never fo

great a Height, tho' I can’t lee its upper End, by which

it is fatten’d on high, but only its lower End : for if I

fatten Weight enough to the faid String here below, and

fet it a vibrating to and fro, letting fome Friend number

fome of its Vibrations. Then if I at the fame time count

the Vibrations of another Moveable hung by a String ex-

actly a Yard long 5 then from the Number of Vibrations

which thofe Pendulums make in the fame time, I fhall

find the Length of that String : Thus, for Example’s Sake,,

fuppofe that in the time that ray Friend hath counted

20 Vibrations of the longer String, I have counted 24a
of my String that is a Yard long : The Numbers 20 and
240 being ttjuar’d, which arc 400 and 57600, I can

pronounce the longer String to contain 57600 of thofe

Meafures whereof ray String contains 400 5
and becaufe

this is but one Yard in Length, I will divide 57600 by
400, and the Quotient will be 144 : And fo many Yards
I affirm that String is in Length.

Salv. And you’ll not be miftaken one Inch, efpe#-

dally if you take a fufficienc Number of Vibrations.

Sagr. You give me frequent OccaGon to admire the.

Riches, and withal the extraordinary Bounty of Nature,

whilft from Things fo common and mean, you deduce,

one way or other, many curious and new Notions, and
fuch oftentimes as are remote from all Imagination. I

have very often carefully confider’d the Vibrations in par-

ticular'
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ticulrt of die Lamps, which in feme Churches hang by

very long Ropes, and which have been by Chance ftirc’d

or movn byanyone : But the moft that I infert’d from that

Obfervation was this, that their Opinion was very impro-

bable, who will have that fuch Motions are maintain'd

and continu'd by the Medium, i. e. by the Ait : For I

fhould think the Air endued with great Judgment, and

with the greatefl: Eafe, to caufe an hanging Weight to vi-

brate for Hours together with fo much Regularity : But

I fliould never have learnt from hence, that if the fame

Moveable, fufpended by a String a hundred Yards long,

now elevated above the loweft Point nmtty Degrees, now
only one, or half a one, that, I fay, it [hould fpend as

much time in moving thro' the leaft Arch, as it does in

moving thro’ the greatefl:, I don't think this would ever

have entered into my Head, and, ro be plain, 1 ftill

think It next to impolTible. But now I (land prepar’d to

hear how from thefe the moft limple and plain Things

can be affign’d me fuch Reafons concern’ng thofe Mufical

Problems, as in fome meafiire to give me Satisfaftion

about them.

Salv. Above all things you mud know that every

‘Pendulum hath the Time of its Vibrations lb limited and

prefixed, that it is impoflible to make .t vibrate in any

other Period than that which is natural to it : For let any

one take the String the Weight is faften’d to in his Hand,

and let him try to increafe or leflen the Number of its

Vlbiarions, and he fhall find his Labour to be in vain :

But we may, on the contrary, to a ‘Pendulum, tho' it be

heavy, and at Reft, give a Motion by only blowing upon

it,
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it, and, repeating the Blaft, a Motion confiderable
5
buc

this fecond Blafl: mufl: be made at at Inftant fuitable to

the Motion of the Vibrations
;

fo that if at the flrft Blaft

we move it half an Inch from the Perpendicular, and

then again, if when it has returned to us, and Is beginning

its fecond Vibration, we add a fecond. Blafl, we fliall

confer a new Morion to it
;
and thus by fucceffively re-

peating the Blafls at proper Times, buc not when the

'Tenduhmi is moving towards us, (fot fo we fliould check

and not help the Motion) we may confer upon it fuch an

Impetus^ that a much greater Force than our Breach will

be required to flop it again.

Sagr. I have obferv’d, when I was a Boy, that one

Man alone by fuch Impulfes, given at right Times, has

been able to raife a very great Bell
5
and when four or fix

have taken hold of the Rope to ceafe the Bell from Mo-
tion, they have been all raifed from the Ground

5
they

all being not able to withfland the Impetus^ which one

Man alone, with regular Pulls, had conferred upon the

Bell.

Salv. An Example that declares my Meaning as fully

as my foregoing one is fuitable to render the Reafon of
that admirable Problem of the Strings of the Viol or Luce,
which moves and makes not that only to found, which
is tun’d to an Unifon with it, but that alfo which is fet

to an Eighth, and to a Fifth : The String being touch’d
or flruck, its Vibrations begin and continue fo long as its

Sound lafls
5 thefe Vibrations give a Vibration and Tremor

to the adjacent Air, whole Tremors and Circulations,

extending
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extending tliemfelves a great Way, ftrike upon all the

Strings of the fame fnftrument, as alfo upon the Strings

of any others near it : That String that is let to an Unifon

with that touched, being dilpofed to make its Vibrations

in the fame Time, at the firit Impulfe begins to move a

little
5
and upon the Add tion Oi a fecond, a third, and

twentieth, and many more, all made in fit and periodic

Times, it receives at laft the fame Tremulation with that

flrfl touched, and, as plainly may be leen, it dilates its

Vibrations exaritly according to the Dilatation of thofe of

its Mover.

This Undulation that extends itfelf thro’ the Air, moves

and makes to vibrate, not only the Strings, but likewifc

any other Body difpofed to Tremulation, and to vibrate

in the fame time with the trembling String
5
wherefore

if upon the Sides of the Inftrument, feveral imall Particles

of Hair, or Bridles, or any other flexible Matter, be laid,

founding the Viol, we fhall fee now this, now that Cor-

pufcle tremble, as this or that String is ftruck, whofe Vi*

btations arc made in the lame Time
5
but the others will

not move at the Striking or Sound of this String; nor

will that Corpufcle move at the Sounding of any other

String.

If the Bafc String of a Viol be fmartly ftruck with a

Bow, and a thin and fmooth Drinking-Glafs be fet by it;

if the Tone of the String be an Unifon with the Tone of

the Glafs, the Glals will tremble and fenfibly reloimd

;

Again, we plainly fee the Circulation of the Medium about

the refoundine Body, to diffufe to a large Space, by
making a Glals to found, that has fome Water in it, by

rubbing the Rim or Edge of it with the Tip of one’s
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Finger : For wc fliall thus fee the Water in the Glafs to

undulate in a mofl regular Order
5 which Effed: will yet

more clearly be feen, if we put the Foot of the Glafs in

the Bottom of a Veffel of reafonable Bignefs, and fill it

with Water nearly to the Glafs’s Rim, and then make it

found by rubbing it round, as before, with the Tip of
one’s Finger, for then we fhall fee the Circulations in^thc

Water to be mofl: regular, and with great Velocities to

fpread to a great Diftance round about the Glafs : Nay, I

have often happen’d to fee, in making a pretty big Glafs,

almofl: full of Water, to found as before, the Waves
form’d with an exad: Ec^uality

5 but the Tone of the Glafs
happening fometimes to rife an Eighth higher, I have feen
at that very Inflant every one of the faid Waves to divide
themfelves into two : which Accident mofl plainly proves
the Form of the Odave to be the Double.

Sagr. The fame Thing has happen’d to me more than
once, to my great Delight and Advantage too ; For I
flood a long time in Doubt concerning the Forms of
Confonance, not thinking the Rcafons commonly brought
by the learned Authors, who have hitherto wrote of
Mufick, fufficiently demonftrative. They tell ns that the
^iapnfoji, that is the 0£iave, is contain'd by the T>oiihle •

and^that the Tiiapente, which we call the Fifth

^

is con-
tain d by the SefquiaJter

:

For if a String, ftretch’d upon the
marine Trumpet, be founded open, and afterwards placing a
Bridge under the Midfl: of it, its half only be founded, you'll
hear an Eighth : And if the Bridge be placed under one
third of the String, and you then ftrike the two thirds
open, It foundeth a Fifth to that of the whole String ftruck

U when
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when open : whereupon they infer that the Eighth is con-

tain’d between two and one, and tiie Fifth between three

and two. But I don’t think we can conclude from

hence, that the hotilh and Sejqt'ialteral can naturally affign

the Forms of the Dtapofon and T)iapente ; And my Reafon

for’t is this : There are three Ways by which we may
fliarpcn the Tone of a String, w%. by fhortning it, by

ftretching it, or by making it thinner . If now, retaining

the fame Tenfion and Thicknels, we would hear an Eighth,

we mull: make it fhorter by hal^ t. e. we muft firft found

the whole String, and then its half. But if keeping the

fome Length and Thicknefs, we would have it rife to an

Eighth from its prefent Tone, by ftretching it, or ferewing

it higher, 'tis not fufficicnt to flretch it with a Double, but

with four times the Force . Thus, if at firft it was ftretch’d

by a Weight, fuppofe of one Pound, v.c muft hang a fout

Pound Weight to it, in order to raife its Tone an Eighth.

And laftly, if keeping the fame Length and Tenfion, we
w ould have a String to found an Eighth, this String muft be

but one fourth of the Thicknefs of the other it muft found

an Eighth to. And this that I fay of the Eighth, i, e.

that Its Form taken from the Tenfion or Thicknels of the

String in a duplicate Ratio to that which it rcceiveth from

the Length, I would have underftood of all other Mufical

Intervals
;

becaufo if that which the Length gives us in a

Sejqiiialle) Propoition, i. c. when firft by ftriking it open,

and then its two thirds, we would do the fame from the

Tenfion, or Tenuity, or thinning the String, we muft

double the Sejqt'ialter Proportion, by taking the double

Sefquiqvn) tan : And if the grave String be ftretch’d by a

four Pound Weight to the fliarp one, we muft hang not
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fix buc nine Pounds : And as to the Thicknefs
5 we mufl:

make the grave String thicker than the acute, in the Pro-

portion of nine to four, to gain the Fifth.

Thefe Things being really fo in Fa(51:, I faw no Reafon

why thefe fage Philofophers fliould rather conftitute the

Form of the Eighth Tioiihle than ^.admph'^ and the

Form of the Fifth rather Sefqnitertiaii, than the doiible

Sefquiquartam Buc becaufe ^tis impoflrble to number the

Vibrations of the String, which, while it founds, are made

very fwiftly
3

I fliould always have been in Doubt

whether or no it were true, that the String founding the

higher Eighth did perform double the Number of Vibra-

tions, in the fame Time to thofe of the graver String,

unlefs the Undulations, which may be continued as long

as you pleafe, by keeping the Glafs founding and vi-

brating, had fenfibly fliewn me, that in the very Inftanc

wherein fometimes we hear a Tone to jump to an Eighth^

there are feen to arife other lefler Undulations, which,

with infinite Accuracy divide each of the former into

two.

Salv. An excellent Obfervation this ! whereby we can

diftinguiOi one by one the UnduL .ions produced by the

Tremor of the founding Body • which are thofe which,

diffufing themfelves thro’ the Air, caufe a Titillation on
the Drum of our Ear, whence in cur Soul is product a

Sound, But fince we can^c fee and obferve thofe Undu-
lations in the ^’’atcr, any longer than that Rubbing with

t ie Tip of the Finger lafteth, and they being not at a

Stay, but in conftant Motion all that Time, wou’d’nt it

be a great Thing to contrive fuch as we might exquifitcly

U 2 obferve,

i^'ACULTY OF Ef^Gri>JBHRING UBRARU
the UN'VERSrr^F JODHPUR

Acc. No... ^
Gall No.
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grew greater than that at the Beginning, the Sound was

heard continually to grow (harper, and the Streaks were

obferv’d to (land thicker, but always made with the

greateft Regularity, and exa<5lly equidiftant from one ano-

ther : And furthermore, when in Icraping fi h Sound was

heard, I felt the Chizel to tremble in my Hand, and a

certain Shivering to run along my Arm
5
and, in (hort,

I obferv'd the very fame Thing efFe<5bed by this Tool,

which may be obferv’d in ourfelves when we whilper,

and afterwards fpeak aloud
5

for when we fend forth our

Breath without forming a Sound, we do not perceive any

Motion in the Throat or Mouth, in Comparifon of that

Tremor which we feel in the Wind-Pipe and Jaws, upon

fending forth the Voice, efpecially if the Tones emitted be

grave and (Irong. I have, moreover, at fuch a time ob-

ierv’d, amongft the Strings of the Viol, two to found

Unifons, to two of the Sounds made by fcraping after the

Manner aforefaid, and exadl Fifths to one another : then

meafuring the Intervals of the Streaks of both the Attritions

or Scrapes, I found forty- five Spaces of the one to be equal

to thirty of the other, which, indeed, is the Form attri-

buted to the ^iapente.

But now, before I proceed any farther, I muft tell you,,

that of the three Ways of making a Tone more acute,

that which you refer to the Slcndernefs or Finenefs of the

String, may with more Truth be attributed to its Weight t

The Alteration taken from the Thicknefs, anfwers indeed

when the Strings are of the fame Matter, and fo a String-

of Gut to found an Eighth, muft be four times as thick

as the other Gut-ftring, below which it is to found an
Eighth

5
and one of \Vire alfo four times thicker than

another
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another of Wire : but if betwixt two Strings, one of Wire,

and the other of Gut, I would ger an Eighth, I mud: not

make it four times thicker, but four time^ heavier
, fo

that, as to the Thicknefs, the Wire one fliall not be four

times thicker, but four times heavier than the other
; fot

then the Wire one will be finer than that of Gut which

founds an Eighth above it. Whence it comes to pafs,

that firinging one Inftrument with Gold Strings, and ano-

ther with Brafs ones, provided the Strings of the one In-

ftrument be of the fame Length, Thicknefs, and Tenfion

with thofe of the other, the Tone of the Gold Strings

fliall be about a Fifth lower than that of the Brals ones,

Gold being nearly double the Weight of Brafs. And
here I would have you oblervc, that the Gravity of the

Moveable more refills the Velocity of the Motion, than

the Thicknefs does, contrary to what one at firft would

think
,

for, indeed, in Appearance, ’tis more reafonable

that the Velocity fliould be retarded, by the Refillance of

the Medium, againll dividing or opening, more in a thick

and light Moveable, than in a heavy and fmall one :

and yet in this Cafe it happens cjuite contrary. But to

purfue our firfl Putpofe
,

I (ay, that ’tis nether the Length,

not the Tendon, not the Tliicknefi, that conllitutes the

ncarcll immediate Reafon of the Forms m Mufical In-

tervals, but the Ptopouion of the Number of Vibrations

and Petcudions in the Undulations of the Air, (Inking the

Driin. of our Far, which itfelf a!(b doth trcmulate under

the fame Meafnres of Time.
Having eflablilli'd this Point, we may perhaps be able

to aflign a jn(l Reafon whence it comes to pad, that of

Sounds differing in Tone, fome Pairs arc Iieard with great

Delight,

1
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Deligk, otlierswiEhlefs
5
and that others are very oftenfivc

to the Ear. This we may do, I fay, by feeking the

Reafon of the more or lefs pcrfe<5t Confonances, and alfo

of Diffonances. The Offence thefe give, proceeds, I be-

lieve, from the difcordant and jarring Pulfations of two

different Tones, whicli, without any Proportion, ftrike

the Drum or the Ear : And the Diffonances will be ex-

treme harfh, in cafe the Times of the Vibrations are in-

commenfurable. And of fuch this is one
3
When one of

two Strings, Unifons, is founded with fuch a Partofano*

ther, as is the Side of a Sc^uare of its Diagonal 3. which

Diffonance is like to the ^vtione or Seml-dli^ente.

Thofe Pairs of Sounds fliall be Confonances, and will

be heard with Pleafure, which ftrike the 1‘hnpanum in

fome Order 3
which Order requires, in tire firft Place, that

the Percuflions made in the fame Time be commenfurable

in Number, that the Cartilage of the Thipamm or Drum
may not be fubje<5t to a perpetual Torment of bending

itfelf two different Ways, in Submiflion to the ever difa-

greeing Percuflion.

The firft and moft grateful Confonance will be the

Eighth^ fince for every Stroke wherewith the grave String

ftrikes the Ear, the acute one gives two
3

fo that hath, in

every fecond Vibration of the Iharp String, ftrike at once,

or together
3
wherefore half the whole Number of Strokes,

agree in ftriking together
3
but tlie Strokes of the Strings

that are UntfoiiSy are always ftruck together, and therefore-

are but as one only String, and make no Confonance.

The Fifth alfo is delightful, where, for every two Strokes-

of the grave String, the fliarp one gives three
3
whence it

follows, that if we. count the Vibrations of the acute-

String,.
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the Vihriition returns from D to C, the other pafles from

E to B, upon which the two Percuflions of B and G
now ftrike both together upon the ^tmpa7mm

5
and be-

caufe they continue to repeat in like manner the fubfc<^uenc

Vibrations, we may conclude that tbe Union of the Per*

culfions of the Line CD, with the Percuflions of the Line

AB happen every other Time: But the Pulfations of the

Terms AB are always accompanied, and are always the

fame with one of CD 5
which is manifeft from hened,

that fuppofing A and C to ftrike together, whilft A paflfes

to B, C goes on to D, and goes .back to C
5

lb that

the Strokes B and C ate made together.

‘

But now let AB and CD be two Vibrations which pro-

duce the ^Jbiapente^ whofe Times are in a Sefquialteral

Proportion, and divide the Line AB of the grave String

into three equal Parts, by the Points E and O5 and fup-

pofe the Vibrations to oegin at the fame Time from the

Terms A and C5 then its manifeft, that when the Stroke

is made in D, the Vibration of AB is got only to O5
wherefore the l^mpanum receives the Puliation D only.

Then whilft it returns from D to C, the other Vibration

is pafs'd from O to B, and return’d to O, firft making a

Pulfation in B, which is alfo made alone, and in Counter-

time (a Thing to be conlider’d) for fince we fuppos’d the

firft Pulfations to be made at the fame Moment in the

Terms A and C, the fccond which was made alone from
the Term D was made fo long after as is the Time of
Tranfition thro’ CD, that is AO : but the following one
which is in 3

,
is diftant from the other, as much as is the

Tranfition OB only, which is the half: but it goes on
from O to A, in the Time the other pafifes from C to D,

X and
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Sagr. I can hold no longer! but muft loudly exprels

the Pleafure I have to hear fuch appofice Rcafons afligned

of Effedls, concerning which I have been To long in the

Dark. Now I underftand how it comes to pafs, that an

Vntfon differs not from a fingle Tone: Now I fee why the

octave is the principal Confonance, and fo like to the U7ji~

Jon, that ir is taken and conjoin’d with others as an Ujiifon.

It refembles an Unifon, becaufe, as 'the Pulfations ofStrings

fet to an Unifin all ftrike together, the Pulfations of the

grave String, which founds an Eighth, are all accompany'd

with Beats of the acute String, and of thefe one folitary

one is interpos’d, and in equal Diftances, and in a certain

Order, without any Variety 5 whence fuch Confonance,

without the lead Allay, becomes mod melodious.

But the Fifth, with thofe its Counter-times, and which

the Interpofitions between the Pairs of conjoin’d Pulfa-

tions of two folitary ones of the acute String, and one

folitary one of the grave one, and thefe three in fuch Interval

of Time, as is its half, produces fuch a Titillation upon

the Cartilage of the Timpanum, that, allaying the Sweet-

nefs by a Mixture of Tartnefs, it feems at one and the

fame Time to kifs and bite.

Salv. Since I fee you are fo pleas’d with thefe Novel-
ties, I’ll fhew yoil a Method whereby not the Ear only,

but the Eye alfo, may be recreated, in beholding the fame
Sports the Ear feels or hears.

Hang Balls ot Lead, or other heavy Matter, by three

Strings of different Lengths, in fuch Manner, that in the

Time the longed makes two Vibrations, the fliorted makes

X 1 four,
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four, and the middle one threes which will happen when
the longeft contains fixreen Feet, or other Mcalures, fuch

as the middle one contains nine, and the fhorcefl: four.

And removing them all at once (rom Perpendicularity,

and then letting them go, you’ll fee a various Intermixture

of thofe ‘PetiduhwK with various Accidents, but fo chat

at every fouith Vibration of the longeft, all the three will

concur together in one and the fame Terms which they

afterwards leave and then again repeat the fame Periods

And this Mixture of Vibrations is the fame with that which

being made in Strings of Inftruments, prefents to the Eat

an Eighth, with an intermediate Fifth. And if we order

the Length of other Strings in the like Difpolition, fo that

their Vibrations anlrvet to thofe of other xnufieal confo-

nant Intervals, we {hall ftill fee new Conncftions, and

thofe always fuch as all the Strings (be they three or four)

will, in determinate Times, and after determinate Nurri*

bets of Vibrations, concur in the fame Moment, at the

Term of their Vibrations, and thence they again begin

another like Period
5 But if the Vibrations of two or more

Strings, are either incommenllirablc, fo that by vibrating

to and fro, they never harmonioufly peifotra a determin’d

Number of Vibrationss or if they are not incommcnfura-

ble, and yet return not till after a long Time, and after

a great Number of Vibrations, then the Sight is confoun-

ded by the irregular and confus’d Order of irregular Inter-

mixtures, as the Ear with Regret receives the intemperate

Impulfes of the Air’s Tremulations, which, without Order

or Rule, fuccefllvcly fttike its Timpamm or Drtwi.

Blit whither, Gentlemen, have we been tranfported for

fo many Hours, by various Problems, and unlook’d for

Difeoutfes ’

I



Diall. DIALOGUES. 157
Difcourfes ? We have made it Night, and yet have hand*

led few or none of the Points firft propos a 5 but^ on the

contrary, have fo loft oiir Way, that I hardly remember

where we begun, and what that fmall Introduction was,

which, by Way of Hypothejis, we laid down as a Principle ta

build upon in the Demonftrations which were to follow.

Sagr. True, it will be convenient, therefore, that we
put an End to this Day’s Conference, and refrefii our

Minds by the Night’s Repofe, and To-morrow (if you
pleafe fo far to favour us) we will refume the Difcourfes

defir’d, and at firft chiefly intended.

Salv. rll not fail to be here at the ufualHour, toen*
joy your Company, and do you what Service I can.

The jS2V2) of the First Dai’s ConFEREKCEr

GALILJEUS

61



o»
VeVoci^^

oiSo««'
A'vc^

^,ev «'»"'='"1“e"i

s." «:«•“•“' ‘

62



F MARINI

MATHEMATICA.
In quibustam naturae quam arris efFe^lus

admirandi certifrimis demonftra:

tionibus cxplicantur.

p ARisiis;
SuSptibm ANT O Nil BERTIER; via labobea

'M. DC. X L I V,

CrM ‘T^lkBgiO ^EGIS^

63



on fl.e
velocity of sound in Air

MARIN MERSENNE

™l-t!rundsr''

Harmoniae, UberHarmo»ne,Uber
m.e cUSSO

dstrmged.nstrumen«traveUnti

The sound of organs and String

per second . vntb harmonic
sobibo bt

b® Moerinients 'r..ilpries \oi:

“rcrabout the — recently m the tiaci

as in rrench worhs
° he“yon hear

;.“;edmJtrume"‘,an_organjr^

•eive

^

a ,f indeed you
can o

°_rp seconds if . g^ds

siariss-'SSSfsC'

64



heard clearly only up to ten leagues. Other details may be seen in the first three

books of our greater work “Harmonicorum Libri XU” (1636).

Ballistica: Proposition 35

The velocity of sound is greater than the velocity of cannon balls and equals

230 six-foot intervals per second.

Whoever wishes to measure the velocity of sound under various condition, by

night, by day, in valleys, in woods or mountains, either with or against ihe wind,

in fair or rainy weather, in all these circumstances experiment always leads to the

same velocity of sound. After you have observed the sound at a distance of 230

six-foot intervals from the source and retreat another space of 230 six-foot intervals

so as to be at 460 six-foot intervals from the source the same or equal sound will

take 2 seconds to cover the distance. If we multiply the original distance by 5 so

that we hear the noise of a cannon at a distance of 1150 six-foot intervals from

the source, the fire at the mouth of the cannon will always be seen at night 5 seconds

before the sound is heard. When we do the experiment with a Gallic league of

2500 six-foot intervals (in terms of which the earth’s circumference is 7200 leagues)

it is easy to conclude the time it will take the sound to travel a whole league or

any number of leagues. For the velocity of sound is not diminished by its attenuation

in intensity. With the hearing of perceptible sound the last part strives to equal the

velocity of the first.

The noise of a cannon covers one league in the space of 11 seconds, since a

league is equivalent to 11 times 230 six-foot intervals (the 230 six-foot intervals being
the distance sound travels in one second) minus 30 six-foot intervals, which hardly

needs to be considered here since it corresponds only to the distance traveled by
sound in about one-seventh of a second.

From these facts we are permitted to bring together several results. In the first

place, a soldier watching the firing of a gun at 100 six-foot intervals whose fire

he has already seen is able to dodge the shot. This I demonstrate thus: it is established
from observation that a cannon ball takes one second to go 100 six-foot intervals.

Therefore half of that second at most will be used up in the transfer of the sound.
Therefore the soldier will have a whole second from the time of the flash (assuming
he saw it at the instant it occurred) in which he can take three or four steps, before
the ball gets there. For that reason there remains half a second from the time when
he heard the sound before the arrival of the ball; though I would not advise anyone
to try this unless protected by armor of every kind, so as to be prepared for every
eventuality. But with a wall placed in between it would be possible for someone
to find out which came first, the sound or the fall of the shot on the ground.

In the second place, from the sound and the observation of the cannon flash
It IS easy to find out how far apart the cannons are; so that from this even very
ingenious men cannot fail to promote their art. In the third place, from the sound
o thunder and the preceding flash of lightning it can be learned how^ far away
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7

Air as the Medium
for the Transmission of Sound

ROBERT BOYLE

Robert Boyle (1627-1691), the celebrated British natural philosopher, is best

remembered for his experiments on the elastic properties of air and his well-known

law connecting the pressure and volume of a gas at constant temperature. His posses-

sion of an adequate air pump enabled him to do experiments with partial vacuums
which were not possible for his immediate predecessors. Among these experiments

is the famous one on the decrease in the intensity of the sound produced by a bell

ringing in a bell jar from which the air is continuously pumped out. This was long

considered as a decisive experiment demonstrating that the air or some equivalent

material medium is necessary for the propagation of sound. We now know that

the conventional explanation of the experiment is inadequate. The decrease in in-

tensity of the sound is due to the increasing difference in acoustic impedance between
the vibrating object and the surrounding medium.

The following extract is taken from an early edition of one of Boyle’s books.
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Repnnted from “New Expenments, Physico-Mcchanical, Touching the Spnng of the Air,“ by

Rbt Boyle. 2nd Edition, T Robinson (Oxford) 105-110 (1662)

7
EXPERIMENT XXVII.

THst the Airis the medium whereby fouads are convey’d to

the Ear, hath been for many Ages, and is yet the common
Doflrine of the Schools. But this Received Opinion hath been

of late oppof'd byfome Philofophers upon the account of an

Experiment made by the IndaftnousJf/rcAcr, and other Learned

Men: who have ( as they aflureus ) obferv’d. That if a Bell,

with a Steel Clapper, be fo faften’d to the infide of a Tube, that

upon the making the Experiment Di Vacuo vvith that Tube, the

Bell remain’d fufpended in the deferred fpaceatthe upper end of

theTube: And if alfo a vigorous Load-flonebe applydon the

outfide oftheTube to the Dell, it will attraft the Clapper, which

upon the Removal of the Load- Bone falling back, will ftrike

againft theoppofite fide of the Beil, and thereby produce a very

audible found 5 Whence divers have concluded, That 'tis not the

Air, but fomemoK fubtle Body that is the medium of founds.

But becaufe we conceiv'd that, to invalidate fuch a conffqucnce.

from this ingenious Experiment (though the rroft lucifeious,

that could well be made without fome fuch Engine as oui s ) feme

things might be fpecioufly enough alleadg’d
5 we thought fit to

make a tiyal or two
,

in order to the Difcoveiy ofwhat the Air

doth in conveying of founds, refeiving divers other Experiments

tryablein our Engine conceining founds, tilhve can obtain more

P ] leafure
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tP.rme to profecute them. Conceiving it then the beft way to

2e ourFryal with fuch a noife as might not be l?«dencmgh to

inaKc tjui
^ in it ; but rather

makeit difficult to difcernflightervariatio^^
. : . .

mSe bothlafting, ( that we might take notice by what de-

®.c ttdecreaf-d •
'I and fofmall, that it could not grow much

^eake without becoming imperceptible. We tooka Watch,

S“cafe we open’d, that the contain’d Air might have free

?rSs Sto that ofthe Receiver. And this Watch was fufpend-

edinthecavity ofthe Veflel onelyby aPack-thred, as theun-

likelieft thing to convey a found to the top of the Receiver . And

thenclofingupthe Veflel with melted Plai^fter, weliften d near

ihefides of it, and plainly enough heard the node made by the

ballance. Thofe alfo of us, tha t watch’d for that Circumftance,

obferv’d. ^hat the noife feem’dto come dire(flly in a {traight

Line from the Watch unto the Ear. And it was obfcrvable to

this purpofcj that we found a manifeft difparity ofnoife^ by hold

in^^ our Ears near the fides of the Receiver, and near the Cover

of it I which difference feem d to proceed from that of the Tex-

ture ofthe Glafs, from the ftruaure ofthe Cover (and the Ce-

ment; through which the found was propagated from the Watch

to the Ear. But let us profecute our Experiment. The Pump
after this being imploy’d ,

it feem’d that from time to time the

found grew fainter and’fainter •, fo that when the Receiver was em-

pty’d as much as it uf’d to be for the foregoing Experiments, nei-

ther we
5
nor fome flrangers that chanc’d to be then in the room,

could, by applying our Ears to the very fides, hear any noife

from within-, though we could eafily perceive that by the mov-
ing of the hand which mark’d the fecond minutes, and by that of

the ballance, that the Watch neither Rood fl:il,nor remarkably va-

ried from its wonted motion. And to fatisfie our felves farther

thatit^was indeed the abfence ofthe Air about the Watch that

hinder'd us from hearing it, we let in the external Air at the Stop-
cock, and then,though we turn'd the Key and ftopt the ValvCjyet
We could plainly hear the noife made by the ballance, though we
held our Ears fometimes at two Foot, diftance from the outfide of

the
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{onfito whether in the above mentioned Ercperiment made

with the Bell and the Load-ftone, there might not in the defec-

ted part of the Tube remain Air enough to produce a found

:

iince the Tubes for the Experiment T>c Vacuo f not to mention

the ufual thinnefs ofthe Glafs; being feldom made greater then is

requifite, a little Air might beare a not inconfiderable proportion

to the deferted fpace : And that alfo^ in the E x periment Dt

CM ,
as It is wont to be made, there is generally fome little Air

that gets in from without \
or at leaft ftore of bubbles that arife

from the Body ofthe Quick* filver,. or other Liquor it felf, Ob-

fervations heedfaily made have frequently informed us : And it

may alfo appear,by what hath been formerly delivered concerning

Torricellian Experiment.

On the occafion of this Experiment concerning founds , we

may adde in this place. That when we tryed the Experiment for^

merly mentioned^ of firing Gun powder with aPuflolin oure-

vacuated Receiver, the noife made by tbefti iking of the Flint

againflthe Steel, was exceeding languid in comparilon of what

it would have been in the open Air. And on divers other oc-

cafions it appeared that the founds created within our exhaufled

Glafs, if they were not loft before they reach’d the Ear, feem'd
at leaft to arrive there very much weaken'd. We intended to
try whether orno the Wire- ftring of an Inftrument ftmt up in-

to our Receiver
,

w’ould, when the ambient Air was fuck'd out,
atalUremble, ifin /mother Inftrumenc held clofe to it, butwith-
out the Receiver, a firing tun’d (as Muficians fpeak, how. proper-
ly I now examine not^ to an Unifon with it, were bris kly touche,
and feta Vibrating. This, I fay, we purpofd to try to ;ee how
the motion made in the Air without

,
would be propagated

through the cavity of our evacuated Receiver. But when the
Xnftrument wherewith the cryal was to be made came to beim-
ploy’d, it prov'd too big to go into the Pneumaticall Veffel ; and
we have not now the conveniency to have a fitter made.

We thought likewife to convey into the Receiver a long and
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That though for the reafons newly intimated ,

we have, One-

Jin the feventeenth Experiment,
as rariLd ' > et

Pnaine the Air may be condenl d as well as rarmea , ) ec

Ire a^^divers other of Lr Experiments , whofe

fwerewor* while to try to vary, by means of the compref-

iionoftlie Air.
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KepH„.ea .0. ••Ma.hen.aUC P.incip.cso~«
first American edition (D. Adee, New York) 356-357 (1848)

SECTION VIIL

Of motion propagated through Jluids,

PROPOSITION XLI. THEOREM XXXIL

A pressure is not propa-^atcd through a fiuid in rcdilimar directim

unless ivhere the particles of the fluid lie in a right hue.

If the particles a, b, c, d, e, lie in a right line, the prB-

sure may be indccil directly propagated from a to e; but

fb.en the particle e will urge the obliquely posited parh-

^ clcs f and g obliquely, and those particles / and g in

not sustain this pressure, unless they he supported by the

particles h and k lying beyond them; hut the particles

that support them are also pressed by them
;
and those particles canno

sustain that pressure, without being supported by, and pressing

particles that lie still farther, as I and m, and so on in iiijiniiiim. i^r

fore the pressure, as soon as it is propagated to particles that

right lines, begins to deflect towards one hand and the other, an m
^

propagated obliquely in infinitum; and after it has begun to be

ed obliquely, if it reaches more distant particles lying out of tieri^

^

line, it will deflect again on each hand
;
and this it will do as often as

lights on particles that do not lie exactly in a right line. (i.E.D.

Con. If any part of a pressure, propagated through a fluid from a j,i'

^

point, be intercepted by any obstacle, the remaining part, uhich is m
^

tcrccpted, will deflect into the spaces behind the obstacle. 1 hi^

demonstrated also after the following manner. Let a pressure 1)e

ed from the point A towards any part, and, if it be possible, in rcc.i men
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368 THE MATHEMATICAL PBINCIPLES [Book II.

rido-es of tlie wfives is higher than in the unmoved parts of the fluid KL,

NO, it will run down from oflf the tops of those ridges, e, g, i, I, &,c., d,f,

h, k, <fcc., this way and that way towards KL and NO; and because the

water is more depressed in the hollows of the waves than in the unmoved

parts of the fluid KL, NO, it will run down into those hollows out of those

unmoved parts. By the first deflux the ridges of the waves will dilate

themselves this way and that way, and be propagated towards KL and NO.

And because the motion of the Avaves from A towards PQ, is carried on hy

a continual deflux from the ridges of the waves into the hollows ne.\t to

them, and therefore cannot he swifter than in proportion to the celerity of

the descent; and the descent of the water on each side towards KL and NO

must be performed with the same velocity; it follows that the dilatation

of the waves on each side towardsKL and NO will be propagated with the

same velocity as the waves themselves go forward with directly from A to

PQ. And therefore the whole space this way and that way towards KL

and NO will be filled by the dilated waves rfgr, skis, tklt, v?nnv, &c.

Q.B.D. That these things are so, any one may find by making the exper-

iment in still water.

Case 2. Let us suppose that de, fg, hi, kl, ?nn, represent pulses sue-

cessively propagated from the point A through an clastic medium. Con-

ceive the pulses to be propagated by success! a'c condensations and rarefactions

of the medium, so that the densest part of every pulse may occupy a

spherical superficies described about the centre A, and that equal intervals

intervene between the successive pulses. Let the lines de, fg, hi, kl, (fcc.,

represent the densest parts of the pulses, propagated through the hole BO;

and because the medium is denser there than in the spaces on either side

towards KL and NO, it will dilate itself as well towards those spaces KL,

NO, on e.ach hand, as towards the rare intervals between the pulses
;
and

thence the medium, becoming always more rare next the intervals, and

more dense next the pulses, will partake of their motion. And because the

progressive motion of the pulses arises from the perpetual rela.xation of the

denser p>arts towards the antecedent rare intervals; and since the pulses uill

relax themselves on each hand towards the quiescent jiarts of the medium

KL, NO, with very near the same celerity; therefore the pulses will dilate

themselves on all sides into the unmoved parts Kli, NO, with iilmost the

same celerity with which they^ are propagated directly from the centre A;
and therefore will fill up the whole space KLON. aE.D. And we find

t e same by experience also in sounds which arc heard through a mountain

interposed
; and, if they come into a cliambcr through tlie window, dilate

lemselvcs into all the parts of the room, and arc heard in every corner;

aa not as reflected from the opposite Avails, but directly propagated from
le u indow, jis far as our sense can judge.

ase 3. Let iu5 suppose, lastly, that a motion of any kind is propagated
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zm THE MATHEaiATICAl, PllINCIPLES [Book II

•will be propagated on all sides from tliat tremulous body, as from a com-

mon centre, in superficies nearly spherical and concentrical. An example

of this we have in waves excited by shaking a .finger in water, which

proceed not only forward and backward agreeably to the motion of the

finger, but spread themselves in the manner of concentrical circles all round

the linger, and are propagated on every side. For the gravity of the water

supplies the place of elastic force.

Case 2. If the medium be not elastic, then, because its parts cannot he

condensed by the pressure arising from the vibrating parts of the tremulous

body, the motion will be propagated in an instant towards the parts where

the medium yields most easily, that is, to the parts wluch the tremulous

body would otherwise leave vacuous behind it. Tlie case is the same with

that of a body projected in any medium whatever. A medium yielding

to projectiles docs not recede but with a circular motion comes

round to the spaces which the body leaves behind it. '^riiercfore as often

as a tremulous body tends to any part, the medium yielding to it comes

round in a circle to the parts wliich the body leaves
;
and as often as the

body returns to the first place, the medium will be driven from the place it

came round to, and return to its original place. And though the tremulous

body be not firm and hard, hut every way flexible, yet if it continue of a

given magnitude, since it cannot impel the medium by its tremors any

where without yielding to it somewhere else, the medium receding from the

parts of the body where it is pressed will always come round in a circle to

the parts that yield to it Q.E.D.
Cor. It is a mistake, therefore, to think, as some have don(^ that the

agitation of the parts of flame conduces to the propagation of a pressure in

rectilinear directions througli an ambient medium. A pressure of that

kind must be derived not from the agitation only of the parts of flame, hut

from the dilatation of the whole.

piioposrriox xliv. theorem xxxv.

^f'loater nsceiid and descend cdlernaiely in the erected legs KL, MN, of
n canal or pipe; and a pendulum he constructed ^ohose length between

t le point of snsjyetision and the centre of oscillation is equal to half

the length of the xeater in the canal ; I say
^
that the xcater xcill ascend

nnd descend in the saxne times in xchich the pendulum oscillates.

I nioasure the length of the water along the axes of the canal and its legs,

n
^

make it equal to the sum of those axes
;
and take no notice of the

esis anco of the water arising from its attrition by the sides of tlie canal.

IgI^
AB, CD, represent the mean height of the water in both

wai^
''^hen the water in the leg KL ascends to the heiglit EP, the

ter will descend in the leg MN to the height GH. Let P be a pendulous
79
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362 the mathematical principles [Boor 1L

and in the time that the pendulum will perform one single oscillation the

waves will advance forward nearly a space equal to their breadth.

That which I call the breadth of the waves is the transverse measure

lying between the deepest

part of the hollows, or the

tops of the ridges. Let

ABCDEF represent the surface of stagnant water ascending and descend*

ing in successive waves; and let A, C, E, &c., be the tops of the waves;

and let B, D, F, (fcc., be the intermediate hollows. Because the motion of

the waves is carried on by the successive ascent and descent of the water,

so that the parts thereof, as A, C, E, (^c., which are highest at one time

become lowest immediately after; and because the motive force, by which

the highest parts descend and the lowest ascend, is the weight of the eleva-

ted water, that alternate ascent and descent w'ill be analogous to the recip-

rocal motion of the water in the canal, and observe the same laws as to the

times of its ascent and descent
;
and therefore (by Prop. XLIV) if the

distances between the highest places of the waves A, C, B, and the lowest

B, D, F, be equal to twice the length of any pendulum, the highest parts

A, C, E, will become the lowest in the time of one oscillation, and in the

time of another oscillation will ascend again. Therefore between the pas-

sage of each wave, the time of two oscillations will intervene
;
that is, the

wave will describe its breadth in the time that pendulum will oscillate

.

twice; but a pendulum of four times that length, and which therefore is

equal to the breadth of the waves, will iust oscillate once in tha<^ time.

Q.E.L

CoR. 1. Therefore waves, whose breadth is equal to S-j-V French feet,

will advance through a space equal to their breadth in one second of time;

and therefore in one minute will go over a space of lS3i feet; and in an

hou’' a space of 11000 feet, nearly.

^

Con. 2. And the velocity of greater or loss waves will be augmented or

diminished in the subduplicate ratio of their breadth.
These things are true upon the supposition that the parts of water as-

cen or descend in a right line; but, in truth, that ascent and descent is

rat icr performed in a circle
;
and therefore I propose the time defined by

tins Proposition as only near the truth.

PROPOSITION XLVII. THEOREM XXXVII.
^^^P^opa^ated ihrov^rJi a fiuicJ,ihc several particles of the

, gob/g and returning with the shortest reciprocal motion, are al-

accehiated or retarded according to the law of the oscillating

pendidim. ^

equal distances of successive puls

le me of direction of the motion of the successive pulses propaga 81



or NATURAL PHILOSOPHV. 363Sec. Via]

A to B; E, F, G three physical points of the quiescent medium sit-

uate in the right line AC at equal distances from each other; Ee, P/) Qg.^

c^ual spaces of extreme shortness through Tvhich those

points go .and return with a reciprocal motion in each vi-

bration; e, 4^, y, any intermediate places of the same points;

EF, FG physical lincolm, or linear parts of the medium

lying between those points, and fiucccssi\’e1y transferred into

(be places tpr, and ef^ /g-. Let there he drawn the

riglit line PS equal to the right lino Ec. Bisect the same

in 0, and from the centre O, with the interval OP, describe

the circle SIP*, l^el the whole time of one vibration
;
with

its proportional piirts, be expounded by the whole circum-

Icrcncc of this circle and its pnvts, in such sort, that, when

any time PH or PHS/i is completed, if there be let fall to

PS the perpendicular HL or hi, and there

he tahen Ee equal to PL or P/, the physi-

cal point B may be found in c. A point,

as E, moving acccording to this law with

a reciprocal motion, in its going from E
thioughc toe,and returning again through

e to E, will perform its several vibrations with the same de-

grees of acceleration and retardation with those of an oscil-

lating pendulum. We arc now to prove that the several

physical points of the medium will be agitated with such a

hind of motion. JjCt us suppose, then, that .a medium hath

Eucli a motion excited in it from euy caxisc whatsoever, and
consider what will follow from thence.

In the circumference PHSA let there be tahen the equal

arcs, Hi, IK, or h\, \k, having the same ratio to the whole

circumference .as the equal riglit lines EF, FG have to BO,
the whole intcrv.ll of the pulses. Let fall the perpendicu-

lars IM, KN, or im, kn / then bcKiusv the points E, F, G are

'

Eucccssivcly .agitated with like motions, .and perform their entire vibrations

composed of tlicir going and return, while the pulse is transferred from B
to C; if PH or PHSA he the lime elapsed since the beginning of the mo-

tion of the point E, then will PI or PHSi be the time elapsed since the

ijcginning of the motion of the point F, and PK or PHS/; the time elapsed

since the beginning of the motion of the point G
;
and therefore Ec, F^,

Cr, will be rc:.pcctivcly equal to Pt., PJI, PX, while the points arc going,

and to IV, Pni, Pn, when the points are returning. Therefore ty or EG
+ Gy Le will, when the points are going, ho equ.al to EG—-BN,



THE MATHEMATICAL PRINCIPLES [Book 1L

and in fneir return equal to EG + In. But ey is the breadth or ex-

pansion of the part EG of the medium in the place ey
;
and tliercfore the

expansion of that part in its going is to its mean expansion as EG -

LN to EG; and in its return, as EG -f hi or EG -f LN to EG.

Therefore since LN is to KII as IM to the radius OP, and KH to EG

as the circumference PHS/iP to BC
;
that is, if we put V for tlie

radius of a circle Avhose circumference is equal to BO tlie interval of the

pulses, as OP to V
;
and, ex fnqno^ LN to EG as IM to V

;
the expansion

of the part EG, or of the physical point F in the place ey, to the mean ex-

pansion of the same part in its first place EG, will be as V— DI to V

in going, and as V + ini to V in its return. Hence the elastic force of the

point F in the place £y to its mean elastic force in the place EG is as

-

^
to in its going, and as cp——.— to ^ in its return. And hy

the same reasoning the elastic forces of the physical points E and G in going

are as and to v, ;
and the difference of the forces to the

V—HL V— Ki\ V

mean clastic force of the medium as
HL— KN

VV-V X HL-Vx KN -f HL X KN

to ^ : that is, as to or -as HL— KN to V
;
if we suppose

(by reason of the very short extent of the vibrations) HL and KN to he

indefinitely less than the quantity V. Tliercfore .since the quantity V is

given, the difference of the forces is as HL— KN
;
that is (because HL

— KN is proportional to HK, and OM to 01 or OP; and because HK
and OP are given) as OM

;
that is, if py be bisected in f2, as And

for the same reason the difference of the clastic forces of the physical points

t and y, in the return of the physical lineola ey, is as But that dif-

ference (that is, the excess of the clastic force of the point £ above the

elastic force of the point y) is the very force by which the intervening phj*

sical hneola ey of the medium is accelerated in going, and retarded in re-

turning
;
and therefore the accelerative force of the physical lineola f y is

as its distance from 12, the middle place of the vibration. Therefore (hy

Prop. XXXAHII, Book 1) the time is rightly expounded hy the arc PI;

and the linear part of the medium £y is moved according to the law above-

mentioned, that is, according to the law of a pendulum oscillating
j
and

the case is the same of all the linear parts of which tlie whole medium is

compounded. CLE.D.
Con. Hence it appears that the number of the pulses propagated is tlie

sanie uith the number of the vibrations of the tremulous body, and is not

Jn tiplied in their progress. For the physical lineola ny as soon as it

returns to its first place is at rest
;
neither will it move again, unless it
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366 THE MATHEMATICAL PRINCIPLES [Book IL

in the ratio of the elastic force, and the matter to be moved is increased in

the ratio of the density, the time which is necessary for producing tiu

same motion as before will be increased in the subduplicate ratio of tlie

density, and will be diminished in the subduplicate ratio of the elastic

force. And therefore the velocity of the pulses will be in a ratio com-

pounded of the subduplicate ratio of the density of the medium inversely,

and the subduplicate ratio of the elastic force directly. Q.E.D.

This Proposition will be made more clear from the construction of tlie

following Problem.

PROPOSITION XLIX. PROBLEM XI.

The deiisity and elasticforce of a medium being given, to find the re-

locity of the pulses.

Suppose themedium to be pressed by an incumbent weight after the manner

of our air
;
and let A be the height of a homogeneous medium, yvhose

weight is equal to the incumbent weight, and whose density is the same

with the density of the compressed medium in which the pulses arc propa-

gated- Suppose a pendulum to be constructed whose length between the

point of suspension and the centre of oscillation is A : and in the time in

which that pendulum will perform one entire oscillation composed of

its going and returning, the pnlse will be propagated right omrards

through a space equal to the circumference of a circle described with the

radius A-

For, letting those things stand which were constructed in Prop. XLVII,

if any physical line, as EB^, describing the space PS in each vibration, be

acted on in the extremities P and S of every going and return that it

makes by an elastic force that is equal to its weight, it will perform its

several vibrations in the time in which the same might oscillate in a cy-

cloid whose whole perimeter is equal to the length PS
j
and that because

equal forces will impel equal corpuscles through equal spaces in the same

or equal times. Therefore since the times of the oscillations are in the

subduplicate ratio of the lengths of the pendulums, and the length of the

pendulum is equal to half the arc of the whole cycloid, the time of one vi-

hratiou would be to the time of the oscillation of a pendulum whose length

is A in the subduplicate ratio of the length -’-PS or PO to the length A.

But the clastic force with which the pliysical lincola EG is urged, when it

^found in its extreme places P, S, was (in the demonstration of Prop.

LVII) to its whole elastic force as HL— KN to Y, that is (since the

point K now falls upon P), as HK to V : and all that force, or nhich is

e same thing, the incumbent weight by which the lincola EG is com-

prised, is to the weight of the lincola as the altitude A of the incumbent
t to EG the length of the lincola

;
and therefore, cx agiio, the force
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SI

with whicli the lincola EG is urged in the places P and S

is to the Kcighl of that lineoln as HK X A to V X EG ;
or

as PO X A to VV
;
because HK was to EG as PO to V,

Therefore since the times in which equal bodies arc impelled

through equal spaces arc reciprocally in the subduplicatc

ratio of the forces, the time of one vihmtlon, produced by

the action of that clastic force, will be to the time of a vi-

bration, produced by the impulse of the weight in a subdn-

plicate ratio of VV to PO X A, and therefore to the time

of the oscillation of a pendulum whose length is A in the

fttWtfpJicafte ratio of VV to PO X A, and iho subdupli-

catc ratio of PO to A conjunctly
;
that is, in the entire ra-

tio of V to A. But in the time of one

ribration composed of the going and re-

turning of the pendulum, the pulse will

be propagated right on^ra^d through a

space equal to its breadth BC. There-

fore the time in which a pulse runs over

the space BC is to the time of one oscillation composed of

the going and returning of the pendulum as V to A, that L

as BC to the circumference of a circle whose radius is

But the time in which the pulse will run over the spaceBO
is to the time in which it will run over a length equal to

that ciTcnmfercnce in the same ratio; and therefore in the

time of such an oscillation the pulse will run over a length

equal to that circumference. Q.B.D.

Cor. 1. The velocity of the pulses is equal to that which

heavy bodies acquire by falling with an equally accele-

rated motion, and in their fall describing lialf the alti-

tude A. Pi>r the pulse will, in the time of this fall, sup-

posing it to move uith the velocity acquired by that fall, run over a

.‘•pace that «ill be equal to the whole altitude A; and therefore in the

time (if one O'cillalion composed of one going and return, will go over a

ppvc (yjual to the circumference of a circle described with the radius A;

for the time of the fall is to the lime of oecillation as the radius of a circle

to if-* circumforcnce.

Cor. 3. Therefore since that altitude A is as the elastic force of the

Ibiid uirectly, and the density of the tmme inversely, the velocity of the

pnh'Yj «i}J }^e jft a ratio compoiiutfcd of thcsuhdupHcatc ratio of the den-

sity inversdy, and the subduplicatc ratio of the clastic force directly.
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9

General System of Sound Intervals

and Its Application to Sounds
of All Systems and All Musical Instruments

JOSEPH SAUVEUR

Joseph Sauveur (1653-1716), the French mathematician and physicist, is credited

with the first introduction of the word acoustics to represent the science of sound.

Though he wrote treatises on fortification, his main interest was in acoustics and
in particular acoustics as a means of understanding music. He may well be considered

the creator of musical acoustics. The following extract is taken from his famous
“Systeme General des Intervales du Son,” published in 1701. In this he develops
the concept of harmonics of a stretched string and introduces the notion of nodes and
loops in the vibrating string, showing that he fully understood the nature of standing
waves from a phenomenological point ofview. The dynamical approach to the problem
had to wait for Taylor, d’Alembert, Euler, and Lagrange.
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to measure them in their least perceptible differences and of giving names and charac-

ters to all sounds, such that one can include among them those that are necessary

for ordinary music and which cover in a simple manner all the properties respecting

that art without indeed designing to exclude any of the notes to which musicians

have for a long time been accustomed.

Afterwards I wrote an essay on acoustics in a treatise on speculative music I

indited at the Royal College in 1697. One might expect that I would have had it

printed, but I was prevented by the following reasons: 1) the names and characters

which I gave to sounds being new, I did not doubt that I would fare ill especially

among the musicians, and people who would hold an opposite opinion. I hoped

by the objections they raised against me to find occasion for some correction; but

since they regarded sound only from the standpoint of their own needs, such small

changes as I made I was obliged to make for myself, 2) in working on my treatise

on speculative music, I recognized the necessity of having a fixed sound with respect

to which one could compare all other sounds of high or low pitch. In 1700 I gave

a way in w'hich I imagined one could find this. Since in the Proceedings of the

Academy there was shown only the necessity and advantage to be drawn from this,

I give here the way of finding it, 3) in thinking about the phenomena of sound,

one may remark that especially at night, in the case of long strings, besides the

principal sound, one hears other faint sounds of a twelfth or seventeenth of this

sound. Similarly trumpets, besides these principal sounds, have others for which

the number of vibrations is a multiple of that of the fundamental. I have found
nothing to satisfy me in the explanation of the behavior of the marine trumpet.

But in looking for the cause of this phenomenon myself, I conclude that in addition

to the undulation which the string makes throughout its whole length to form the

fundamental note, the string also divides itself into two, three, four, etc. equal undula-
tions to form the octave, the twelfth, the fifteenth, etc. of this note. From this I

have concluded the necessity for the existence of knots and bulges [Editor’s note:

nodes and loops in modern terminology] in these undulations. The manner of
perceiving these I have explained in connection with harmonic sounds. 4) This
phenomenon has led me to investigate some others connected with the sympathy
of sounds, concerning wind instruments and concerning acoustical instruments in
pneral and in particular how one can perfect them to the same degree as optical
instruments. And I expect that these things should ultimately lead to a perfect body
of acoustics.

/ 1^ /

Since the branch of acoustics which has for its object the intervals of sounds
serves as a basis for all the other branches and since it has had time to be put in
order, and since further I have given to my system all the attention one could expect,
and I have made a general application to all sorts of systems and musical instruments,
and since finally people are beginning to use the intervals of my system, I have
concluded it is time to give it to the public. I am doing this with the greatest possible
revity and clarity. I am taking the liberty of introducing some new words, which

are necessary for the understanding of my system. I do not give demonstrations
ere of those ideas which I present, because in addition to the fact that several

made in the case of one part, the demonstration of the remaining
"ould demand a complete treatise on acoustics.
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1. Concerning Ratios of Sounds and Intervals

Acoustics teaches us that if two sounding bodies make the same number of \nbra

tions in the same time, they are m unison, that if one makes more vibrations than

the other in the same time, that which makes the smaller number produces the

lower pitch (gra\e note), whereas that which makes the larger number produces

the higher pitch (acute note) Hence the relation between sounds of low and high

pitch is exemplified m the ratio of the numbers of vibrations which they both make
in the same time That is why the ratio of two sounds which are said to differ by

a fifth IS the ratio 2 3 This means that while the sound of lower pitch makes two

vibrations, the sound of higher pitch (a fifth above the other) makes three vibrations

We are going to compare sounds by the ratio of the number of vibrations of

one sound to the corresponding number of the other and shall m what follows all

this simply the sound ratio There is another way of comparing sounds and that

IS by their intervals

In order to grasp what the interval between two sounds is, let us at first ima^ne

two sounds which are equal or in unison We further imagine that one of these

goes up m pitch more and more toward infinity, that is, departs more and more

from the other It is this deviation or distance of separation between the two sounds

which we call m general, the interval between them The same thing happens when

the sound in question decreases steadily in pitch

These intervals divide themselves initially into the diapason or octaves This hap*

pens when the higher pitch sound makes two vibrations compared with one for

the lower pitch sound Thus a sound which goes up in pitch passes through miervais

of a first, second, third, fourth octave, etc , when ns number of vibrations has the

ratio, 2,4, 8, 16, etc with the numberofvibrations for thelower pitch sound Similarly

when the sound goes down m pitch it passes through successive octaves when the

number of vibrations is 1/2, 1/4, 1/8, 1/16 etc that of the number m the first place

JX^ Concerosag HarmoiMc Sounds

I call the harmonic of a fundamental sound that sound which makes several

vibrations while the fundamental makes only one Thus one sound which is a twelfth

of the fundamental is a harmonic because il makes three vibrations while the funda

mental makes only one
[Editor’s note Following the above introductory statement the author provides

a table of harmonic sounds covering five octaves, with the accepted nomenclature

of the associated musical scgle and Sauveur’s proposed new names The section then

proceeds as follows ]

After having defined and determined harmonics, it remains to make them perccp

tible to the ear and even to the eye and to explain their properties Divide the stnng

of a monochord into equal parts, for example, into five (one can divide a rule o

the same length accordingly and lay it along the string) Pluck the stnng

It wall give off a sound which I call the fundamental Place a light obstacle ai
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one of the division points D, [see Figure l] like the tip of a feather, if the string

is a fine one. The motion of the string takes place on both sides of the resting

obstacle. This produces the fifth harmonic, that is to say a seventeenth.

B

Figure 1.

In order to understand the reason for this result, notice that when one plucks

the cord AB as a whole undulations are produced in the whole of its length but
when one inserts an obstacle at the first divisionD of the string, which I have supposed
to be divided into five equal parts, the total undulation AB is divided at first into

the two AD and DB

.

Since AD is one-fifth of AB or one-quarter of DB , it performs
undulations five times faster than the total AB or four times faster than the other
portion DB. Hence the part AD involves the neighboring part DE and forces the
latter to follow its motion. Consequently the motion of DE ought to be equal to

that o£AD, for a larger part would go more slowly. A smaller part would go more
rapidly. In turn the part DE forces the neighboring part EF to follow the same
motion, and so on to the last. Hence all the parts perform undulations which
cross each other at the dividing points D, E, F, etc. Consequently the string
produces the fifth harmonic or a seventeenth.

I have called the points A, D, E, F, G, B the knots of undulation [Editor’s note:
nodes in modern terminology; in Sauveur’s French they are called noeuds]; the
middles of these undulations will be called the bulges of the undulation [Editor’s
note; loops in modern terminology, Sauveur’s French reads ventres'\.

If the obstacle is placed at the second dividing point E, the same harmonic
will be produced. For, in the first place [see Figure 2] the obstacle C will force
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ihe stnng at first to make the tv.o undulations AE and EB In the second place,

the undulation AE being more rapid than the other, will force the part EG ivhich

IS equal to it to follow its motion In the third place, the remaining part GB nhich

is half of EG and hence moves twice as fast, will force its equal GF to follow its

motion and this in turn will force FE to do the same, and so on to the extremiij

Hence the whole stnng will be divided by these undulations into parts equal to the

greatest common measure of the parts AC and CB formed by the light obstacles

C

A

Figure 2

One will be convinced of the reality of these undulations, first by the ear, for

those who have a keen ear will distinguish a harmonic proportional to the parts

which form the undulations, one can also assure oneself of this by putting the

monochord in unison with this harmonic In the second place, one can be convinced

by the eyes, for if one divides Ihe string into five equal parts and inserts a movable

bridge C atD orE and then puts small pieces of black paper [Editor’s note hanging

over the stnng] at the division point E and F and pieces of white paper at the

middle points of these parts, if one smkes the part/lC [Editor’s note he really should

have said AD^, one will see the pieces of while paper which are at the loops of the

undulations leap off the stnng, while the pieces of black paper, which are at the

nodes, will remain at rest
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From what has just been established, we can draw the following conclusions:

I. If one has produced a harmonic by placing a small obstacle at D, one will

continue to produce this harmonic even if the obstacle is removed or if we put

an obstacle at any other node or at all nodes.

II. After having formed a harmonic, say the 5th, if one places a light obstacle

on the loop of an undulation which divides it, for example, into three parts, it will

lead to the production of the third harmonic of the originally formed harmonic,

that is to say the 15th harmonic of the fundamental.

III. Without placing a light obstacle on the string, one can still produce in it

a harmonic sound; first, if by the side of this string we pluck another which is in uni-

son with one of the harmonics of the untouched string; second, if the first string is

not in unison with one of the harmonics' of the other, they will share harmonic

sounds, which will be the greatest common measures of the fundamentals of the

two strings. Thus if the one is a quarter of the other, for which the ratio is 3:4,

the smaller will produce the 3j'd harmonic and the latter the 4th harmonic.

IV. The harmonic produced by sympathetic vibration with a neighboring string

or by the presence of a light obstacle is the more perceptible the greater are its

undulations. Thus the third harmonic is more perceptible than the 4th. Those har-

monics produced by sympathetic vibration are very soon imperceptible. Those which

are produced by light obstacles are unlimited in number, but since the smallest can

be distinguished only with the greatest difficulty we shall suppose in what follows

that a three-foot long string can be audible up to the 32nd harmonic or the 5th

octave,although one can hear above that to the 128th harmonic.
V. According to these suppositions every node which corresponds to a harmonic

is distant from the next nearest node corresponding to another harmonic at least

one 32nd part of a whole undulation. For example, the third of the string which
produces the third harmonic is distant from the closest node of the other harmonics
by at least one 32nd part of this third, or, what amounts to the same thing, to a
third of the 32nd part of the whole string. For if we suppose that the 32nd harmonic
is the last of all, if we divide the 32nd part of the string into three parts, the whole
string will be divided into 96 parts. The nodes for both the 3rd harmonic and the
32nd harmonic can only be on some of these 96 division marks; hence they will be
distant one from another at least by the amount of one of these 96 parts. Or, if

they have a common node, the following node will be distant by at least the same
amount. The node of the next harmonic is distant from that of the third harmonic
by at least 1/96 of the whole string or by 1/32 of 1/3 of the string, or by 1/3 of
1/32 of the whole string, which amounts to the same thing.

VI. From this it follows, first, that the nodes of the first harmonic, that is to
say the extremities of the string, are farther away from each other than the nodes
0 the next harmonic since the latter are separated by at least 1/32 of the whole
string. In the second place the node of the second harmonic is distant from the
next by a half of 1/32; etc. Hence the nodes of the lower harmonics are more widely
spaced than those for the upper harmonics. This is why the lower harmonics have
arge amplitudes of motion around their nodes and the upper harmonics correspond-
wgly smaller ones.

1

happen that if the node of a small harmonic sound lies in the
‘eig 1 orhood of two nodes of a greater harmonic, the smaller will be eclipsed by
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the two larger, so that one will hear the smaller harmonic only if they are of the

order of the lower harmonic, i e , the first, second, third, and fourth, etc

Vni If one plucks the whole stnng as it stands at rest and then slides a light

obstacle along the stnng one will hear a warble of harmonic sounds whose order

appears confused, but which nevertheless can be determined by the principles vnc

have established

IX We can draw other consequences from the same pnnciples For example

we can conclude that the small harmonics will displace as much air as the large

ones

X Expenence shows that long strings, when they are good or harmonious pro-

duce the first harmonics, principally those which are not an octave apart Bells and

other resonant bodies show the same effect

XI Long vnnd instruments also divide their lengths into kinds of equal undula

lions Ifan undulation of the air which occupies the whole length between the mouth

piece through which the air enters and the first opening through which the air can

escape, is forced into very rapid movement, it will divide into two equal undulations

and then into three or four, etc , according to the length of the instrument Hence

in blowing slowly into a wind instrument, you hear the fundamental If one forces

the blowing, or in the case of the trumpet, the serpent or the hautboy, one compresses

the lips more, the sound can change into the second, third, fourth, etc harmonics

But m order to discover all the properties of wind instruments, it is necessary to

enter upon a detailed examination

94



0

Concerning the Motion of a Stretched String

BROOK TAYLOR

Brook Taylor (1685-1731), English mathematician, was a cultured 18th century

man with many interests in law, philosophy, art, and religious studies. Educated

at St.John’s College, Cambridge, he held no university position but, having indepen-

dent means, devoted his life to scholarly pursuits. He became for a time Secretary

of the Royal Society of London. Taylor is now best known for his work in mathematics,

where he extended the calculus and applied it successfully to numerous problems
in mechanics. Taylor’s theorem on the expansion of a function in series is well known.
His treatment of the vibratory motion of a stretched string led for the first time
to the correct formula for the frequency in terms of the length, tension, and mass.
Taylor’s method is set forth in the following translation of his paper “De motu nervi
tensi” (1713). The reader will be interested to note the way in which Taylor followed
Newton’s geometrical notation (with the use of fluxions, etc.) in his use of the calculus.
An editorial note at the end of the translation shows how his result may be expressed
in modern form.
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In any case of vibration let the stretched string between two points A and B

take on the form of the arbitrary curve ApirB [see Figure 2]. Then I say that

whatever be the increment of velocity of any arbitrary point P or its acceleration

arising from the force of the strings tension, it will be proportional to the curvature

of the string at the same point.

Demonstration

Imagine the string to be made up of rigid, infinitely small but equal particles

like pP, Ptt, etc. [see Figure 2] and at the point P erect the perpendicular PR
equal to the radius of curvature at P. This line PR meets at t the tangents Pt and

tTT. It is intersected at s by the lines ps and stt parallel to tTr and pt, respectively,

and by the chord ptr in c. Then, by the principles of mechanics, the absolute force

by which both particles pP and Ptt are drawn toward R will be to the force of the

string’s tension asst is Xopt, and the half of this force, which acts on the one particle

pP is to the tension of the string as ct is to tp, and this is because of the similar tri-

angles ctp and tpR) as tp orPp is to Rt or PR. For this reason, on account of the given

tension force, the absolute accelerating force is proportional to PpIPR. But the ac-

celeration generated is direcdy proportional to the absolute force and inversely

proportional to the matter to be moved; the matter to be moved is the particle Pp
itself. Therefore the acceleration is as I/P/?, which is proportional to the curvature
atP . For the curvature is proportional to the reciprocal of the radius of the osculating
circle. Q.E.D.

Problem 1

To determine the motion of a stretched string

Figure 3.
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In this problem and following I assume that the string is moved through a

very small distance from the axis AB^ in order that the increase in tension from

the inrrease in length may be neglected and that the same may be true of the obliquity

of the radu of curvature

Consulting the figure, assume that the string is onginally stretched along dB
With the use of a plectrum the midpoint 2 is pulled down to point c [Editor’s

note so that the sinng assumes the inangular form shown m the figure] When
the plectrum is removed, the point c will first begin to move (by Lemma 2) But

then by the bending of the string at the nearby points d and (|b, these points will

also begin to move and thereafter e and e, and so on Because of the large bending

at c that point starts to move most quickly, and then by the increased curvature

at points D and £, etc they will continue to be accelerated to higher velocity By

the same action, due to the undimmished curvature at C, that point on the other

band is accelerated to more or less veloaty It then happens that with the forces

properly adjusted among themselves, all the motions conspire to bnng all points

together back to the axis at the same ume and simultaneously recede from it, back

and forth indefinitely

But for this to happen, the string must always take on the form of a curve

like ACDEB whose curvature at any point E is proportional to the distance of E

from the axis, with the velociues of the points C,D,E, etc standing among themselves

in the ratio of the distances from the axis, namely Cz, DB, Etj, etc For truly in

this case, the spaces Cx, Dh, Ee etc , traversed m the same small time interval

will be proporuonal to their veloaues, that is, to the spaces Cz, DB, Et), etc to

be traversed Whence the residual spaces xz, 86, etj, etc will be to each other

in the same ratio Therefore, by Lemma 2 the accelerations will be to each other

m the same ratio This being agreed upon, with the ratio of velocities always kept

the same as well as the ratio of the spaces to be traversed, all points reach the axis

at the same time and simultaneously return to it, whence the curve ACDEB is ter-

minated correctly Q E D
Besides this jf the two curves ACDEB and JxBcB are compared with each

other, the curvatures m D and 6 are as the distances from the axis DO and

(Lemma 1) Moreover by Lemma 2 the acceleration of any given point on the stnng

is proportional to its distance from the axisdfi Whence (Proposition 51 in Section

X of Newton's Pnncipia) all vibrations, the large as well as the smallest are performed

with the same penod and the motion of any point whatever is similar to that ot

a pendulum

Corollary

The curvatures are universely proportional to the radii of the osculating arcles
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Problem 2

Being given the iength

the stretching weight, to find the ume oi o

Let the string be stretched between ^

weight P and let the weight of the s'™S
the midpoint C erect

let the string be displaced into the p normal intersects the

the normal CS, equal to the radius ot.
draw the normal pc to SC and

axis dB at D. Through an assumed point p near c ,
or

the tangents. * oKcnlntp force with which the particle

Therefore as in Lemma 2, it ho s t a q^.

pc is accelerated is to the stretching o
article pC itself in the proportion

But the stretching weight P is to the we
g particle pC-, that is,

compounded of the ratios P to N a
these ratios the accelerating

as P L is to N-pC. Therefore, by *e “mposrt o
^

h
^ pendulum of lenph

force is to the weight as P -L is to

^ principia) the period of the string

CD. Then (Section X, Proposition 52
k to VP • L. But for a given gravi-

is to the period of this pendulum as V
cnuared ratio of their periods,

tational force the lengths of pendulums are
* isochronous with those

whence the length of the pendulum whose vibrations are

of the string will be

N- CS- CD

FI

or, writing CS = aMD (corollary of Problem 1) we can rewrite this
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whence

b . a
y=-^z and z = jy

<

Making x = b= CD (in which case indeed y = quadrant arc DPE and z = AD = L/2),

we get

L DE L - CD
^ ^r\ ^ r\r-^

Now let CD be to 2DE (as the diameter of the circle is to its circumference) as d

is to c. Then we get

TT dd
aa = LL

cc

If we substitute this value of aa above, we get

P CC

as the length of the pendulum isochronous with the string itself. If then D is the

length corresponding to period 1 second, we have

d / N L7^ F -n

for the period of the vibrating string. The corresponding frequency or number of
vibrations of the string in one period of the pendulum (taken as 1 second) is then

c_ Ip D
d ^ N-L

[Editor’s note: To see how the formula which Taylor derived for the frequency
of the vibrating string agrees with the corresponding formula in modern terminology,
we note that from simple geometry

P ~ tension force in the string, is usually represented by T in modern nomenclature.
- weight of the string = mg, where m is the mass and g the acceleration of gravity.
- length of the simple pendulum with period = 1 sec and L = length of the stretched

string. We then have from elementary physics

1 = 271" D̂jg or D—gj^Tp'

Substituting into Taylor’s formula for the frequency/ gives

/=7r
T-g

mg AtPL
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Dissertation on Sound

LEONHARD EULER

Leonhard Euler (1707-1783), one of the greatest mathematicians who ever lived,

was born in Basel. Though he received his education in Switzerland, he spent the

bulk of his professional career in Germany and Russia. His output of research in

every known branch of pure and applied mathematics was prodigious. His collected

works are still in the process of publication, having reached in 1972 the total of 63

volumes. As a young man Euler became interested in acoustics and presented to

the University of Basel in 1727 his “Dissertatio Physica de Sono,” after the work
of Newton and Mersenne probably the first theoretical treatise on sound in Western
Europe. In this he criticized Newton and presented his own version of the nature

of sound and its propagation. A translation of this Latin treatise is presented here
to give an idea of the grasp of fundamental physics by this 20-year-old student.

Editorial notes make clear the relation between Euler’s terminology and that ofmodern
acoustics. Unfortunately he does not always explain in detail how he arrived at his

results; the article reflects in some measure the brashness of brilliant youth.

Euler’s interests in acoustics and related wave propagation problems lasted well
into his later years. In particular, in his 40’s he became obsessed with the importance
of establishing a valid mathematical theory of aerial sound. He paid close attention
to the work of his able young contemporary Lagrange, who at a very early age also
devoted much attention to acoustics. On October 23, 1759 Euler wrote a letter to
Lagrange which, according to Clifford Truesdell (Editor’s Introduction to Series
III Vol. 13, of Euler’s collected Works, Orell Fiissli, Zurich, 1956), marked “the turn-
•ng point in the theory of aerial propagation.” This letter is given later in the volume
in English translation.

’^Le same year (1759) Euler wrote a long memoir on the theory of sound, pub-
isned later in the Memoirs of the Berlin Academy. In this article, while paying

ute to the somewhat earlier successful work of Lagrange on the same problem, he
s owed how he could achieve essentially the same results with much simpler analysis
an Lagrange had employed. Moreover he carried his investigation further than
^S*^nge, particularly with respect to standing waves in tubes and the explanation of^me paradoxes connected with the propagation of sound waves in finite structures.

IS memoir is presented further in the volume in its entirety in English translation
the editor of this volume.
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Translated from the Latin by R. Bruce Lindsay
from “Dissertatio Physica de Sono” (Basel, 1727)

and also in Opera Omnia III, i, 182-198

Chapter One
On the Nature and Propagation of Sound

so far w
philosophers was obscure and confused,

Some withFni^
writings that have come down to us.

bodies On Ae nih
sound as something which flows out ofvibrating

vt Plaidl r’
Latin interpreters of Aristotl!

vblenloltion of?? is emitted in the

Descartes thou^hf
authorities Honore Fabri and Rene

this trembling tLi !h
consists in the trembling of air, though concerning

ing insS tried 1

7^^'"T" ^^wton, a man of most penetrat

IMe fd ^his matter more accurately; he met with

of sound^ I have end^e^^
^ "" explaining the true nature of the propagation

matter of sound- T h
attack and elucidate for the public this difficult

t'’e shall discuss wh:.t
into two chapters. In this first chapter

from one nlare in
sound consists of and in what fashion it is propagated

t'ill be considered
chapter three ways of producing sound

2) Ho\
to be said abom

1 approach the treatment of sound itself, something ought
small globules

*
j ^

®°“"d. I conceive of air as composed of infinitely

^oough spring nr
weight of the atmosphere above them and enjoying

are able to
the compressing force has been removed

above compresses
^latural state. While therefore the weight of the air

frfce of the glnbni
^ forbids the globules of air to expand, the elastic

es IS balanced by the weight of the atmosphere. It is therefore
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permissible to define by experiment the maximum weight of the atmosphere as equal

to that of a column of mercury 2460 scruples high or equivalently 2460 thousands

of a Rhenish foot [Editors note A Rhenish foot « 314 mm, hence this comes om
to be about 722 mm of Hg ]

I shall always adhere to this measure in what follows

If howeter one chooses to take the atmosphere at its minimum weight, it is found
to be equivalent to a column of mercury 2260 scruples high or about 710 mm of

Hg When, on the other hand, the weight of the atmosphere is determined by means

of an air pump it is observed that the speafic gravity of native silver is to that

of air at its maximum temperature as 12000 is to unity For the coldest air the

ratio is about 10000 to unity [Editors note These values are a bit low, but of

correa order of magnitude m companson with modern measurements
]

3) If we conceive that one of the senes of air globules is compressed more than

the rest, acting in accordance with its own laws it will expand pushing against the

adjacent globules and producing compression in them which push against still others

m turn, so that far distant globules feel a certain small amount of compression

And in this way sound is transferred to other places However the motion with which

the original globule of air expanded cannot suddenly cease after this globule has

reached the same state as the others, it is earned too far It is then compressed

again by the other globules This again goes too far Hence every globule situated

not too far away from the first one dilates and then contracts in a trembling motion

However this trembling of the globules of air ought to cease the more readily in

view of the infinitely small size of the globules and thence follow the very short

time of a single oscillation It follows therefore that m a finite time there are innumer

able oscillations or undulations from a globule of this kind These, because of the

motion of each globule are not able to lead to continual diminution Since, however,

a finite time is required for sound to exate our senses, it is clear that sound cannot

consist of this oscillatory motion of the air

4) So finally sound arises when a globule exposed to an outside force at finite

intervals suffers successive compressions It is necessary, to be sure, for the exatation

of sound that a given globule should be alicmaiely contracted and expanded In

truth the limes of these oscillations must not be infinitely small but finite in order

that the number of these vibrations or osallations in a given time can be determined

The number of pulses striking the car in a given finite time must be such that u

IS possible to express it numerically

5) Having thoroughly understood (he trembling motion which constitutes sound

we find It easy to explain the different properties of sound Here I call attention

only to the principal ones Sounds are commonly divided into loud and soft A sound

IS loud or strong when the compressions of the globules of air are more powerful

A sound IS weak or soft when those compressions are weaker When sound produced

by a vibrating globule is propagated by the communication of its compression with

the globules arranged m the sphere around it, the number of the latter globules

increases as the square of the distance from the given globule hence the siren^

or loudness of the sound decreases as the inverse square of the distance from t f

source, unless the sound receives reinforcement from another source

6) The distinction among sounds of greatest importance is that between ow

pitch and high pitch Low pitch exists when the vibrations of globules of air fo ow
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each other slowly or when in a given time fewer undulations take place. A sound

of high pitch, on the other hand, is one whose vibrations have only brief delays

between them, so that in the same time more oscillations are completed. Hence sounds,

in respect to high and low pitch, stand to each other in the ratio of the number

of oscillations performed in a given time,

7) Sound is also either simple orcompound. A simple sound is one whose vibrations

are all equally spaced one from another and all equally strong. A complex sound

consists ofmany simple sounds all sounding together. This produces either consonance

or dissonance. Consonance is perceived in complex sounds if the components perserve

a rather simple relation to each other, e.g., one twice the other as in the diapason

or octave, or one three-halves the other, as in the fifth in music, etc. Dissonances

occur, on the other hand, when the ratio of the components is more complicated,

e.g., in the double seventh as in the triton [fish horn].

8) Let us now consider the propagation of sound somewhat more carefully.

We hope to find a consistent result if from the theory set forth above we compute

the distance which sound is able to traverse in a given time, that is, in a minute,

an hour, or a second. It has been observed that sounds of all kinds, whether loud

or soft, whether low pitch or high pitch, are transported through a given space in

the same time, that is, always with the same velocity. In order to confirm this, it

is necessary to ask how much dme it takes a compressed globule of air to project

its compression at a given distance. This motion can be obtained without difficulty

from the laws of communication and the contemplation of the nature of air. I omit
the method of deriving this in order to avoid mathematical analysis. However, I

quote the result.

9) In order to comprehend the matter in most general terms, let the specific

gravity of mercury be to the specific gravity of air as n is to unity, let the height
of the mercury in the barometer = k, and let the length of the pendulum be /,
by whose oscillations it is permitted to measure the time taken by sound to traverse
the interval a. Having made these assumptions I find that the time of one oscillation
of the pendulum of length/ is to the time of sound propagation through the interval
a as 1 is to

a

A\/nkf

[ itors note; By one oscillation Euler meant what in modern terms is a half of
a complete oscillation. Hence T = period of a half oscillation = Tr^/flg. On this basis,
we obtain the velocity v of sound equivalent to the above formula as follows;

or
ajv a
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the atmosphere or more accurately when the liquids in the barometer and thermometer

are highest. On the other hand in the harshest cold and in a severe storm the velocity

of sound should be at a minimum, which will happen when the barometer and ther-

mometer register their lowest.

13)

Therefore the maximum velocity of sound will be found for n = 12000

and k = 2460 scruples, so that the value in scruples/sec becomes

4 V(3166) (12000) (2460) = 1.224 X 10® scruples/sec

[Editor’s note: This corresponds to a velocity of about 385 m/sec, which in turn

implies a temperature of 1 00°C. It must be remembered, however, that Euler’s formula

is not the correct one and gives values about 8% higher than the value y/ypip where

y= Cp/ct,, the ratio of the specific heats at constant pressure and constant volume,

respectively.]

Thus sound at its maximum velocity should according to my theorem move
through an interval of 1222 Rhenish feet per second. [Editor’s note: It seems to

be more nearly 1224 feet.] The minimum velocity of sound is obtained by taking

n = 10000 and k = 2260, so that in scruples per second the velocity becomes

4\/(3166) (10000) (2260) = 1.070 X 10® scruples/sec

or nearly 1070 Rhenish feet per second. [Editor’s note: This is about 336 m/sec.]

Hence the distances sound will cover in one second are contained within the limits

1224 and 1070 Rhenish feet.

14) If these values are compared with experiment they are found to agree very
well, and this confirms my method. For Flamsteed and Derham through very accurately

performed experiments measured the velocity of sound to be 1108 feet per second,
which lies midway between the limiting values given above. If now we consider what
Newton did in this matter, we find that, reduced to our notation, he got for the
velocity of sound the value (p/d) V3166n/e, where p/d = ratio of the periphery of the
circle to the diameter, i.e., tt. Hence his expression is smaller than ours since he
multiplies V3166/iA by tt and we have 4 in place of tt.

15) Hence it is not surprising that the most sagacious Newton found too small
a value for the distance sound will travel in one second. He determined it as not
greater than 947 feet per second. This is a large discrepancy from the value found
expOTmentally. Nevertheless he took the result as a confirmation of his method,

discrepancy to an impurity in the air, a pure subterfuge. For even
* t e air is changed with vapor, its elastic force is always equal to the atmospheric
pressure and the weight of the atmosphere is not thereby changed. The velocity
0 sound is not able to undergo any change under these circumstances. Nor does

c size of the air molecules have anything to do with this matter. [Editor’s note:

^Ji
er was wrong here, as modern studies have shown. His criticism of Newton, while

of
extent just, was too glib and harsh in the light of his own ignorance

e whole story of sound propagation in air.]
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Chapter Two
On the Production of Sound

16) For the production of sound H is required that, as I have explained in the

preceding chapter, the air is rendered vibratory, so that indeed the globules of air

should have contractions and expansions, separated from each other by a fimie time

I have been able to conclude that this trembling or vibratory motion of the air tales

place in threefold fashion, corresponding to the threefold nature of sounds For

i\hich reason m this chapter words must be invented for the three different isajs

of producing sound For the first variety of sounds, I mention the sounds of stnngs

of drums, of bells, and of instruments constructed uiih reeds, etc These are all

sounds which owe their ongin to a vibrating solid body In the second class of sounds

are included the sound of thunder, of cannons, as well as of tree branches and

due to the violent motion of bodies of this kind, all of svhich are sounds ansing

from the sudden restitution of compressed air as well as the strong percussion of

air I enumerate as sounds of the third class those of pipes, the nature of which

I shall discuss v ery carefully, since thus far no one has provided anything very reliable

about this matter

17) Up to the present time, so far as I know, ever>one has referred all sounds

to the first class of sounds, and it has not been judged possible to produce a sound

save by the vibration of a solid body However, the falsity of this view will soon

be made clear when I have explained the two remaining ways of producing sound

Now, however, the first mode in which sound may be excited must be considered

more carefully At the present moment indeed I shall examine stnngs how they

produce sounds and what kinds of sound arc produced, since other sounds from

solids can readily be reduced to this type In order to obtain exact results I shall

consider stnngs stretched b) weight while others are stretched by being wrapped

around a column which will enable one to measure the force extending the stnng

18) Before all, it is to be observed that the same strings produce equal sounds

with respect to low and high pilch, with whatever force they are vibrated, though

It IS admitted that there can be a large discrepancy with respect to loudness and

softness For sounds are loud in proportion to the velocity with which the string

cuts through the air, and sounds are equally strong if the air is pushed aside with

the same force Therefore, since both low pitch and high pitch musical sounds ought

to be equally strongm order that agreeable harmony should prevail, in the construction

of musical instruments it is necessary to pay particular attention to this, namely that

sounds are produced equal with respect to strength and loudness, and m order to

obtain this the following rules must be diligently observed These rules have indeed

been demed by recent craftsmen m rather crude form from much practice The

truth of them will indeed be made plain in what follows

I The lengths of strings are inversely proportional to the sounds, i e ,
to the

number of vibrations produced m a given time

II The thicknesses or iransvei^ sections of the strings are also inversely pro*

portional to the sound (i e , the frequency) if indeed strings of the same matenal are

in question On the other hand the effect will be less if as the thickness increases

the density decreases
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These rules can also be applied to instruments made of pipes where here we

must take the length or altitude of the pipe in place of the length of the string

and the internal size of the pipe in place of the thickness of the string.

19) When a string is oscillated it affects the globules of air, which are compressed

since they are unable to move instantaneously. During the duration of the oscillatory

motion the globules of air continually suffer new compressions, whence sound is

produced. Hence the air acts on the ear or the ear drum as often as the string goes

through its oscillatory motion. And so it is possible to find the number ofcompressions

conveyed to the ear by a given sound in given time by investigating the number

of oscillations of the string producing this sound in the same time. My solution

which agrees exactly with the solutions of John Bernoulli and Brook Taylor is as

follows:

20) Let the mass stretching the string = p, let the mass of the string = q, and

the length of the string = a. From these three things the number of vibrations in

a given time can be found. I find that the number of oscillations per second is

22 /3166P
7 V aq

where a is given in scruples. [Editor’s note: Euler represents tt = by 22/7. He takes

3166 scruples — 100 cm nearly as the length of a seconds pendulum with full period
2 seconds or half period 1 second.]

From this formula the frequencies of sounds produced by different strings are
to each other as \/plaq, that is, the frequency varies directly as the square root of
the tension of the string and inversely as the square root of product of the length
of the string and its mass. I do not deduce more particular consequences that follow
from this, but I inquire into the nature of known sounds and the number of vibrations
corresponding to them determined from an experiment which I conducted.

21) I hook a copper wire of the kind whose thickness is designated by the number
18, of length 980 scruples, with mass 49/175,000 pounds, stretched with the weight
of a mass of 11/4 pounds. This should yield a sound corresponding to that which
m music is called ds. If in the given general formula we substitute 980 in the place

^
a, 11/4 in place of/?, and ^/175,000 for q, it turns out that the frequency of

s is 559 cycles/sec and since ds is to c as 6 to 5, c has 466 cycles/sec and thence
ow C (116 cycles/sec). [Editor’s note: To check Euler’s formula for the fundamental
requency of the finite stretched string

22 /3166p
7 V aq

we recall that for the fundamental the wavelength \ is

\ = 2l
ence/- frequency = Vl\ = velocity/wavelength

\/hi

tension

line density

3nd line density = mass of string/length = qia
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m Euler’s notation Tension ®= pg in Euler’s notation, ivhereg is acceleration oFgra\uy
Hence

Now for the seconds pendulum the period is

p = 2 sec = 2i:y/ilg and therefore g = /ir’

But for P = 2, / = 100 cm or about 3166 scruples Hence

f-J. /p73166hr^ _ ir /UHF
2v aq 2 V

This IS 14 Euler’s value My only conclusion is that he counted as vibrations what
we count as half vibrations This would still be consistent w ith his use of the pendulum
formula, since the penod of a seconds pendulum is 1 second if we count half c)cle5

Euler does not say he is calculating (he fundamental, but it seems clear that

he IS Euler does not provide the above solution, but it seems clear that he must have

used something like this method ]

22) To this type of sound production must be referred also the sounds made
by Vibrating reeds inserted in tubes blown by wind, aUhough the latter also pertain

in part to the third mode of sound production A device of this kind is to ^ seen

in vanous pneumatic organs, which imitate the sounds of trumpets, bugles, and the

human voice, all of which instruments have to be inflated b) air (wind) m order

to emit sound The wind, m seeking a passage for itself opens the reed like a valve,

however, m opening it stretches it too much so that the valve closes again, attempting

to restore us origiml state, it is then opened again, so that u imposes a vibrating

motion on the air passing through u It is necessaT7 indeed that with the wind flowing

c\enl> the valve shall sta) quiet and the sound shall stop Hovvever, taking heed

of this, the wind itself, while propelled b> beHov\s strikes the orifices of the device

unequally The wind with the help of the pipe and the inserted valve is rendered

vibnuory

23) The human voice is obviousl) generated in tlie same v»ay In the organ

of speech the epigloiiis lakes ihe place of the reeds [Ediior’s note Euler is probably

refemng here to the vocal cords, which arc attached to the glottis and epiglottis
]

This IS made vibratory b> the air rising through the rough windpipe This vibrator)

motion of the air is increased at the head of the windpipe and then is modified

in vanous wa)'s in the oral cavity, b) which the low and high piich voice is modulated

and various vowels are formed These sounds arc supplied with consonants by the

agcnc) of the bps, the tongue, and the throat But also b) means of the nose, when
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air made tremulous by the epiglottis also emerges from the nose, various sounds

can be uttered both of low and high pitch which differ from oral sounds in that

they are not able to be distinguished clearly from vowels nor to form consonants.

24) The sounds emitted by vibrating reeds, unless they are strengthened by

pipes, are so feeble that they are perceived with difficulty, just as is the case with

vibrating plates where nearly nothing is perceived by the ears. These sounds are

amplified in a wonderful way in pipes as the human voice is by the mouth. And

yet a great change in pitch and sharpness is produced by the pipe. This is not the

place, indeed, to discuss in detail the intensities and inflections of these sounds.

It would be the work of a special chapter to explain these matters in detail where

also the marvelous amplification of sound in speaking tubes would be explained

as well as the theory of the echo and many other things; but leisure time is not

yet available to discuss these matters with care. As for what is contained in the writings

of others, so far as I have examined it, it is in part confused and for the most

part false.

25) I have put into the second class of sounds those sounds which arise either

when a large quantity of compressed air is suddenly released or when air is subject

to strong impact. In the latter case the air is also compressed when the struck body

(of air) tries to resist leaving its position. After the compression the air when left

to itself again expands. Hence the cause of the sounds belonging to the second class

is the restoring of the air to its original state after compression. That which permits

this restoration to generate sound is that the compressed air in dilating expands

too much and hence contracts again, which produces undulation in the air, so that

even the smallest globules of air, which go to make up the mass of the air share

this trembling motion and consequently produce sound. It should be noted that

if the greater part of the air is compressed, the sound produced is lower in pitch

and when the smaller part is compressed the sound is of higher pitch. Sounds of
this kind should not be able to last long, but ought to stop forthwith, since the
air, diffusing into far distant places steadily gives up its tremulous motion.

26) Therefore all causes which are able both to compress and decompress air

in such a way that continual relaxation is possible are adaptable to the production
of sound. For this reason all very rapid motions of bodies in air ought to be able
to lead to sound. For the air because of its own inertia is not able to be compressed
freely by the moving bodies but on expanding again induces a trembling motion
in the little air globules, thereby producing sound. The sounds of vibrating rods
flow more strongly and indeed fastest of all moving bodies. The sounds of breathing
and of the wind also owe their origin to this source, for the air in front is compressed
by that behind just as by a solid body.

27) Of sounds which are produced by the sudden relaxation of compressed
air the strongest are those of missile hurlers [cannons] and thunder. Various experi-
ments carried out with gun powder have showed that the cause of these very loud
sounds is the expansion of compressed air, since the air is found to be condensed
to the greatest extent at the place where an exit is provided for it by the burning
powder, so that it can burst forth with greatest force. Since, however, from the gun
po\\ er so many cloud-forming vapors are combined, it is no wonder that with all
this material producing a fire, the resulting sounds are stupendous.
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28) The third class of sounds is formed by those of flutes The explanation

of the nature of these sounds has bothered imestigators in a wonderful way in e\er)

age Many have thought that b> the blowing of flutes small particles m the internal

surface are driven and forced into a trembling motion so that thus the internal

surface is made to \abrate and makes oscillations communicalmg with the air, but

m what fashion this explanation is consistent with the laws of nature and motion

they themselves are forced to question, I myself cannot honestly conceive hois the

differences in the sounds of flutes of different length but of the same loudness

can be explained in this way For I am unable to see whj the internal particles

if they ever start moving should oscillate in difterent fashion in tubes of different

length I judge that not even a single experiment on flutes can be explained by

this theory

29) In order that I should obtain a true explanation of this matter, it was first

necessary to examine more carefully the struaure of flutes and what goes on m
them when they are blown A flute or pipe ts a tube to which at the lower end
IS joined a hollow mouthpiece suitable for receiving air This mouthpiece ends in

a slit along the tube dirccdj opposite to one side of the inside surface of the tube,

so that the air blown in through the mouthpiece can force its way through the slit

along the length of the tube by creeping over the inside surface If a whistle or

pipe IS constructed in this way, when blov^n it will emit sound, as is easily shown
if a tube without a mouthpiece is also blown so that the air m the tube creeps along

the inside surface even it will emit a sound like that of a flute In any case the

internal surface of the tube ought to be both hard and smooth so that the rushing

air shall not stop

30) Let us now see what happens m the tube when it is blown so that the air

inside IS able to become vibratory or m what fashion the air blown into the tube

in the way described is able to render vibratory the air contained in the tube It

is clear that when the air enters the lube the air already contained m it will be

compressed along its lengtli When this air expands again it goes too far and in

turn IS compressed again by the surrounding atmosphere, so that vibratory motion

IS thus produced m the tube This vibration is the cause of the sound And so the

true cause of the sound of flutes is found And iis truth and reality have become

more abundantly clear when it has been applied to the explanation of the observed

events relating to the sounds of flutes But earlier the way had to be considered

more carefully just how the trembling motion is produced

31) An aircolumn in a tube oscillatcsalongits length by expanding and contracting

m the fashion of strings and hence I shall consider such a column as a little bundle

of aenal stnngs stressed by atmospheric pressure Though the weight of the stnng

has the tendency to try to pull the stnng asunder, m the air column case here consid

ered, the contrary prevails, since the air column is pressed togeiher by the atmospheric

pressure Yet the analogy is none the less legitimate For the atmospheric pressure

exerts on the air column the same effect as the stretching force does on the string,

if in each case the same thing happens when expansion takes place, i e
,
just as

the stretching force tends to shorten the stnng when it is stretched, so the atmosphenc

pressure tends to oppose the expansion ofthe aircolumn Whereas, however, ordinary
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strings excited at a single point give out sound, the bundle of aerial strings is unable

when excited at a single point to vibrate as a whole because of the discontinuous

distribution of its parts. Hence it has to be excited along its entire length. This is

what happens in the flute, in which the air introduced from the outside compresses

the air in the tube along its entire length.

32) To determine the aerial oscillations in a flute or to determine the frequency

of oscillations in any pipe whatever, we consider the air in the tube replaced by

a string stressed by atmospheric pressure. Using this analogy we find the frequency

by the argument in para. 21. Thus let the length of the tube equal a, let p which

was the tension in the string now be the atmospheric pressure or the height of the

mercury in the barometer (minimum 2260 scruples and maximum 2460 scruples).

Let q which was the mass of the string now become the mass of the air in the tube.

Again let the ratio of the specific gravity of the mercury to that of air be n:l and

let k be the height of the mercury in the barometer. Then we have piq = nkta.

33) With the appropriate substitution in the formula for the frequency of a

stretched string in para. 20, we get for the fundamental of the open pipe

/=-^-V3166/jfe
la

[Editor’s note; Again tt is taken as 22/7. The frequency, as in the case of the string,

is taken as double what we take as the frequency nowadays. The pipe must be open
at both ends, though Euler does not specifically state this.

In modern terminology

/= frequency =
2a

where V is the velocity of sound in air. But

V = \/p7^= '

s

V Pair
(Newtonian formula)

where pHg is the density of mercury, hng is the height of the mercury column in
the barometer, pair — density of air, and g — acceleration of gravity.

Now, in Euler’s notation pHg/pair = Alsog- = ttH, where I is length of the seconds
pendulum =3166 scruples or about 100 cm. Hence

^~2a V3166n/rHg ^ y/3166nk

since /iHg- ^ in Euler’s notation. As before we must multiply by 2 to get Euler’s
resu t. Note in any case he is bound to be in error because his expression for the
velocity of sound in air is Newton’s. So far as can be seen he does not use his own

po^nff^'"
of sound in air, as given in para. 8. This is an interesting
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units. This is somewhere near what he gets. His minimum value should correspond

to freezing temperature. But for this we get 259. It seems he must have taken more

extreme temperature values. Of course his Newtonian velocity values are lower than

the true sound velocity. In any case it is hard to know what he means by C. In

the modern musical notation (Helmholtz) C means 65.4 Hz, which in Eulers ter-

minology would be 120.8 and this is obviously off. He may have meant c which

corresponds to 131 or 262 in his notation. This is probably the situation,] This result

[his figures of 240 and 210] agrees well enough with what we found before in

dealing with strings. There to be sure the frequency for C was found to be 116

[Editor’s note: this more or less agrees with the modern figure, as we have noted

above], whence it appears that the sound C in pipes is approximately an octave

above the sound C in strings. [Editor’s note: This is a strange statement for Euler

to make. It was obviously not based on experience!] When two sounds are an octave

apart they are often judged to be the same. This is not surprising, since it is difficult

to judge of sounds of different quality when they are in unison. I do not find that

a single octave difference discredits the confirmation of my theory. [Editor’s note:

Euler was correct in the use of his formula, but the C should have been c, in modern
notation.]

37) What has been said up to now concerning the sound of pipes must be inter-

preted as referring to open cylindrical tubes, in which an exit is provided for the

air blown into the tube. When however the tube is closed at the upper end, the

air blown in is not able to get out. Hence it must turn back in order to get out
at the lower orifice. So it follows that the air has to go along the tube and back
again before it can get out. Hence the air in the tube must be considered like a
string of double the actual length. Hence a closed tube will emit sound of the same
frequency as an open one of double the length, that is of lower pitch (than the
open tube of the same length). [Editor’s note: In endeavoring to explain the experi-
mental fact, which he evidently knows very well, Euler departs from the wave theory
which he seemed to grasp in the case of a string. His explanation has no validity,
though he evidently felt it was plausible. Here he was considerably hampered by
his dependence on the string analogy. The latter can correspond to a tube open
at both ends or closed at both ends, but not the open-closed case.] I leave to my
honorable competitors the examination of the sounds of pipes which do not have
the same width at all points, i.e., are either convergent or divergent, as well as the
sounds of pipes which are partly closed at the upper end.
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Translated by R. Bruce Lindsay

from “Recerches sur la courbe que forme une corde tendue mise en

vibration,” Hist. Academy of Sciences, Berlin, 3, 214-219 (1747)

I. I propose to make clear in this memoir that there are an infinity of curves

other than the mate of the elongated cycloid, which satisfy the problem in question.

I shall always assume that the excursions or vibrations of the string are very small,

so that the arcs such as AM [Figure l] of the curve formed in the vibration can

always be considered approximately equal to the corresponding abscissas

I

assume

in the second place that the string is of uniform thickness throughout its length.

In the third place, I assume that the force of tension F on the string is to the weight

of the string as m is to unity, whence it follows that ifp is the weight per unit length

and I is the length of the string, we have F = pml. Fourth, if we call AM or its

(approximate equivalent) AP = s, and call PM = y and consider ds constant, the

accelerating force on the point P is —F(ddylds^) if the curve is concave toward AC,
and F(ddylds^) if the curve is convex.

11. Having assumed this, let us imagine [see Figure 2] that Mm and mn are
two consecutive elements of the curve at any arbitrary instant of time and that Pp =
pTT, that is, ds is constant. Let t be the time that has elapsed since the string started
to vibrate. It is then certain that the ordinate PM can only be expressed as a function
of the time t and of the abscissa or of the corresponding arc s or AP. Hence let
PM - ^t,s), that is, equal to an unknown function oft and j. We then have d(l)(t,s) =
pdt + qds [Editor’s note: do not confuse the coefficient p here with p in Figure 2.
The author is careless in his terminology], where p and q are also unknown functions
of < andi. From Euler’s theorem (Vol. VII ofMemoir of St. Petersburg Acad.) it follows
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that 02 = 2aml, whence a= /3. Then, since dp = adt + vds it is necessary xhzvdq

or vdt +^ should equal vdt + ads
.

. . j u
VII. To determine from these conditions the quantities a and v we note that

as dp = adt + vds and dq = vdt + ads, we have

dp + dq = (a + v) (dt + ds)

and

dp — dq = (a— v) (dt— ds)

whence it follows that

1) a + V is equal to a function of < + ^ and that a — v is equal to a function of

t — s

2) we have — 5j]/2

3) or (by proper choice) more simply p = ^t + 5) + A('< — s)

.

Similarly

q = ^t +s) - h(t - s)

From this we deduce that PM as the integral of pdt + qds will also be the sum of

functions of t + s and t - s, which we may call ^ and F. Hence we finally have

as the general equation of the curve of the string:

y
= '?^(« + 5) + Ff/ - 5)

VIII. But it is easy to see that the above equation includes an infinity of curves.

To see this, we take here only one special case, namely that for which y = 0, when
t
—

0, that is, we assume that the string lies initially along a straight line and that

it is forced to depart from its state of rest by the action of some cause. It is evident

that we shall then have + F(—5j = 0 or '^(5)
= —Ff—5). Furthermore, since the

string always passes through the fixed points A and C it is necessary that y = 0

when s = 0 and s = (, no matter what t is. Hence '^(t) + Ffij = 0, for all t-, or ''F('<)
=

— Ff<). From this it follows that — j) + Fff — 5) = 0 for all values of the argument.
Hence the fundamental equation above becomes y

= —
'*F(i — s).

It is further necessary that Ffi) = Hence must be an even
function of 5 (only even powers of 5 may enter if is a polynomial series). Moreover
the condition thaty = 0 for 5 = Z, leads to

^(Z + 1) =-<P(t - 1)

It is therefore necessary to find a function 'i'(t + s) such that ^(s) - 'i'(-s) =
0 for all 5 and ^(t + 1)

~ ^(t -
1) = 0 for all t,

IX. To arrive at this, let us imagine the curve toT in Figure 4 with coordinates
TR=^u, QR=z and which are such that u = ^(z). Then since ^(j) - 4'(-j) must
be equal to zero, it is evident that taking QR = Qr, it is essential that rt = RT, and
that thus the curve toT will have equal and similar parts on either side of 0, namely,
to and oT. Further, since ^(Z + 1) must equal ^(Z - 1) and the difference between
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/+/ and /-/ js 2/, ii is evident that the cune /oT must be siich that «f ne suppose
H extended, an) ino ordmates distant from each other by 2/ must be equal Then
if suppose that QR -

1, sse see that the pan TK must be equal and similar to

the part To, and that the part KX must also be equal and similar to oT, etc Since

the segments to, oT arc alreadj similar and equal, it follows that the curse we seel«

extends to infinity on the two sides of the point o, and that it is made up of segments
which are all equal and similar to the segment oTk, whose absassa QV = 21 and
which IS divided by Us middle pointT into two similar and equal pans But mathemau-
aans know that such a curve can alwa>s be generated by means of another cune
TV'SR'T (see Figure 5), which is a closed curve and whose two segments TR'S and
TV'S are similar and equal For if through an) point L on the axis TS we draw
a straight line LH which is equal to a multiple of the arc TR' added to any function

of the abscissa TL and of the ordmateXJ?, or even if we make the hne UJ equ^l

to an arbitrary function of the abscissa TL and the ordinate LR added to the space

TIJl divided by an arbitrary constant, it is cenam that one will get by this means

a curve oTK, the two segments of which are equal and which will extend to mfinii),

having all its segments similar and equal tooTK like the ordinary cycloid

/ r X

0 (f V Z P

Figure 4

X Having thus described such a curve oTK, it will be easy to determine for

any arbitrary time / the curve assumed by the stretched sinng, for the latter curve

IS alwa)s constructed b) taking for the ordinate vvhich corresponds to an arbitrary

abscissa s the difference between two ordinates of the curve oTK with respect lo

any arbitrary axisZF, and ofwhich the one.^ft + 5^. the distance from Z correspond

ing lo t + i, whereas the other, is the distance from ihe same point Z

corresponding to the quantity / ~ i

XI We have already noted that ^(s) must be an even function of s, whence
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'^(t + s) must likewise be an even function of / + ^. Hence the difference ''Pf/ + s)

^(t -s), taken with t alone varying, that is to say, dt • [A(/ - Af/ - 5)] must

be such that Af/ + and Af/ - sj are odd functions of / + ^ and t - s, respectively.

But it is easy to see that A(/ + sj - Af< - s) or (PM' - PM)/dt, expresses in general

the velocity of the pointM and that ^(s) - A(s) expresses the initial velocity of the

same point. Hence the expression for the initial velocity impressed on each point

of the string when it lies along the straight line and just commences to move ought

to be such that when expressed in the form of a series it will contain only odd

powers ofs. Otherwise if the function ofs which expresses the initial velocity were

not an odd function of s, the problem would be impossible, that is, one would not

be able to assign a function of t and s which represents in general the value of

the ordinates of the curve for an arbitrary abscissas and an arbitrary time t.

There are many other deductions which can be drawn from the general solution

we have just given. They will be the subject of a second memoir.

[Editor’s note. D’Alembert’s notation is so different from the modern differential

calculus notation that the reader may find it difficult to convince himself that the

author in this paper really accomplished what has been claimed in the introductory

editorial statement. However, a translation into modern terminology clarifies matters.

We note that if we take y as the displacement of any point of the string then though
D’Alembert did not use the partial derivative notation, what he says in Section II

is equivalent to the following

_ By _
^ dt’ dt dP'

Thus a is the acceleration of any point on the string. In Section III it is established
that p = d^lds'. In Section V the equation for a then becomes

8V _ "hF dV
dP pd^ ds^

But from the physical meaning of the symbols

P

^vhere g = the acceleration of gravity. Hence the above equation becomes

d^y_F d^y

9P P/g ds^

This is the one-dimensional wave equation, with the wave velocity

p/g
where pig is the mass of the string per unit length. This wave equation is solvedm general terms by D’Alembert in Section VII. The solution is applied to the special
case ot the finite string fastened at both ends in Sections VIII to XL

helpful commentary on D’Alembert’s paper is found in Clifford Trues-
ell. The I^uonal Mechanics of Flexible or Elastic Bodies, 1638-1788” (introduction
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Researches on the Nature
and Propagation of Sound

JOSEPH LOUIS LAGRANGE

Joseph Louis Lagrange (1736-1813), though born in Turin, Italy, of French
ancestry, spent practically all his professional career in Pans and Berlin and is consid-

ered one of the most eminent of French mathematicians and theoretical physicists

He succeeded Euler as Director of Mathemaucs in the Berlin Academy m 1766 but

relumed to Pans m 1787 Like Euler he turned his atienuon to a host of problems

m pure and applied mathematics His most famous work is probably his Meeantiiuf

Anal^tique (1788), the Rrst treatise to put mechanics on a firm mathematical basts

Lagrange early became interested in acoustics (sec the introduction to the papers

of Euler in this volume) He solved the problem of the vibrating stnng by a method
which shed new light on the propagation of tvaves through elastic media He then

applied these ideas to aerial propagation of sound We present here a translation

of the introduction to his great memoir of 1759 { Recherches sur la nature et la

propagation du son”) This explains clearly his method but avoids the mathematical

details Euler’s method for handling this same problem is analytically simpler than

that of Lagrange (see p 136), but it is significant that Euler m a number of places

expresseshisdeepindebtednesstotheworkofLagrange d’Alembert severely cniicized

the work of both, but it is now agreed that his cnticism was not wholly jusiified
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Translated by R. Bruce Lindsay from

“Recherches sur la nature et la propagation du son,

Miscellanea Taurinensis, 1, 1 (1759) and Oeuvres, 1, 39 (1867)

Introduction

Although the calculus has in recent years been brought to a very high degree

of perfection, it does not appear however that there has been much advance in

the application of this science to the phenomena of nature. The theory of fluids

which is assuredly one of the most important in physics is still very imperfect in

its elements in spite of the efforts of the many great men who have tried to examine

it with thoroughness. It is the same with the problem which I shall undertake to

examine here, and which one can with reason regard as one of the principal parts

of that theory. For sound consists only of certain disturbances impressed on sounding

bodies and communicated to the elastic medium which surrounds them; hence it

is only through the knowledge of the motions of fluids that we can hope to discover

its real nature and determine the laws it must follow in its propagation.

Newton, who was the first to endeavor to submit fluids to calculation, also made
the first analytical researches on sound. He has been able to determine the velocity

of sound by a formula which does not deviate too much from experience. But if

this theory has satisfied physicists, most of whom have adopted it, this is not true
of mathematicians, who in studying the demonstrations on which it is based have
not found in them the degree of solidity and clarity which characterizes the rest
of Newton’s work. But as far as I know, no one has ever tried to discover and make
known the principles which make Newton’s demonstration insufficient. Still less has
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anyone tned to subsutute for his prmaptes others that are more trustworthy anti
rigorous *

The commentators on the Pnnapta base indeed tried to patch up this passage
on the telocity of sound by a purely analytical method, they have not only envisaged
the question from a very special point of view, but their calculations are besides
so complicated and so encumbered with infinite senes that it does not appear that
one 15 able m any way to agree with the conclusions they have been forced to draw

I have then thought it necessary to take up the whole subject again from th^
beginning and to treat it as an entirely new subject without borrowing anything
from those who have worked on it up to the present

Such IS the object which I have proposed for myself in the following researches
To make my object better understood, I begin by giving an idea of Newton’s theory

and the difficulties to which it is subject

The whole of Newton’s theory is foundm Sections VlII ofBook II ofthcPnnapta
The author first considers the propagation of motion m elastic fluids, and considers

that this consists of successive dilatations and compressions which arc also like pulsav

tions and which spread in every direction throughout the fluid He then passes oit

to consider how these pulsations can be produced by the tremblings of the part^

of a sounding body He imagines that a particle of fluid, impelled by the vibrations

of the surrounding body, condenses through a certain distance the following particles,

until the condensation having become greatest, the same particles begin to dilate

one from another According to Newton, it is as if there were an infinity of sound,

carrying fibers, which all spread out from the same point as from a common center

He wishes, moreover, each of these first fibers to create another equal one at its

extremity, when ic has made a complete osallacion This in turn is to create a third,

and so on successively, so that these form outside the sounding body, so to speak,

several spherical domes, which forever go on enlarging, just as one observes m ih^

waves which are excited on the surface of quiet water, by agitation through any

foreign object

According to the illustrious Newton this is the nature of the mouons of ih^

particles of air which produce and propagate sound But Newton went still further

He has calculated all the particular motions which make up each of the pulsations

To do this, he looks upon the elastic fibers of air as composed of an infinity of

physical points lying along a straight line and spaced at equal distances from each

other The method he employs to determine the oscillations of these points consists

‘Here is how one of the most celebrated mathematiaans of our time speaks about the matter

m hisTroj/c des Fluidts (art 219) This would be ihc place to give the methods for determining

the velocity of sound but I confess that I have not been able to find anything on the subject

which satisfies me I know at present only two authors who have given formulas for the vcloaty

of sound, namely Newton in his Pnnopta and Euler in his Dissertation on Fire, which won

the Academy prizem 1738 The formula given by Euler without demonstration is very different

from that of Vewton and I do not know the road that Jed to it 'Vith respect to Newtons

formula he has given a demonstration of it in his Pnncipui but that passage is perhaps the

most obscure and difficuli of the whole work John Bernoulli the younger, in his Essnjon

Light, which won the Academy award in 1736 said he did not dare to flatter himself that

he understood this part of the Pnnapta
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in supposing them from the very first to be isochronous and the same for all. Newton

proves then that, this hypothesis is in complete agreement with the mechanical laws

which govern the mutual action which the points exert by virtue of their elasticity.

From this he concludes that the motions are in fact such as he has assumed them

to be; and since for each oscillation there should be created a new fiber equal to

the first, he finds the space through which sound travels in a given time, by calculating

only the period of a single oscillation.

John Bernoulli, the younger, in his excellent Essay on Light has also used the

same hypothesis to determine the velocity of sound. His procedure differs, however,

from that of Newton in that he assumes from the beginning that the vibrations

of the particles are perfectly isochronous, a result the great mathematician had pro-

posed to demonstrate. It is not surprising that the two authors arrived at the same

formula for the velocity of sound and the apparent agreement of their calculations

cannot be taken as a proof of the theory they have used.^

With respect to the first propositions on the formation of elastic fibers, and

especially on this analogy to waves, I believe it is useless to stop to examine them.

For several authors have already made plain the lack of solidity of the scheme and

its insufficiency for the explanation ofthe phenomena of sound.® Moreover the manner

in which the method is presented in the Principia makes it clear that the author

adopted it as a simple hypothesis for simplifying his rather complicated problem.

But even if this hypothesis were true would it not be right to demand a demonstration

of it? But this demonstration would necessarily depend on the general solution of

the proposed problem. It would be necessary to admit that the theory of Newton,

even in this respect would be far removed from being able to satisfy its object. Even

“Bernoulli has proved conclusively that every body held in equilibrium by two equal and
oppositely directed forces, if displaced slightly from equilibrium, will return to its equilibrium
state through simple and regular oscillations. But this theory is applicable to the one case
in which there is only one movable body. To appreciate this, suppose with Bernoulli that
the body is subjected to the two forces P and acting in opposite directions. It is clear that
these forces must be functions only of the distance of the body to some fixed point. Then
if the body is displaced through a very small distance ds, the sum of the forces will be expressible
as pds, which will provide the accelerating force tending to make the body reassume its equilib-
rium position. Since only very small displacements are contemplated p may be treated as
constant, whereupon the net force will be proportional to the displacement and oscillations
will follow in accordance with the known laws of isochronism. But the situation will not be
the same if there are several bodies which are maintained in equilibrium by forces P, Q,
R, . .. acting along the same straight line. In this case the resulting force corresponding to
very small displacements will be of the form pidsi + p 2ds 2 + ... in which pi, p 2, ... can be
regarded as constants. In this case it can be seen that the bodies will not in general oscillatem isochronism. And this is what happens with the particles in the elastic fibers of air. Hence
tor this reason the commentary on Newton’s method is still insufficient even when it does
not include approximations. d’Alembert has made this difficulty clear for the case of a vibrating

p%"59
several small weights. See Memoirs of the Berlin Academy for the year 1750,

memoir of M. de Mairan, in Memoirs of the Academy of Paris, year
1737. Also Perrault’s Physics and others.
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a sonorous fiber whose elastic particles are in mutual contact should be analogous

to that of a corresponding vibrating string.^

This has then led me to speak of the theories which the great mathematicians,

Brook Taylor, d’Alembert, and Euler have provided for the vibrating string problem.

I make clear in a few words the points on which they differ and the objections

which Daniel Bernoulli has made to the latter two, and after having most carefully

examined the reasoning of all of them, I have concluded that the calculations made

up to the present time cannot decide such questions and that it is necessary for

the general solution that we should have in mind what is necessary to review.

I try then to give that solution the analysis of which appears to me to be both

new and interesting, since there are an indefinite number of equations to solve at

the same time. Fortunately the method which I have followed has led me to formulas

which are not too complicated, having regard to the large number of operations

I have had to go through. 1 consider first the formulas for the case in which the

number of movable bodies is finite, and from this I easily deduce the whole theory

of mixtures of simple and regular vibrations which Daniel Bernoulli has found only

in special and indirect ways. I pass then to the case of an infinite number of moving

particles, and having then demonstrated the insufficiency of the earlier theory for

this case, I deduce from my formulas the same construction of the problem of vibrating

strings given by Euler, which has been so strongly contested by d’Alembert. Moreover,

I give to this construction all the generality ofwhich it is capable, and by the application

which I make to musical strings, I obtain a general and rigorous demonstration

of that important truth of experience, namely, that no matter what initial configuration

one gives to the string, the period of its oscillations nevertheless remains the same.^

At this point I develop the general theory of the harmonic sounds which result

from the same string, as well as those of wind instruments. Although these two
theories have already been proposed, the one by Sauveur and the other by Euler,
I believe I am the first who has derived them directly from analysis.

I turn now to the principal object of my researches, to find the laws for the
propagation of sound. I assume that a particle of air receives an arbitrary impulse
from the sounding body. I then find from the application of my formulas that this

is communicated from one particle to the next by a motion which is not only instantane-

^We owe it to d’Alembert to admit here that he had already found the analogy between
the two problems in article XLVI of his first Memoir on vibrating strings in the Memoirs
of the Berlin Academy, but so far as I know it does not appear that he ever made any use
of it.

The scholar d Alembert, cited above, in Article III of his Appendix to his Memoir on vibrating
strings, printed in the volume of Memoirs of the Berlin Academy, makes the following remark
concerning this proposition; “It is probable that in general, no matter what configuration
the string starts with, the period of vibration will always be the same, and this is apparently
confirmed by experience; but it would be difficult, perhaps impossible, to demonstrate this
rigorously by calculations.” I repeat these words of such a great mathematician only to givean idea of the difficulty of the problem I have solved.

°
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ous but does not depend at ali on the force of the first impulse The veloaiy wnjj
v-hich the communication takes place turns out to be by the same formula ^^hKh
Newton has already given for the v elocityofsound, the results ofwhich are sufficiently

m agreement with expenence The calculation leads me here to provide a ireaimem
of simple and compound echoes, and the theory which I establish is not subject

to any of the difficulties which are met m the explanations given by physiasts up
to the present time These researches are followed by an examination of mixture
of sounds and of the manner in which they can spread through the same space

without interfering with each other m any way Finally I deduce from my formulas

a rigorous and incontrovertible explanation of resonance and the natural vibraiiQn

of a string one of whose harmonics agrees with the frequency of the sound to which

It is exposed a phenomenon known for a long time, and for the explanation of
which many systems have been invented, without however being able to give a saiisfac

tory reason

Here are then the principal subjects I have treated in the present dissertation,

which the lack of time and certain other obstacles have prevented me from explaining

with greater order and clarity I am far from believing that they contain a complete

theory of the nature and propagation of sound, but it will at least have contnbutcd

to the advancement of the physical and mathematical saences to have demonstrated

by calculation some truths of nature which have up to now appeared inexplicable

The agreement of my results with expenence will perhaps serve to destroy the prcj

udices of those who seem to despair that mathematics can ever bring true light mio

physics This is one of the pnncipal goals which 1 have now set for myself
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Letter of Leonhard Euler to

Joseph Louis Lagrange

Translated by R. Bruce Lindsay

from Oeuvres de Lagrange, 14

Berlin, October 23, 1759

Sir:

Having received the excellent present which you have had the kindness to send

to me [Editor’s note: a copy of a book containing Lagrange’s “Researches on the

nature and propagation of sound’’], I have at once looked into it with the greatest

interest and I cannot sufficiently admire the skill with which you handle the most

difficult equations for the determination of the motion of strings and the propagation

of sound. I am infinitely obliged to you for having defended my solution against

all caviling, and it is as a result of your profound calculations that everyone should

now recognize the use of irregular and discontinuous functions in the solution of

problems of this kind. For the thing now seems to me to be so clear that there

cannot remain the least doubt. Let us suppose that one is to find a function z of

the two variables t and x such that dzidt = dz/dx; it is then evident that every function

of < + jc, whether regular or irregular can be taken for z. For example, having traced

any curve whatever, such as AM in Figure 1, if one takes the abscissa AP as t + x,

the ordinate PM will furnish a value for z. It is the same with the problem of
the string. I have then observed that my solution is not sufficiently general, for

in giving to the string initially any shape whatever, such as AMB in Figure 2, my
original solution demanded that in this state there must be no motion. But now
I can solve the problem not only when the cord has initially any arbitrary shape,
but also that in this condition an arbitrary velocity is imposed at every point, e.g.,

Mjn at point m. I see that you have treated this case when the string is stretched
initially along the straight line AB, but I do not know whether your solution can
be extended also to the case in which the string in addition to its motion has an
arbitrary configuration.
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Figure 1

m

A B

Figure 2

I pass now to the propagation of sound, about which I have never been able

to come to a conclusion m spite of efforts I have made in this direction, for the

attention I gave it in my youth was based on some illusory notion m the cndeasor
to make the theory of the velocity of sound agree with expenment I have therefore

read your memoir on this subject with the most lively satisfaction and I cannot $uf*

ficiently admire your sagacity in surmounting all obstacles I now sec that one should

be able to deduce the same solution of the equation

by using discontinuous functions But then M d Alembert would raise the same

objections as against the motion of stnngs It is only after your investigations that

1 would be able to make this method valid I have solved m this way the case where

one assumes initially not only an arbitrary displacement of the molecules of air but

gives also an arbitrary motion to each molecule, just as in the case of the string,

in this process restricting attention to a single line of air or rather a narrow straight

tube, full of air, as you have done This generalization appeared to me to be more

useful in that it reveals to us more clearly the motion to which all the particles of

air are successively excited It enables us also to answer a misgiving which has long

bothered me This is that a displacement excited at A [see Figure 3] spreads itself

equally on the two sides of A, but having amved at X, a spreads only toward T

,

leading us then to ask what difference there is between an milnl displacement at

A and one derived from it at X, which makes the former spread out toward both

D and £, whereas the latter spreads only toward E This misgiving is dissipated

by the aforesaid general solution, through which one will see that the initnl displace-

mcni of the particles at A, through the motion impressed on each one could be

such that the propagation can take phcc only in the direction of£, and one will

then perceive in turn tliat this circumstance will always hold for the derned displace
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merits. It is indeed remarkable that the propagation of sound actually takes place

faster than calculation would indicate. I have now renounced the idea I had previously,

that the succeeding displacements would be able to accelerate the propagation of

the earlier ones, so that the shriller the sound, the faster it would travel, as you

have perhaps seen in our latest memoirs. It has also occurred to me to wonder

whether the magnitude of the displacements could not cause some acceleration, since

in calculations one assumes them to be infinitely small; it is evident that including

the size would alter the calculations and make them intractable. However, so far

as I can see, it seems to me that such a circumstance would decrease the velocity

rather than increase it.

D AXE
Figure 3.

It is indeed a loss that this same problem cannot be solved by giving the air

three dimensions, or even only two, for then one may well doubt that the propagation
would be the same. At least it is certain that in these cases the displacements would
become weaker the farther they take place from their origin. I have indeed found
the fundamental equations for the case in which the air extends to two dimensions
or where it is confined between two planes. Let Y in Figure 4 be a particle of air

in a state of equilibrium. After agitation let it be transported to y.

y

A X

Figure 4.

Take AX X, XY - Y, Xx — Yu — x, and uy = y. This being supposed, x as
well asy will be certain functions ofXF and of the time t and hence of three variables.
For their determination I find the two equations:

de °^dX^'^^dXdY

3^v + a
dXdY

>^1 .
^ displacement takes place at^ [see Figure

5] and that it spreads out from there in the form of circular waves in such a fashion
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thal an arc ZV (in the equilibrium state} has been transported to zv, placing AZ ^
Z and Zz = 2 , the quantity z \m!I be a certain function of the tiso \anables t and
Z, for the determination of which I find this equation

_ 3^2 . a dzW 3Z^ Z dZ Z^

If \se reject the last two terms there remains the same equation that applies to the
case in w hich the air extends onl

j along the straight line AE But from this equation
It does not appear that the propagation lakes phce with the same leloai) in the
two cases One would therefore strongly suspect that the analysis stops at the point
of being able to solve equations of this kind, and I hope that this glory is reserved

for you What you ha\ e to say about the echo is as important in analysis as in physics

And everyone ought to agree that this first volume of your work, is a real masterpiece

and contains much more profundity than so many other volumes of established

academies, and never has a particular society deserved more the support of iis

sovereign

Figure 5

As regards the sounds of music I am completely of your opinion that the harmonic

sounds which M PLameau believes he hears from the same siring actually came from

other vibrating bodies And I do not see why this phenomenon should be regarded

as the fundamental pnnciple of music in place of the true relations which are its

foundation I still believe that I have accurately determined the de^ee of agreement

with which we hear two given sounds, and that two sounds in the frequency ratio

8 9 are perceived more easily than if they are m the ratio 7 8 But here I think

one has to take into account a presumption by which one imagines in advance the

sound ratios, and then a deviation from this is intolerable So Far as the violin u

concerned, if two strings are found to be in the interval of a sixth he considers

them out of tune, since he claims that their interval should be a fifth For the interval

7 8. It will be very difficult to take it for what u is One would imagine always that

It ought to be 8 9, being badly tuned It is only necessary to anticipate this presumptiori

in order to produce the intcnal 7 8, but for that one also needs particular rules

of agreement
1 Invcjusi finished the third volume of my Mechanics which treats the motions

of rigid bodies I have discovered some new principles of the greatest importance

In order tint such a body should rotate freely about an axis, it is not only necessary

thal this axis should pass through the center of gravity (or rather the center of

mass [inerin]) of the body, but it is also necessary that all the ccntnfugal forces
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should be done away with. It is, of course, clear that in all bodies not all lines which

pass through the center of mass have this property. But I have shown that for all

such bodies, no matter how irregular they may be, there are always three such mutually

perpendicular lines, which I have named the three principal axes of the body with

respect to which I have determined the moments of inertia, and this consideration has

enabled me to solve a host of problems which had previously appeared insoluble.

For example, having impressed on any body whatever any motion whatever, it is

desired to determine the continuation of this motion, leaving aside all forces which

would act on the body.

I hope you have safely rceived my last letter, which I entrusted to the hand
of a friend, in Geneva, M. Bertrand, who has applied himself to mathematics with

great success.

I have the honor to be. Sir,

Your very humble and obedient servant,

L. Euler

To: M. de Lagrange, Professor of Mathematics and member of the Royal Academy
of Science and Belles-Lettres of Prussia in Turin.
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On the Propagation of Sound

LEONHARD EULER

Translated by R. Bruce Lmdsay from
Memotrs de I'Academte des Sciences de Berhn (1766)

Also in Opera Omma III, i, 428-451

1) Physicists as well as mathematicians have devoted much effort to explain how
sound IS transmuted tlirough air But it must be admitted that the theory has up
to nois been lughly incomplete What the great Newion has contributed to this problem

IS more a feat of ingenuit) than a sufficient treatment, since he based his reasoning

on purely arbitrary hypotheses M de Lagrange, a learned mathematician in Turin

has just remarked very judiciously in the first volume of Miscellcnea Physuo-

MalheTTiatica published in Tunn m 1759 that no matter what other hypotheses Newion
had adopted he tsould have reached the same conclusion This should suffice to

assure us of the correctness of the conclusion so far as regards the veloaiy with

which sound is transmuted through the air But the actual motion with which the

particles of air are displaced remains unknown to us And we shall not be able to

boast of an understanding of the propagation of sound unless we are in a state

of being able to explain clearly how these displacements are transmitted through

air

2) All who have treated this problem after Newion have either fallen into the

same difficulty or, wishing to examine more profoundly the real motion of the air,

have encountered intractable calculations from which they have been able to draw

absolutely no conclusions And I ought lo admit that the one or the other fate has

befallen me after every time I have entered upon such investigations I was then

agreeably surpnsed when I saw in the excellent book which I have just cited that

M de Lagrange has fortunately surmounted all these difficulties and that by calcula-

tions that would appear to be completely mtneate Without contradiction this is one

of the most important discoveries made m mathematics m a long time and one which

will doubtless lead us lo others

3) In examining these prodigious calculations, I have given some thought to

the possibility of attaining the same end but by a simpler route and by some efibrt

I have achieved this I shall then have the honor to explain here the method which

seems to me the most proper for this research But no matter how simple it may
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be made to appear I must admit that it would never have come into my mind if

I had not already seen the ingenious analysis of M. de Lagrange. There is indeed

a circumstance which would stop us short, namely, if the analysis were applicable

only to continuous quantities whose nature could be represented only by a regular

curve or contained in a certain equation. It is only the expertness of introducing

discontinuous quantities in the calculation that can lead us to the solution we seek.

This is done in a manner similar to that by which I have determined the motion

of a string which has been assigned an arbitrary initial configuration, inexpressible

in terms of any equation.

4) One has really only to envisage the propagation of sound as it actually takes

place. The air being abruptly agitated at some one place, the particles of air which

are far removed from the place at first experience nothing; it is only after a certain

time that they are displaced. And thereafter they are restored to equilibrium. Let

us then think of an arbitrary particle at distance x from the origin of the disturbance,

and after time T it is excited during an interval of time we call 0. Calling its velocity

V, if we consider the state of the particle, the velocity ought to depend on x and

on the time t in such a way that if i < T, v = 0 and that the velocity shall have

a finite (nonvanishing) value while t lies between T and T + 0, but that for t > T + 0,

the velocity reverts to zero. We see that this situation cannot be represented by a

regular (continuous) function of the time L

5) It is not proper to think that a function similar to those representing curves

bounded in a closed space should be proper to represent the state of the particles

of air in the propagation of sound. Such a function of t which would have real

values only so long as T < i <T + 0, is not at all suitable in our case to represent

the value of v, since for t <

T

and t>T + 0, it would give imaginary values, in place

of the fact that v is not imaginary under those conditions, but strictly zero. One
could not even say that the values off are there extremely small, but joined continu-

ously with the finite values of v while t is in the interval T,T + 0, since before the

excitation arrives at the particle and after it has passed on it is completely at rest,

as if it had never been disturbed. This is without doubt one of the principal reasons
why the propagation of sound has refused to yield to calculation.

6) M. de Lagrange has happily avoided this stumbling block, since he has consi-
dered the particles of air as isolated, without forming a complete continuum. On
this view he has assigned finite size to them, so that the number of particles distributed
through any arbitrary interval remains finite. He has used the same method by which
he has determined, in the same memoir, the vibrations of a string loaded with a
finite number of weights. By this method he has been able to show, by the solution
of the equations, that a single particle may be in motion while all the others are
at rest. But at the end it is seen that the number of particles does not really enter
into the problem and that the situation should not change if the number of particles
of air filling a certain space is infinite. Everything comes back then to the fact that
one should introduce discontinuous functions into the analysis which is to solve the
problem. This would appear to be a great paradox.

7) As a matter of fact when I gave my general solution for the vibration of
a string, which also involved the case in which the string was initially given an irregular
configuration not expressible in terms of any equation, my solution was the subject
ot suspicion on the part of some eminent mathematicians. M. d’Alembert liked best
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lo maintain that in this case u uas absolute!) impossible to determine the motion
of a stnng, which admitted my solution, even if it differed in no respect from his

o\sn in the other case It v.as not even sufficient to make clear, as I had done, that

my construcUon would satisfy completely the differential equation of the second
degree which contains without contradiction the true solution The discontinuity

appeared to him always incompatible with the laws of the calculus But now that

M de Lagrange, has compleiel) justified my solution in an incontestable fashion,

I do not doubt that the world ivill shortly recognize the necessity ofusing discontinuous
functions in analysis, especially, when it is seen that this proaides the only means
of explaining the propagation of sound

8) The paradox will appear even greater when I say that there is a very large

part oftheintegra! calculus whereone is obliged to admit such discontinuous funcuons,

esen though one admits arbitrarily constants in the ordinary integrations For the

integral calculus is a method of finding functions of one or more variables when
one knoivs some relation betv\een their differentials of the first or higher order

Wherever it is a question of function of two or more vanabJes, arbitrary functions

are allowable, not excepting the discontinuous variety This is true for the same

reason that functions of a single vanablc, which arc found by integration, have to

be supplemented by an additive arbitrary constant which must be determined

ultimately by the essential conditions governing each problem

9) To pul this in clear fashion, let us seek a function t of the two variables

X and t such that

where we already know that {dzfdt) means the fraction dzldl (i e , the ratio of the

diffcrcntiais), supposing only that t is variable, and similarly for (di/dx) This condition

IS similar to that which governs the motion of vibrating slnngs, namely

fddz\ /ddz\

which differs from the former case only in the fact that here we are dealing with

difTercnlials of the second degree, so that the same circumstances hold in both cases

But It IS evident that one can satisfy the condition

(©(S-)
by taking for i any function ofx +at, without excluding discontinuous functions

For if we conceive any wave whatever drawn by free hand and not following any

equation, if one takes x +al as the abscissa, the ordinate will give a value of z which

will satisfy the above equation and since there is no other condition, nothing oblige*

us to believe that a regular and continuous curve is any more necessary to satisf

the given conditions ilnn an irregular and discontinuous curve, still less that th

latter should be excluded

10) Let us suppose the question is the motion of a stnng and that the conditior

are such that after any arbitrary ume< there corresponds to the abscissa x the ordma'
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z such that

(f)
= ° (f

)

Then I say that if we take z as any arbitrary function of the quantity x + at, that

z = $ (x + ct)

we shall have provided a general solution of the problem, no matter what function,

regular or irregular, is denoted by The exact nature of the function is determined

by the nature of the problem, which is given if the configuration of the string is

known at some moment, say t = 0. Then z = $(x) will represent the equation of

the initial configuration of the string, whatever it may happen to be, regular or

irregular. Then, knowing this configuration, one can determine easily the configura-

tion for any arbitrary time t, since for any arbitrary abscissa x there will correspond

the same ordinate which corresponded in the initial configuration to the abscissa

X + at.

11) My solution of the problem of the vibrating string is based on reasoning

similar to that just presented, reasoning which is now safe from all objection. It

is on the same foundation that I shall establish the solution of the problem of the

propagation ofsound and which enables me to dispense with the embarrassing calcula-

tions which M. de Lagrange has been obliged to develop. I look at the problem

from the same point of view as that able mathematician in considering only those

particles of air which are situated on a single straight line along which the propagation

of the sound takes place. For, although the sound spreads equally in all directions,

it seems certain that the propagation along each straight line is not disturbed by
the motions of the neighboring particles. However it is much to be wished that this

matter could be resolved by determining the disturbance throughout the whole
atmosphere. But here we encounter difficulties which appear well-nigh insurmount-
able. I shall then content myself, like M. de Lagrange, with motion confined to a

straight line.

Analysis of the Propagation of Sound
Along a Straight Line

12) I consider then only the air confined to the straight Yme AE [Figure l],
very much like the air confined in a tube of very narrow bore, which I shall suppose
to be terminated at the ends A and E. This makes the situation to which we are
to apply the calculus perfectly definite. Let the length of the tube AE be a and
its area of cross section, which is supposed uniform and almost infinitely small, be
ee, so that the volume of the air in the tube is aee. Let the air at first be in equilibrium
and of the same density throughout its length, so that its elasticity also remains the
same. Let the height h be the measure of the elasticity in this equilibrium state.
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15) The elasticity which in the equilibrium state was represented by the height

h will in the interval pq be represented by a height = (h • QR)lqr. Then, since PQ —

QR = 0), we have

pq = oi+y'-y, qr=oi+y"-y'

and therefore the height which measures the elasticity in the interval pq will be

-hcol{(t)+y' -y) and that for the interval qr will be hoil{(o + y" - y'). But it is

the difference between these two heights which accounts for the acceleration or decel-

eration of the motion of the particle at q. Having divided the whole interval AE into

very small subintervals all equal to oi, each containing the volume of air eeco in the

equilibrium state, let us now conceive of these particles as united at the points P, R
so as to have now at 9 a volume of air = eeta, which will be pushed from the rear

toward A by the force

_ eehoi

oiAy' —y

and pushed from the other side toward E by the force

eehco
—

t ff /

(0 Ay —y

16) Combining these two forces we find that the particle of air at^ will be impelled

toward E by the force

_ eehoi(v'' — 2v' + v)

(co+y' -y)(co+y" -y')

in which the distance from the fixed point A is Aq = x' + y', and in which the part

x' remains invariant with respect to the time, the other part y' being the only one
which suffers the effect of the force. We assume that dy' corresponds to the interval

dt and hence, using the principles of mechanics, we arrive at the following equation

ddy' _ 2sh (v" — 2v' + v)

dt^ (to + j''—

in which g corresponds to the distance of free fall of a body under gravity in one
second [Editor’s note: g here is one half the normal acceleration of gravity] if t

is expressed in seconds. The problem then is to find for each abscissa a; and each
time t the value of the interval y.

17) We now consider x as a variable and it is then clear thaty will be a function
of the two variables x and t. Since in the formula ddyIdP we supposed x constant,
we must write {ddyIdP) to avoid ambiguity. Placing o) = dx, yve get

y'-y= dx^^ and y” - 2y' + y dx^

whence the force equation takes the form

(ddy \ _ _2gh(ddyjdx^y

\dt^) ~
T+(dyldxy~
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This indeed uould be verj difficult to soKe But if v.c further assume that the distur-

bance IS %ery small we can neglect (rfjAic)* compared with unit) and ha^e for the

propagation of sound for very small disturbances the equation

18) The situauon here is the same as with the vibrations of a string m which

we suppose that the displacements are also very small and not in opposition to the

assumptions of the mathematicians who claim to have explained the motions of the

string So also in our case I am investigating the phenomena of motions which are

extremely small so that the curve passing through the points p\ q‘, r* is displaced

only infinitely little from the axis AE, in the same way as the curve of the string

is envisaged The analogy goes even further since the same equation which expresses

the propagation of sound also determines ihe vibrations of a stnng terminated at

A and E We therefore have the same integral for the solution throughout the tube,

I e

,

y = ^x+ iV^; +

This integral is complete, since it involves two arbitrary functions, as demanded bj

the order of the dynamical equation above

19) To determine the nature of the two functions, it is necessary to apply the

onditions prescribed in the problem It is clear at first that, putting t * 0 the equa

jon y * + 'V(z} expresses the state of the air in the tube when it is first disturbed

Now let us suppose that the air in the tube is disturbed so that Us state is represented

by the curve AZE in plane of AE [see Figure 2] This means that the arbttrarj

point X in the air column has been displaced in the direction towards E by the

amount XZ If we now call AX * x and XZ z we shall have z » <J>(*) + 'F(x) Let

z be a function ofx in the form z = 6lx) Hence

4'(x) + '{'(x) == <?(x)

This determines the form of one of the two arbitrar> functions and 'F But it

must be remarked that the curve v^Z£ must be infinitely close loAE and moreover

it should join AE at the two extremities A and E This means z must be very small

and indeed equal to zero when x = 0 and x = a

Figure 2
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20) The determination of the other function rests on knowledge of the initial

motion of the air. Let us conceive therefore another curve AFE such that the ordinate

XV = V, expressing the velocity which has been impressed on the particle of air

atX in the direction X£. Hence v will also be some given function ofx. Thus whatever

the disturbance is its initial effect will always be determined by the two curves AZE
and AVE, the first of which shows the initial space through which the particle of

air at X is moved and the other shows the velocity impressed in this motion. If

one wishes to assume that the particles of air are initially displaced but have no

initial velocity, then the curve AVE will coincide with AE and everywhere in the

air column v = 0. In any case since the tube is closed at both ends = 0 always

aty4 and E.

21) To take advantage of this condition, let us find the general expression for

the velocity, namely (dyldt). It is necessary to differentiate our functions. We employ
the symbolism

d^{u) = du • <{)'(«)

d'^{u) = du • '^'(u)

whence from

y = ^{x 0 + t)

we get

= V2i* t) - - V 2gh t)]

and consequently, since initially the velocity = u, we have

yf2gh

We multiply by dx and integrate to get

vdx

/
Now I vdx is the area included by AXV and is therefore also a function of x. Let
us set

J
vdx = 5^(x) and get

VSiJT

22)

This equation joined with

4>(x) + ^(x) = e{x)

serves to determine both ^ and ^ in terms of the two
Z{x), so that

given functions 0(x) and
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2 2

Hence our general equanon which gi\es the position of the particIeX at time ( becomes

._ 9(x+ -JWt Cl^
2

j

£(x+ \/2eh O-Zfa- \/2eh !

2’^2gfi

and the veloaty of the same particle ts given by

,

(X'fx + y/gg I) + S'(x - -jis; »1

2

where wc remind ourselves that

2'(x) = V, since X(*) “/vdx

23) Now the whole solution will be determined if the two extremities A and
£ arc removed to infinity For, if we noiv draw another curve /fS£ so that the ordinate

XS gi\es the area AXS with now XS = 2(x), one would be able to take m the two

curves ASF and AZE (with XZ ${x)), the ordinates which correspond to all the

abscissis X + V2gh t and x - V^h t, and from this one will have for every time

I the quantities j which correspond to each particle of air X Bui since the thread

of air^£ is terminated by the points >4 and £ beyond which the disturbance cannot

be communicated, the curves formed on the initial state of the air will no longer

furnish the ordinates corresponding to the abscissasx + t when they are greater

than AE = o, nor to the abscissas x ~ V2gA t, when the latter are negative There

IS no question here of the natural continuation of these curves This does not enter

into consideration since the given curves /I2£ and ASF can even be discontinuous

24) We then have need of some accessory facts to provide us with the trtjc

ordinates of our two curves of condition, when we take the absassa either greater

lhano or negative For this purpose we have only to look at the conditions mentioned

above, namely that where x = 0 andx the ordinalcsy shall always vanish From

this we deduce

0(a + -^igh f)+6(a—

144



and

« we now consider an °
~u, we shall have greater than a, say a + u

+ «) + j'Cg d- ^

j

^/2^

v^=-«(a)—
y2gh

negative, say

From these we can
==“'S" ordinates for *0,^

of* fo3t
outside

25)We„o
o^Sound

""
“P'^"adon of foe«» While this disnf'®"''

and put 101^1^ '“"X! forfe °Pa°und
remains

still fo
rl^aul subsists

it is a
^

represented hv
Purticie of

«;h the other p rS ™™-
ee how

"=' «>o est of i'’"
,'”^11 cur^e

*e function™tr^la"-- O" the hypofoe *'“P'a“tnem cl
' ''™ and

a «- 5tL'eT^’ -Pf«enti„rfo:'“ air sLffor foo"'

j- + u) = ^o(
over, since

necessary on fh
" “)

' '"
'“™

f, - -hlish the sam f

145



26) From the abo\e v.e see that the ordinate 0(u) will always be zero unless
the absossa u measured from the point to the nght falls between the limits

gr between or
|

etc

o, between o, etc

Then if we take Am ~ m and An — n, the limits outside of which the ordinate fi(u)

IS everysvhere zero are

/ml ha— « I . , ha + ml
|n/ \2a— mf tsa+nj

ha-n\ Jaq + ml
\4a-~mj (4o + n /

. f-2a+n\
(-2(1 + ml

or

/—4(i+nl
,

ml

In general these limits will have the form

/that m\
\±2ttf±«/

where i is any integer Unless the absassa u falls between two such limits the ordinate

of w will alwa>s equal zero

27) Let us now take any point X on the straight line AE, letting AX ~ x, and

let us seek the disturbances it will undergo, given by the quantity y whose value

at time t is

y = ^0(x + 0 + VtOix - t)

At first we see that the first term on the nght vanishes unless ;f + \/2gft t lies between

the limits

(m) /2a-ni ha+ml
{4

- 123-^1
or

\2a + n }

The second term on the right also vanishes identically unless the quantii) x - V2^A t

falls between the limits

m
n
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or its negative t - a; falls between

Thus, if we suppose thatx > n, this particle will remain at rest until we have

jc - \flgh t = n or t=
\l2gh

It is then only after this time t that the particle at X will begin to move (under

the disturbance). After that its rest will be re-established after the expiration of time

t =(x-m)lV^ so that the motion lasts for the time interval (n-7n)lV^. From

this we see that each particle of air is excited only during a very short interval

of time in accordance with the extent of the original disturbance mn and it is then

that the sound is perceived.

28) It then takes the time t = (*-n)/V^ for the sound to travel from n to

X or to travel through the space nX — x — n. From this we see that the time is

proportional to the space, just as we know from experience. Expressing the time

in seconds, we have also agreed to let h be the distance a body falls freely under

gravity in one second. Hence in one second, sound will travel through a space equal

to ^2gh. But we know that g = 15% Rhenish feet. In the elasticity of the air is

represented by a column of water 32 feet high, and if we assume that water is 800

times as dense as air, we have

h = (32)(800) feet

Hence

= (31J/4)(32) 800 = 400\/5 - 894 feet

Hence on this basis the velocity of sound in air is 894 feet per second.

But we know from experience that sound is transmitted in air at the velocity

of 1100 feet per second. No one has yet discovered the reason for this excess of
the experimental over the theoretical value.

29) But after the particle of air atX has been displaced by the sound disturbance
the first time it will then be disturbed again and again and indeed an infinite number
of times for which t is included in the following limits

j
Jf + m, 23-/1 -x,2a- n + x,2a+ m- X I

^ “
I

Jr + //, 2a-m-x, 2a-m+x,2a + n ~x I

If the line AE is not terminated finitely at all, the particle at X will be excited only
once. If the line is terminated only at the extremity A, the distance AE = a being
infinite, the particle will still receive one other excitation and this will happen after
the time {x+m)l\/^. This is the explanation of the simple echo. But if the line
is terminated at both A and E, the disturbance arrives at X time after time, serving
to explain the existence of multiple echoes. For this to hold, however, it is essential
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that the particles of air at A and £ are not at all movable, for this is the necess^n
condition for the production of echoes30)

Since we have found that

y = Vi0(x + y/^h ()+ — y/lgh f)

we must note again that the disturbance of the particle X is only one half that of
the parucle originally at mn For the quanuty y gets its magnitude when the one
or the other member falls into the interval mn and since both do not fall there
at the same time, the quantity y wiH be equal to only the half of the ordinate m
the interval mn, v/hence it follows that the disturbances of the particle X are twice

as feeble as the primitive disturbance at the particle mn This is also a necessary

consequence of the pnnciple that the effect cannot be greater than the cause For,

since the onginal disturbance in mn is communicated equally towards A and £, at

every instant there will be two particles at equal distance from mn on either side

which will be displaced, whose motions taken together ought to be equal to the pnmitive

motion in mn so that each can be only one-half of the latter This diminution Vill

be even greater when the disturbance from mn spreads out in every direction From
this we see that the sound transmitted through a tube should be the strongest

Explanation of a Paradox

31) A doubt presents itself here which is not easy to remove It seems that the

disturbance which is now at X ought to be regarded like the onginal disturbarice

at mn and like that should be transmuted backwards as well as forwards But this

does not happen, for we have seen that the disturbance at any given moment at

X IS transmuted forward towards £ and not at all backwards toward A It is the

same with the disturbance starting from mn in the direction towards which is always

transmuted m the same direction without creating new disturbances in the opposite

direcuon I now remove the limits A and £ or I consider them as transferred to

infinity, since I introduced them into the calculation anyway only to explain echoes

It will then be demanded, vMth reason What is the difference between the initial

disturbance at mn and that which is created later at X? For if everything is at rest

save the particles around X, which find cemsclvcs displaced from their natural equilib-

rium positions. It seems as if this disturbani^ ought to be communicated just as

well toward A as toward £ However, this would be quite contrary to experience,

and we know that there is a vast difference between the place where the sound

IS created and the places where it is perceived

32) It IS necessary then that there should be an essential difference between

the disturbance communicated to the particles ofair atX and the primitive disturbance

at mn We must therefore expose this difference But, having introduced into the

calculation the pnmiiiv e disturbance at mn, I have supposed a restriction in neglecting

the functions symbolized b) the sign J), which contains the condition that the particles

in the space mn, having been displaced from their natural positions are not found

in motion at all and that from this state of displacement they are suddenly released
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It is necessary to conclude from this that if the particles at X, after having been

displaced, again find themselves at rest, there should result the same effect as the

primitive disturbance in mn. But although each particle, having arrived at its greatest

displacement, should then be reduced to rest, this does not happen to all the particles

around X at the same instant. Consequently it is here, without doubt, that we must

look for the solution of our difficulty.

33) From this we understand that the propagation depends not only on the

displacement of the particles at mn but also on the motions impressed on them at

the beginning, which influences the propagation insofar as in a certain case it takes

place in one direction. It is therefore very important to treat the subject in all its

elaborateness without neglecting the functions For this effect I shall not limit

myself to a line or tube with finite termination, and I shall therefore suppose the

line infinite, since there is no longer a question here of echoes. In the beginning

it is assumed that the particles of air contained in the space mn [Figure 4] have

been displaced so that the point x has been displaced toward E by the amount xz,

so that z is on the curve mzn. It is also assumed that at the same point x there

has been impressed a velocity = xv directed also towards. By quadrature (integration)

of this lower curve mvn oneWms a new curve ms^, so that the ordinate xs = mxvl\/2gh

and since the velocity line mvn coincides on either side of the space mn with the

same axis, i.e., mA and nE, the continuation of the curve ms^ will be toward A along

the axis mA and toward E along the straight line parallel to the axis nE.

Z

Figure 4.

34) This being assumed, if we take any point X and place AX = x, after time
t, the point will be displaced toward £ by a distance y, where

y - Vi 0(x + t y/2^ ) + Vz ©(x — t \j2gh )

+ /z 2(x + 2(x -ty/2^)

since the denominator V2^ which turned up in para. 22 is already included in
the function S. But here 0 denotes the ordinates of the curve mxn which on either
side coincides with the axisAE, so that ©(«) is always zero unless u is included between
the limits Xm and An. Here X is a fixed point chosen at will, as the origin of the
axis of abscissas. It has no reference to the end of line or tube, which is no longer
considered cl^ed. Similarly ^ denotes the ordinates of the curve, Ams^e, so that
the of j:(«) is zero when u <Am and equal to nl = Ee, where « > An. But
It u finds Itself between these two limits, i.e., if « = Ax, then Y (m) = xy. It is scarcelv
necessary to remark that if any ordinate occurs in a sense contrary to that shownm the figure, it is necessary to consider it negative.
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y = Vmi

which will remain as the value ofji, so that the particle X', after having been displaced,

will find itself displaced toward E from its original position by the amount

Hence after all the displacements have taken place, all the line of air AE will have

advanced in the direction AE by the amount

37) From this we see that the displacements of the particles X and X'-of which

one is on one side and the other on the other side of the initial disturbance mn,

are completely different, since of X the greatest displacement is 14(xz - xs + nQ
whereas that of X' is i4(xz + xs), and therefore in this case the sound is transmitted

quite differently forward from what it is backward, whereas in the preceding case

in which the initial velocities xw vanish, the propagation is the same in both directions.

But we further see that it would be possible for the propagation to take place in

one direction only. This would happen if throughout the whole interval mn, we
were to have xz — *s + = 0. For this to happen, since xz and xs vanish at m, it

is necessary thatn^ = 0 and xz = x^. If we then place

xz=z, XV = v, and xs = fvdx

this condition requires that

x\/igh =J" vdx and
dx

In this case the curve will be equal and will coincide with the other curve mzn
and will rejoin the axis at n, so that ni = 0. Then the particle at X situated in the
side of the disturbed region mn towards E will not be disturbed or displaced at

all and the propagation can take place only on the other side toward A.
38) It is precisely the case of displacements which are produced by an arbitrary

primitive disturbance, which are always such that even ifthey themselves were primitive
would transmit themselves only in one direction. To assure oneself of this one has
only to give to z the value of y found previously and to v the value of (d\ldt) One
then gets

z =y2©(x + ty/2^ ) + 1/2© (x - ts/2gh)

+ V2 2(x + Vz 2(x— t\/2ift)

= V2© '
(x + tV2i^ )

- ^2 ©' (x - fV2i* )

+ Vz 2' (x + ) +V2 2' (x - fV2i^)

Taking the differential of z, assuming thatx alone is varied.

151



“
..t.w"",’“'S

»*'*"'

,v, a disW''’“"he parado’^"

thereto^ ^ana"'”' <> OtW^
*erea\=’^V

no Not „\ sound*

:a^i5s2irsS5S5SS5si

“""Sc disp'='"‘='C«'«**°t'ooeV^6«"^^^^^ ^°',«.rW
"«= '*^051 eaei2i'''u

^g=2£s55=^£^S5:i-“
to ^ -fotT-"< cot^"

*'^‘’
rr* 0- "



equal. But then this particle will be disturbed quite otherwise than if it were to receive

a simple displacement and it will consequently transmit its displacement as much

forward as backward. But this is precisely the case in which one should consid^

the disturbances as disturbing each other, something that does not happen at U

or any other point P.

+
1

^ d c b o ct/Sf"

Figure 5.

Reflections on the Preceding Theory

4 1) It is necessary to comment at the outset on the fact that I have here considered

propagation along a straight line only, just as if the air were confined in a very

narrow cylindrical tube. From this one would be inclined to think that in free air

the propagation ought to follow altogether different laws. At any rate it is clear

that the disturbances, spreading out in every direction ought to decrease considerably

faster than in the case of a tube. But as far as the nature of the sound disturbance

is concerned and in particular the velocity with which it is transmitted to distant

points it appears certain that the latter will be the same in free air as in air enclosed

in a tube. For since sound like light travels in straight lines, which we can call sound
rays, the transmission along each of these straight lines ought to follow the same
rules which I have just disclosed, with the single difference that the disturbance

becomes more feeble the greater the distance of travel. However it is much to be
wished that one were in a condition to solve the problem of transmission in free

air.

42) In the second place there always remains the great difficulty that sound
travels effectively a greater distance in a given time than the theory indicates. I

now recognize that the later displacements cannot be the cause, as I had previously
thought. But it is really essential to compare the case of experience with that to
which the theory is restricted. Without pretending that propagation in free air can
cause the difference in question it is necessary to remember than our calculation
assumes that the disturbances are infinitely small, which would produce sounds too
weak for one to be able to observe the distance of their propagation in one second.
Hence, since the sounds which are employed in experiments are produced by very
powerful disturbances, it is very probable that in the principal equation in para.
17, which is

it is not permitted to neglect that term {dyidxf as I have done in the preceding
calculations. Perhaps it is here that one must look for the solution of the difficult^
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43) So, although thts important discovery is real!} owing to M de Lagrange,

I flatter myself that this Memoir is not lacking m very interesting research results

For, leaving aside the fact that my analysis is very simple, I have introduced the

free use of discontinuous functions, objected to by many great mathematicians, but

a usage which is absolutely necessary every time it is a question offinding by integration

functions of two or more vanables and when one requires a general solution After

that, although the solution is analogous to that of the vibrating string, which I have

given previously, I have here determined with more exactness the arbitrary functions

by conditions appropnate to the nature of the problem Moreover, my solution when
applied to strings, is more general, since m the initial state one can give to the stnng

not only any arbitrary configuration but also give to every element of it an initial

arbitrary motion This I had not done in my earlier memoir, nor have others who
have treated the same subject Finally I believe that the explanation of the paradox,

that the displacements caused by the propagation ofthe sound are in nature altogether

difTerent from the initial disturbances, furnishes very considerable clarification of

this intricate problem
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Discoveries in the Theory of Sound

ERNST FLORENS FRIEDRICH CHLADNI

Ernst Florens Friedrich Chladni (1756-1827), a German musician and scientist,

was first trained in law at the University of Leipzig, but soon turned to physics.

Through his interest in music his attention was turned to the need for understanding

the nature of the vibration of solid bodies which give rise to sound. He made many
experiments on the vibrations of plates and showed how these could be made visible

by sprinkling sand over the vibrating surface. The sand tends to gather along the

nodal lines where there is no motion. The figures so formed have long been
known as Chladni figures. We present here a translation of extracts from his famous
book on discoveries in the theory of sound (Entdeckungen fiber die Theorie des
Klanges) published in 1787, one of the benchmarks of acoustics.

155



Discoveries in the Theory of Sound

ERNST FLORENS FRIEDRICH CHLADNI

Translated by R Bruce Lindsay from
Entdeckungen iiber die Theorie des Klanges (Wittenberg) 1787

Introduction

The elastic vibrations of strings and rods in which we must pay attention to

indnidual curved lines only, have been calculated by so many investigators so accurately

that there does not seem to be much left to say about them On the other hand,

the real nature of the sounds of bodies in which simultaneous elastic bending of

whole surfaces in several dimensions must be taken into consideration, is still concealed

m utter darkness, since neither calculations which agree with experiment nor correct

observations on these matters are available I have succeeded in discovering a means

of rendering every possible kind of sound from such bodies not only audible but

also visible Hence I hope through the publication of my observations to provide

correct hypotheses for a more precise investigation of this still much undercultivated

part of mechanics I am confident that the incompleteness of my remarks vnll be

forgiven by all who know from their own expcnence how many difficulties confront

the person who vs ants to embark on the hitherto untrod paths of nature on everj

step of the vsaj

Every sounding body can give off different tones and for each of these assumes

a different kind of vibrating motion Because of the bending caused thereby the

surface or shape of the body is either intersected by one, two, three, or more lines,

or perhaps in some cases b> none at all TTic places where the snakehke osciilauon

lines intersect the surface were called by Sauveur, de la Hire, and others vibration

nodes Tliey remain at rest, whereas the remaining parts of the sounding body move,

and one can touch the bod) at such places or otherwise apply damping there vsithout

thereby stopping the sound The latter happens quickly, however, when one touches

a part of the bod) between vibration nodes or otherwise applies damping to such

a region

It is well known that m the case of the fundamental of a sinng there are no

nodes [Editor’s note save at the fixed ends] For the higher tones, which we call

harmonics, hov^ever, there are 1, 2, 3, , nodes If wc refer to the fundamental



as 1 (first harmonic), the higher tones are given the numbers 2, 3, . . .
(second,

third, . . . harmonics). ‘ Every arbitrary harmonic tone of a string can be readily pro-

duced if one touches a nodal point and at the same time bows a vibrating part

with a violin bow or uses some other means to set it in motion. Such tones are

excellently executed on the marine trumpet. I have heard cello players produce

them with good effect in many cases. For example on the “d” and “a” strings on

the cello many pure harmonic tones can be produced with unusual intensity and

indeed just as successfully as when produced in the usual fashion, so that many

tones in the octave still sound very pleasant from the same string.
^

In elastic rods and metal plates and also for rings, disks, and bells and similar

sounding bodies the relations of the different tones of the same body to each other

as well as the corresponding tones of different bodies differ very much from those

taking place in strings. For most such bodies it is not possible to elicit by striking

them all tones with sufficient precision. For the investigation of these it is better

to strike the body at a right angle with a violin bow which has been rubbed with

resin of some kind. In this way definite and controlled tones can be produced. Even

wooden rods, caskets, and shells can be made to give off long continued sounds.®

All places on the sounding body where the surface is intersected by the snakelike

curved lines, can be made visible, if the surface is flat, when one before or during

the stroking sprinkles some sand on it. The sand is thrown off from the vibrating

portions of the surface, often with considerable violence, whereas it remains at rest

on the places where there is no motion.

is also well known that horns, trumpets, and open pipes give the same series of harmonics.
For a closed pipe, however, the corresponding numbers are the odd integers.

“In Sulzer’s theory of the fine arts in the section on sound it is maintained incorrectly that
the fourth harmonic of e is the highest usable tone. The author of this article bases his statement
on Euler’s Tentamen Novae Theoriae Musicae, Chap. 1, para. 13. However, he either did not
read the context or he did not at all understand it. For Euler did not himself characterize
the fourth harmonic of e, but rather the fifth harmonic of e as the audible tone of highest
pitch. Following investigations of sounding bodies, I am inclined to believe that the middle
of the fourth harrnonic of e is the limit of usable sound, whereas approximately the fifth
harmonic of e or f is the limit of the tones that can be discriminated.

^The stroking of bars, bells, and such like sounding bodies with the violin bow is no discovery
of mine. For the so-called violin harmonica is an instrument that has been known for a long
time, and knowledge of which has been provided several years ago by Schroter, Senal, and
others. Also the Abbot Mazzocchi constructed an instrument similar to the harmonica, consisting
of metal bells which were stroked with a violin bow. A reference to this is to be found in

17R9 /

library of music, p. 321 and in his musical almanac of
i (p. 33). So far as I know, however, no one has used the violin bow for the investigation
ot such sounding bodies, an investigation which cannot be conveniently carried out in any
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Since m the sound emission of bars and flat metal plates the vibrating motion
15 far simpler than in the case of bells and curved disks, it is appropnaie for the

greater clarity of what follows to say something about it at first There are six cases

in which a rod can produce definite sequences of tones and in each of these cases

can descnbe curved lines

1) If one end is rigidly fastened and the other free

2) If one end is lightly fixed and the other is free

3) If both ends are free

4) If both ends are lightly fixed

5) If both ends are rigidly fixed

6) If one end is rigidly fixed and the other lightly fixed

What I call ngidly fixed here is what Euler called infixus, assuming thereby that

such an end is fastened into a wall so that it cannot move at all For greater convenience

m experimental investigation one can equally well tighten one end of the bar m
a bench vise^ What I here term lightly fixed was called by ’E.vAtr simpltcxter jixus

By this he meant that the end of the rod is fixed to an immovable pivot in such

a way that it is free to rotate about the latter

The progressions of tones which are produced by the same rod or plate in all

these SIX cases and the patterns of the curved lines formed thereby have been calculated

by L Euler in the Acts of the Impenal Academy of Sciences m St Petersburg for

1779 ® He also worked out the first, third, fourth, and sixth cases in his Melhodus

tnveniendi curvas ® However, m the last mentioned work there are some erroneous

assertions, which were competently disproved by Count Giordano Kiccati, who
moreover calculated the oscillations of freely vibrating cylinders with the greatest

precision ^ The first one who investigated with success the oscillations of elastic plates

and rods was Daniel Bernoulli Many writing by him concerning this subject appeared

in the Commentaries and New Commentaries of the Petersburg Academy of Saences

In the first case, m which one end of the rod is immovable and the other end

IS free, in the lowest and simplest mode of sound, the line of the rod eb [Figure

l] IS never intersected by the curved vibration line ac, but touches it only at the

fixed end a This vibration mode can be made to appear very readily in a rod or

nail which is ngidly fastened to a wall or in a vise, if one strokes or sinkes it at

It rnusi be remarked here that if the direction of the stroking is parallel to the mouth of

the vise the tones are deeper than when one strokes the bar at right angles to the mouth

of the vise The reason is that wiih the stroking parallel to the mouth the lower end of the

rod does not stand fast enough against the vise Here the difference amounts to a whole

tone m the case of the simpler sounds but for the more complicated sounds ii is less

*Iniestigattomotuum quilnis lammae et xnrgae elasticae contremueunt autorc L Eulero in Actis Acad

Scient Imp Petrop pro anno 1779, P I p 1U3 sequ

*\Irlhoduj tnitntfndt asn'os maxtmt ntmmtve propnelate gaudentes, solutto probUmatu isopermetna

lattxsmo sensu accfpti autore L Eulero, additam 1 de curvis elasticis, p 282, sequ

^In the arijclc Delle vtbravom sonort dn abndn, which appeared in ihc first volume of the

Memone di matematica efisua della soaela Ilaltana Verona, 1782

158



a point not too close to the fixed end. This sound or vibration mode is utilized

in the so-called harmonica with iron nails or the violine harmonica which consists

of iron brads, which are fastened to the bridge of a resonance back and are stroked

with a violin bow. In addition to the first mentioned vibration mode, several others

can be produced in the same rod. In these the curved vibration line intersects the

equilibrium position of the rod in 1, 2, 3, or more points. In order to produce

any particular one of these modes, hold the rod at one of the intersection points

and stroke or strike it in the middle of a vibrating segment. For example, the mode
in which the curved vibration line ace intersects ah in a single point d [Figure 2]

may be produced by stroking or striking the rod around c while keeping d from

moving. Since the greater the number of intersections that the curved line makes

with the horizontal line, the more closely the outermost vibration node approaches

the end of the rod, one can hardly fail to bring out any one of the whole series

of tones produced by the same rod in this way, by bringing the finger which touches

the rod even closer to one end and stroking the rod even closer to the fixed end.

At the same time the number of vibration nodes gets even greater. For the mode
of vibration in which one node exists [Figure 2] the tone will be nearly two octaves

and a fifth above that for the simplest mode [Figure l]. If there are two nodes,

the pitch is approximately an octave plus a fifth above the previous one; if there

are three nodes, the difference between that and the one next lower is about an
octave. If there are four nodes, the tone is about a large sixth higher, etc. Hence
if one takes the contra G as the tone corresponding to the simplest mode, the higher
notes appear at follows:

No. of nodes 0 1 2 3 4 5 6

Tones C gs— d d— h- f h

With the exception of the fundamental tone, the pitches of these vary approximately
as the squares of 3, 5, 7, etc.

^

oth
prevails for the vibration modes of forks and

Tn a handirn
both ends are free, and in which the middle is kept motionless

andle or fastened in a vise. Without regarding how both halves share their
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Mbralions ve can treat each half as a rod m itself with one end motionless the

same senes of tones results

In ihe second case m which one end is lightly fastened with the other end free,

the vibration nodes wall be found at almost the same places as in the first cases,

but the shape of the cuned lines is somewhat different This can be seen by comparing

Figure 3 (the second case) with Figure 2 For the lowest tone in this case there

IS still one node For the next higher mode there are two nodes, as shown m Figure

4 In order to produce the sounds corresponding to these modes, hold the rod between

two fingers at a node, rest one end not too ngidly on a table or a resonating platform

and stroke the rod in the middle of an oscillating segment If the fundamental of

the rod in the first case is siiU taken as C, the upper tones for the second cases

under discussion \vill be as follows (their pitches varying approximately as the squares

of5, 9, 13. 17, )

No of nodes 12 3 4

Tones d h~ h+ gs ds+ a

Figure 3

Figure 4

In the third case, in which both ends arc free, the fundamental has two nodes,

as shown m Figure 5 The next higher mode has three, as shown in Figure 6, and

50 on

Figure 5

Figure 6
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In his Methodic inveniendi curvas .

.

Euler denied the possibility of the existence

of modes for which there are an odd number of nodes. He assumed that in such

cases a rotational motion would take place {motus rotatorim) about the middle of the

rod. After more careful investigations, however, he finally admitted the possibility

of such an odd number of nodes (in the Actis of 1779). Moreover Count Giordano

Riccati, in the article already mentioned, Delle vibrazioni sonore dei cilindri, showed

clearly that the modes with an odd number of nodes are just as possible as those

with an even number. This I had myself already established before I was acquainted

with the work of Euler and Riccati on this subject. Actually Riccati has, in his work

on the modes of the freely suspended cylinder as well as of the cylinder in general,

added much new material to Euler’s results.

In order to obtain every possible mode of a rod free at both ends, lay the rod

at two vibration nodes lightly on some surface or on a piece of cloth, which can

be moved at will, and stroke or strike the rod between two nodes.

[Editor’s note: From this point on Chladni proceeds to discuss in turn and in

detail the other cases of rods clamped or free as indicated in the preceding list.

It is unnecessary to follow him here as the results are only detailed variations of

what he has already said. We therefore proceed to what he has to say about the

vibrations of plates.]

In all the cases of vibration modes so far discussed, only elastic curvatures of

single lines entered into consideration. The working out of such modes for the case

in which whole surfaces in several dimensions are subjected to elastic curvature is

fraught with much greater difficulty. For such cases the detailed calculations have

not been made, nor have usable attempts been made in this direction. The few things

that have been said about such vibrations do not for the great part agree with experi-

ence. Since in my own investigation here I have had to enter regions hitherto untrod,

I deserve hopefully some consideration if I err.

For the distinct production of such vibration modes it is essential to touch
with the finger or otherwise hold those places on the vibrating body which are
to stay at rest in the particular mode required and then to stroke the edge, at
a suitable place with a violin bow held at a right angle to the edge. Moreover,
if it is desired to make the division of the body into its various vibrating parts
visible, one should strew sand on the horizontal surfaces of the body. This will
be thrown off from the vigorously vibrating points and will collect along the nodal
lines. By merely striking the body it is not in general possible to hear many such
individual modal tones without the intermixture ofothers. Moreover it is not possible
in general in this way to make the individual vibrations visible by the use of sand.
For the latter purpose it is essential to employ stroking with a violin bow. If the
edge is too sharp it must be made more blunt by means of a file. Otherwise the
hairs of the violin bow will suffer damage. It proves most effective to hold the
vibrating body at a place where two nodal lines intersect. In this way the excitation
ot the neighboring parts of the body is less hindered. In this way not only is
the emitted sound clearer, but the visible pattern will be more distinct. Many such
varieties of vibrating motion can be obtained in this way without much trouble
i-or others, however, much patience is required and continual practice in this sort
ot investigation is necessary. People must therefore not ascribe to me false assertions
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Figure 10.

In the case of metal or glass strips in rectangular form besides the vibration

modes already calculated by others, there are still an infinite number of possible

ones which have never been investigated by anyone.

[Editor’s note: In the footnote following this paragraph the author calls attention

to the vibration of a square plate as shown in Figure 11, where nodal straight

lines like b are possible. He points out that under certain circumstances these nodal

lines become curved as in Figure 12 or Figure 13.]

Figure 12.
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the oscillating motion. As a matter of fact the sound of the fundamental comes

out more clearly when one does keep the disk motionless along the nodal lines.

Such damping along the nodal lines often damps down the unpleasant discordances

of the higher modes. The division of the disk into parts as shown in Figure 14

can be made visible with sand. When water is placed in a round drinking glass or

similar vessel and the sides are bowed at place corresponding to p, n, m,f in Figure

14, the water is disturbed in striking fashion and is indeed driven toward the center

of the surface so that its appearance is something like that shown in Figure 15.

Here the segments qt, tr, and rg tend to stay at rest and the disturbance is strongest

toward the center. The result of the investigation will appear even better if one
places the vibrating vessel in a much larger vessel and flows water into both to the

same height. In this case from the four vibrating segments streams of water will

be forced out and in. It is understood of course that one must fasten or press firmly

the inner vessel against the floor of the outer vessel, so that it will not be moved
as a whole in the bowing process.
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Copynght © 1962 ^ the New York Academy ofMedtane

Reprinted from “A Treatise on the Diseases ofthe Chest,’ John Forbes, M D (Hafner Publish

mg Company), 284-288 (1962)

Invention of the Stethoscope

RENE THEOPHILE HYACINTHE LAENNEC

Rene Theophile Hyaanthe Laennec (1781-1826) was a French physician of the

Napoleonic era and the founder of chest medicine In connection with his study

of diseases of the chest and heart he was led to the invention of the stethoscope

and thus introduced an application of acoustics to medicine of far reaching signifi

cance It was a forerunner of much modern research on the use of acoustics both

for medical diagnosis and therapy

The following extract is taken from Laennec’s celebrated treatise ‘Traite de

la auscultation mediate et les maladies des pommons et du coeur" (1804) in English

translation by Dr John Forbes, M D
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In these cases some physicians have attempted to

gain further information by the application of the

ear to the precordial region ; and, doubtless, such

a proceeding will encrease the certainty of the diag-

nosis. Even this, however, is very insufficient
; and

there are, besides, many reasons why it cannot he

followed, as a general guide, in practice. Neverthe-

less, I had been in the habit of using this method

for a long time, in obscure cases, and where it was

practicable ; and it was the employment of it which

led me to the discovery of one much better.

In 1816, I was consulted by a young woman

labouring under general symptoms of diseased heart,

and in whose case percussion and the application of

the hand were of little avail on account of the great

degree of fatness. The other method just men-

tioned being rendered inadmissible by the age and

sex of the patient, I happened to recollect a simple

and well-known fact in acoustics, and fancied, at the

same time, that it might he turned to some use on

the present occasion. The fact I allude to is the

augmented impression of sound when conveyed

through certain solid bodies,—as when we hear the

scratch of a pin at one end of a piece of wood, on

applying our ear to the other. Immediately, on this

P^SS^stion, I rolled a quire of paper into a sort of
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cylinder and applied one end of it to the region of

tie heart and tho other to my ear, and was not a

little surprised and pleased, to find that I could

thetehy perceive the action pf the heart in a manner

much more clear and distinct than I had ever been

able to do by the immediate application of the ear.

Trom this moment I imagined that the circumstance

misht furnish means for enabling us to ascertain the

character, not only of the action of the heart, but of

every species of sound produced by the motion of

ail the thoracic viscera. With this conviction, I

forthwith commenced at the Hospital Necker a

series of observations, which has been continued to

the present time. The result has been, that I have

leen enabled to discover a set of new signs of dis-

eases of tho chest, for the most part certain, simple,

and prominent, and calculated, perhaps, to render

the diagnosis of the diseases of the lungs, heart and

pleura, as decided and circumstantial, as the indica-

tions furnished to the surgeon by the introduction

of the finger or sound, in the complaints wherein

these are used.

In prosecuting my enquiries I made trial of in-

struments of various composition and construction.

—

The general result has been that bodies of a mode-

rate density, such ns paper, wood, or indian cane,

arc best suited for the conveyance of the sound, and

consequently for my purpose. This result is per-

haps contrary to a law of physics ;— it has, never-

theless, appeared to pic one which is invariable.

I shall now describe the instrument which I use

present, and which has appeared to me preferable
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%o all others. It consists simply of a cylinder of

wood, perforated in its centre longitudinally, ly a

bore three lines in diameter, and formed so as to

come apart in the middle, for the benefit of being

more easily carried. One extremity ef the cylinder

is hollowed out into the form of a funnel to tbe

depth of an inch and half, which cavity can be ob-

literated at pleasure by a piece of wood so con-

structed as to fit it exactly, with the exception of

the central hore whic^h is continued through it, so

as to render the instrument in all cases, a pervious

tube. The complete instrument,—that is, with tbe

funnel-shaped plug infixed,—is used in exploring

the signs obtained through the medium of the voice

and the action of the heart; the other modification,

or with the stopper removed, is for examining the

sounds communicated by respiration. (See Plate

VIII.) This instrument I commonly designate

simply the Cylinder, sometimes tbe Stethoscope.

In speaking of the different modes of exploration

I shall notice the particular positions of the patient,

and also of the physician, most favourable to correct

observation. At present I shall only observe that,

on all occasions, the cylinder should be held in the

manner of a pen, and that the hand of the observer

should he placed very close to the body of the

patient to insure the correct application of the

instrument.

The end of the instrument which is applied to the

patient,-—that, namely, which contains the stopper

or plug—ought to he slightly concave to insure its

greater stability in application; and when there is
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Memoir on the Theory of Sound

SIMEON DENIS POISSON

Simeon Denis Poisson (1781-1840), French mathematician, whose name in]]

forever be associated with the well-known equation in potential theory, was interes

ted in the application of mathematics to almost every branch of physics As a

relatively young man he turned his attention to the theory of sound and showed

how to solve the wave equation under conditions that had baffled earlier workers

The following extract constitutes the introduction to his memoir of 1807 and

indicates his appreciation of the outstanding problems of acoustics as well as his

ideas as to appropriate methods for solving them His discussion of the question

of the velocity of sound in air is of particular interest
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Translated by R. Bruce Lindsay from

Journal de VEcole Polytechnique, 7
,
319 ( 1808 )

We have known for a long time about the vibrations of air set in motion by

a sounding body. But M. Lagrange is the first who has subjected these motions to

mathematical analysis, and who has deduced the principal results of the theory of

sound. His beautiful researches on this subject are known so well to all mathematicians

that it would be useless to repeat them here. At the time when they were published,

the calculus of partial differentials, on which the solution of questions of this kind

depends, was scarcely known. We were not in agreement on the matter of the use

of discontinuous functions, which however is indispensable to employ to represent

the state of the air at the beginning of its motion. Fortunately progress in analysis

has caused these difficulties to disappear. We are far from thinking that we have

surmounted all difficulties. Our aim in this memoir is to demonstrate several theorems

which in our opinion ought to be of equal interest to physicists and mathematicians.

These theorems are independent of the particular movements of the air molecules

and of the cause which has produced the sound. They relate to the propagation

and reflection of sound, which we have considered from a more general point of

view than has hitherto been the case. In discussing air in three dimensions, Lagrange
and Euler have assumed that the velocity of the air molecules depends only on the

distance from the origin of the motion, or in other words that the intensity of the

sound is the same at all points of the sound wave, where by sound wave they understand
the part of the air in motion at each instant. [Editor’s note: The author here seems
to refer to what later came to be called the wave /rent.] In this particular case the
equation which includes the theory of sound can be integrated in closed form, and
the problem has a solution which leaves nothing to be desired. But in the general
case in which the intensity of the sound varies in an arbitrary manner from one
point to the next on the wave front, the equation for sound propagation is not
integrable in closed form. However, we shall demonstrate by simple means and without
recourse to series expansion that in the general case the velocity of sound is still

the same along the different sound rays, which amounts to saying that the wave

173



front always preser\es a spherical form with center at the point ofonginal disturbance

The law in accordance with which the sound intensity vanes from point to point

on the same wave front depends on the cause which produces the sound If jt baj

been produced by compressing or dilating a portion of the mass of air, then ce

establishing at once communication between this portion of air and the entire mass

It is easy to prove that the sound intensity will be the same at all points of the wave
front, at any rate when the wave has traveled a long way from the point of onguial

disturbance For, let us decompose the portion of air that is compressed or dilated

into an infinite number of infinitely small parts Each of these particles if it alone

were compressed or dilated would produce a wave of which this particle would be
the center and which would spread itself equally in every direction But m accordatice

with the principle of Daniel Bernoulli on the coexistence of small osallations, all these

waves can exist at the same time without interfenng with each other m any wgy

Besides, it is clear that when the rays of all the waves have become very great m
comparison with the dimensions of the portion of air which has been compressed

or dilated, all the waves will have combined into a single one From this one Can

conclude that whatever the shape of the portion of air which has been compressed

may be or whatever may be the law of density distribution in the mtenor of this

portion of air, the intensity of sound will be the same at all points of the w^\e

front But when the portion of air which is compressed or dilated receives at the

same time velocities which can be different in size and direction for all the molecules

composing it, one can no longer say how a disturbance of this kind will spread through

the mass of fluid Thus, for example, the portion of air at the open end of an

instrument like a speaking trumpet is at the same time compressed and set m motion

by the vibrations of the mtenor air Expenencc proves that the intensity of the sound

IS greatest m front of the open end of the trumpet along the direction of the aicis,

but what the ratio is between this intensity and that m another direction at the same

distance from the source of the disturbance, is a problem we have not yet solved

It 1$ not indeed the same with the intensity of sound on the same sound ray, that

is to say, on any given straight line passing through the center of the original disiur

iui.WKe Aic; fhe Abe av .TOAlsfitVj!

on the same ray are m inverse ratio to the distances from the center of motibn,

when such distances are very large with respect to the dimensions of the portion

of air initially disturbed If one then considers the sound due to the impact of a

fluid against a fixed obstacle, in this case the organ of heanng, and if we suppose

this impact is proportional to the square of the fluid velocity, the result will be that

the sound intensity along a given sound ray should decrease proportionally to the

square of the distance from the sounding body, at least when this distance has become

sufficiently great The angle which the direction of the velocity of the molecule of

air makes with the sound ray which passes through this molecule continually decreases

in proportion w ith the length of the ray , so that eventually this angle may be regarded

as zero But, it is natural for us to think that u is the direction of the velocity of

the molecules of air which enables us to determine the direction of the sound, since

' It is the magnitude of the velocity of the molecules which determines the sound

intensity This then explains vshy the direction of the sound indicates to us the pUce

where it ongmated
Wc have obtained these results relative to the direction and to the attenuation
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of the velocity of the air molecules in expanding the integral of the sound equation

into a series of decreasing powers of the distance from the center of the disturbance.

After having found this series, we have transformed it into a definite integral, which

led us to the discovery of a very extensive class of particular integrals in finite form,

satisfying the sound equation. Each of these integrals corresponds to a particular

hypothesis as to the nature of the original disturbance. This has the advantage of

showing how this disturbance, produced in a very small portion of air can expand

into the entire mass of air in such a way that the velocity of the molecules will not

be the same in every direction. One can verify for each of these that in spite of

this difference in molecular velocity, the velocity of sound is always the same along

all sound rays, as we have demonstrated in general.

When the mass of air is terminated by a surface whose position is rigidly fixed,

experience indicates that the sound on striking the surface is reflected by it. Lagrange

has considered this reflection of sound in an infinitely narrow cylindrical channel.

But no one yet has determined the reflection in a satisfactory manner when all three

dimensions of the air are considered and when the reflecting surface is struck at

all possible angles by the sound rays. When this surface is a plane of unlimited

extent we shall show that the reflection of sound takes place like that of light on

a plane mirror; that is to say the reflection is the same in direction and intensity

as if the original disturbance were in back of the plane at a distance equal to that

of the actual disturbance in front of the plane and in such a way that the straight

line joining the two centers is perpendicular to the plane. It results from this that

each particle of air is set in motion at two different times. Each time it describes

a short straight line, the first time on the direct ray and the second time on the

reflected ray. These two motions are separated by an interval of time which depends
on the distance from the molecule to the fixed plane. When the molecule is very

close to the plane the two motions coincide in part. One commences about at the

end of the other. Consequently this molecule describes a small curve, the nature
of which depends on that of the initial disturbance. We can suppose the disturbance
such that the curves of which we are speaking have several points of inflection.

It is the case in which the molecules of air make several comings and goings on
the direct and reflected rays. But whatever these curves may be, the molecules which
are not in contact with the plane are able to approach indefinitely close to it, but
never quite to reach it and the lines which they describe will always be terminated
by two straight lines, the one directed along the direct ray and the other along the
reflected ray. On the other hand, the molecules which are in contact with the plane
never leave it and their motion always takes place in the plane itself.

In the theory of the emission of light it suffices to know how the light is reflected
from a plane in order to obtain the reflection from any arbitrary surface, because
one can consider each light ray in isolation from the rest and substitute for the
reflecting surface its tangent plane at the point where the direct ray is incident.
It IS thus only a simple matter of geometry to determine the intensity of the reflected
light at any given point, or, what amounts to the same thing, the number of reflected
rays which pass through this point. But when one wishes to know how the waves
produced in an elastic fluid or in an incompressible fluid are reflected by a surface
which bounds the fluid, it is necessary to consider the reflection of the entire wave
and to determine the shape and intensity of the reflected wave. It is this which
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makes the problem difficult and the problem can be solved only for each indui^ugi
reflecting surface b) itself

If the sound originates from one of the foci of an ellipsoid of revolution and
is to be reflected from its surface, we demonstrate ngorously that the reflected sound
forms a wave whose center is at the other focus of the ellipsoid

The direct and reflected sound rays which come together at the same pomi
of the reflecting surface make equal angles with the normal at this point Thus one
can say that the angle of incidence is equal to the angle of reflection, just as m
the reflection of light, though the latter does not have the same cause as the foriner

[Editor’s note Poisson was here evidently adhering to the corpuscular theory of
light

]
Furthermore, we shall deduce the intensity of the reflected sound in terms

of that of the incident sound Calculation shows that the ratio of these intensities

for two sound rays which coincide at the same point on the surface is the same
as that which would be observed in the case of light under similar arcumsiances

On a given sound ray the intensity of the reflected sound increases as one approaches

the second focus of the ellipsoid in such a way that for points close to the focus

the intensity of the reflected sound is much greater than that of the direct sound

Tins result is confirmed by experience For we know that if one speaks in a low

voice at one focus of an elliptical vault, the voice can be heard distinctly at the other

focus, whereas it disappears at every other point As for the veloaty of the reflected

sound, It is the same as that of the incident sound It follows from this that sound

arrives at a given point by a broken line m the same time that the direct sound

would take to traverse a straight line equal m length to the broken line

That which is demonstrated in an ellipsoid of revolution with arbitrary distance

between the foci, holds equally for a paraboloid, if we assume that the distance in

question becomes infinite The sound produced at the focus of a paraboloid oF revolu

non will then be reflected by the surface of the paraboloid parallel to its axis and

conversely

We have also considered the sound originating at one of the foci of a hyperboloid

of revolution and reflected by either the concave or convex surface This reflection

IS found to possess properties analogous to those found in the reflection fronj an

ellipsoidal surface Finally, if one reduces the air to two dimensions, one finds that

the sound produced at one focus of any conic section is reflected to the other focus

There exists an appreciable difference between the velocity of sound, calculated

by theory, and that foundm expenence All physicists who have measured this velciaiy

have found a value greater than that calculated The members of the Academy of

Sciences have found that sound in air travels 337 meters per second But if one

uses the given values of the elastiaty and density of air, resulting from the i>)ost

recent measurements, one finds that the veloaty of sound, calculated according to

theory is equal only to 282 meters per second, a quantity loo small by a sixth part

W'c shall not recall here all the hypotheses which have been advanced to produce

agreement between theory and observation A single one of these alone ments the

attention of phjsicists

Lagrange has already remarked (Memoirs of the Tunn Academy, volume 2)

that we could deduce by analjsis the observed value of the veloaty of sound by

assuming that in the compression of air, its elasticity increases more rapidly than
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iensity. But he himself observes that this hypothesis is not really tenable, since

•iotte and all those who have repeated his experiments found that the density

lir increases in the same proportion as the weight which compresses it as long

he temperature remains constant. The reconciliation of this law of Mariotte

itor’s note: what is called Mariotte’s law on the continent of Europe is usually

;rred to as Boyle’s law in English speaking countries] with the increase in elasticity

landed by the velocity of sound, has been carried out by Laplace, who takes

)unt of the heat accompanying the compression of the air. It is now well known,

;ed, that when one compresses a given volume of any gas one releases a quantity

leat sufficient to ignite a combustible body but which dissipates itself rapidly

he form of radiation or otherwise. But with density held constant the elasticity

he air increases or diminishes with the increase or decrease in temperature. The

that density is proportional to pressure supposes then that one has left the compres-

air time enough to lose the increase in heat produced by the compression and

t at the very beginning the elasticity ought to increase faster than the density,

are lacking direct experiments to determine the quantity of heat released in

compression of air. Besides, in the production of sound each layer of air is

ipressed between two other layers of air, and it could well happen that in compres-

1 of this kind the heat released would not be the same as that released when
compress a volume of air in a closed vessel. It is therefore impossible to determine

iori the increase in the elasticity due to the development of heat which accompanies

propagation of sound. In any case this increase is nonetheless incontestable and
: is permitted to doubt only what influence it has on the velocity of sound. Is

difference between calculation and observation owing to this cause alone? It

ms to us that this conclusion will be justified if one can find no other objection

he analytical method by which the velocity of sound is calculated, and if at the

le time one pays attention in the calculation to all the physical circumstances
ch could have an influence on the result. By comparing then the calculated and
erved values of the velocity of sound, one can determine the quantity of heat
;ased in the production of the sound and used to increase the elasticity of the
The result of the comparison of the two velocities will be found in the course
his memoir.
In the calculation leading to the deduction of the velocity of sound, we consider
velocity of the air molecules as very small and neglect the square and higher
vers of this velocity. Euler thought that the difference between the theoretical
Lie of the sound velocity and the observed value was due to this circumstance.
:ording to him the velocity of the air molecules producing the sound is not small
)ugh so that one is justified in neglecting its square without making an error,
lecially when the sound intensity is very great, as is the case when one determines
velocity by observation. To overcome this difficulty we have considered the prop-
ition of sound along a straight line of air and we have not neglected any term
the equation of motion. Then this equation is no longer linear in form. It is
longer integrable in closed form. But it admits a particular integral which includes
arbitrary function and which suffices to determine the motion of the air when
assume that the velocity of the molecules, while not very small, is only smaller
n that of sound. With the use of this integral one can rigorously demonstrate
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oneself that a variation in temperature from one layer to another of the atmosphere

will not appreciably alter this result, which indeed appears to agree with experience.

In general it is easy to obtain definite integrals which satisfy a given partial

differential equation, but these integrals are often only a simple game of analysis,

which teach us nothing as to the nature of the function we wish to determine and

hardly advance the solution of the problem proposed for solution. Those of which

Laplace has shown the utility in the solution of partial differendal equations of the

second order in three variables (Memoirs of the Academy for 1779) are not in the

same class. On the contrary it is integrals of this form which have given us the

velocity and intensity of sound when the density and the temperature of the air

are variable. Laplace has already used them to determine the velocity of sound in

the case in which one dimension of the air is cut out and where one supposes that

the intensity depends only on the distance to the center of the original disturbance.

Many other questions, like the transmission of motion in a heavy chain, the propagation

of sound in a tube whose diameter is not constant, the vibrations of strings of

nonuniform thickness, all may be solved with the use of definite integrals. To give

an example, we have solved at the end of this memoir the problem of the heavy

chain, homogeneous and of equal thickness throughout.

[Editor’s note: The above constitutes the introducdon to the Memoir of 1807.

It provides in clear fashion the program the author has set for himself. The remainder
of the Memoir (some 60 pages) is devoted to the appropriate mathematical analysis

to support the author’s claims in the introduction. Thus Poisson derives the wave
equation for sound waves in a fluid by introducing the velocity potential and the

condensation, writing the equation of motion in Newtonian fashion as well as the
equation of continuity for fluids. Eliminadon of the condensation between these two
equations yields the familiar wave equation. All this is essentially what the modern
theoretical acoustical sciendst does, and it is of interest to realize how old the method
was even when Rayleigh repeated it in his famous Theory of Sound in 1877. One
can only marvel at the mathematical genius of Poisson as he goes on to secure special
solutions for different kinds of wave fronts and also tackles the problem of finite
amplitude waves. Poisson was much exercised over the difficult problem posed by
the velocity of sound. Though he was clearly intrigued by the suggestion of Laplace
to resolve the difficulty he was still some nine years away from Laplace’s final
breakthrough in terms of the specific heats of gases.]
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Translated by R. Bruce Lindsay from

Annates de Chimie et de Physique, III (1816)

In the second book of his Principia Mathematica Newton has given the expression

for the velocity of sound. The manner in which he obtained it is one of the most

remarkable exhibitions of his genius. The sound velocity in air resulting from this

expression is smaller by about one-sixth than that resulting from experimental

measurements made with great care by the members of the French Academy in

1738. Newton, already aware of the discrepancy through the measurements made

in his own time, tried to explain it. But the modern discoveries on the nature of

atmospheric air have destroyed this explanation and all others which various

mathematicians have proposed. Fortunately these discoveries present us with a

phenomenon which appears to me to be the true cause of the excess of the observed

velocity of sound in air over the calculated value. This phenomenon is the heat

which the air develops through its compression. When its temperature is raised,

the pressure remaining constant, only a part of the caloric which it receives is employed
in producing this rise; the rest, which becomes latent, serves to increase its volume.

It is this heat which is released when by compression one reduces the expanded
air to its original volume. The heat disengaged by the close approach of two neighbor-

ing molecules of a vibrating aerial fiber then increases their temperature, and this

diffuses itself little by little through the air to the surrounding bodies. But since

this diffusion takes place very slowly relative to the velocity of the vibrations, we
may suppose without sensible error that during the period of a single vibration the

quantity of heat remains the same between two neighboring molecules. Thus these
molecules in approaching each other repel each other the more, in the first place
because, since their temperature is supposed to stay constant, their mutual repulsion
increases in the inverse ratio of their separation, and in the second place because
the latent heat which is developed raises their temperature. Newton took account
of only the first of these two causes of repulsion, but it is clear that the second
cause should increase the velocity of sound since it increases the elasticity of the
air. In including this in the calculation I arrive at the following theorem:

The real velocity of sound is equal to the product of the velocity given by the
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New Experiments on Sound

CHARLES WHEATSTONE

Charles Wheatstone (1802-1875), British physicist, is perhaps best known to stu-

dents of physics for his connection with the so-called Wheatstone bridge for the

measurement of electrical resistance. However, early in his career he became interested

in acoustics, probably because of his work in the making of musical instruments.

As professor of experimental philosophy in King’s College, London, he turned his

attention to a wide variety of problems in sound, light, and electricity. He is usually

credited with the introduction of the term microphone to denote a sensitive receiver

of sound. The following extract is taken from an account of some of Wheatstone’s

early experiments in sound, in which he studied the vibrations of surfaces in somewhat
different fashion from the method employed by Chladni and foreshadowed Faraday’s

later experiments (see the article by Faraday in this volume).
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82 Mr. Wheatstone on Sound. [Aug.

The sensation of sound can be excited by any of these bodies

when they oscillate sufficiently rapidly^ either entire, cr divided

into any number of parts in equilibrium with eacli^ other. The

laws of these subdivisions differ in the various phonics according

to their form and mode of connection or insulation
;
and the

velocities of the oscillations, or degrees of tune, depend on the

form, dimensions, mode of connection, mode of division,^ and

elasticity of the body employed. TLhe points^ of d vision in linear

phonics are called nodes, and the boundaries of the vibrating

parts of elastic surfaces are termed nodal lines. The parts at

which the oscillatory portions have their greatest excursions are

named centres of vibration
;
these are always at the greatest

mean distances from the nodal points or lines.

These mechanical oscillations are not, however, themselves

the immediate'eauses of sound; they are but the agents in pro-

ducing in the bodies themselves, and in other contiguous sub-

stances, isochronous vibrations of certain particles varying in

magnitude according to the degree of tune. I convinced myself

of this important fact by the following simple experiments : I

took a plate of glass capable of vibrating in several different

modes, and covered it witn a layer of water; on causing it to

vibrate by the action of a bow, a beautiful reticulated surface of
vibrating particles commenced at the centres of the vibrating

parts, and increased in dimensions as the excursions were made
larger. When a more acute sound was produced, the centres

consequently became more numerous, and the number of coex-
isting vibrating particles likewise increased, but their magnitudes
proportionably diminished. The sounds of elastic lamin® are
generally supposed to be owing to the entire oscillations of the
simple parts as shown by Chladni, when, by strewing sand over
the sonorous plates, he observed the particles repulsed by the
vibrating parts, accumulate on the nodal lines, and indicate the
bounds of the sensible oscillations. Did no other motions exist
in the plate but these entire oscillations, the water laid on its

surface would, on account of its cohesion to the glass, show no
peculiar phenomena, but the appearances above described clearly
demonstrate that the oscillating parts consist of a number of
vibrating particles of equal magnitudes, the excursions of vyhich
are greatest at the centres of vibration, and gradually become
less as they recede further from it, until they become almost null
at the nodal lines.

lo multiply these surfaces, and to observe whether the mag-
nitudes of these particles vary in different media, in a glass

^ cyhndric term, I superposed three immiscible fluids
of oilterent densities; namely, mercury, water, and oil. Onproducing the sounds corresponding with each mode of division,
1 observed a number of vibrating parts, agreeing witli the sound,and showing siinuar appearances to the plate, formed on thesui faces of each of the fluids; not the least agitation appeared
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g4 Mr. Wheatstone on Sound, [Arc.

When this bent plate is excited by percussion, the particles,

before their disappearance, will assume an apparent rotatory

motion, on account of the force exerted, and its susceptibility ot

continuing the vibrations. Employing a parallelopedal rod, the

appearances of the higher modes of subdivisions are particularly

nW; the entire vibrating parts between the nodes form ellipses,

and the semi-part at the free end, a regular half of the same

figure. It is important to remark, that the crispations ot the

water only appear on the sides in the plane of oscillation j
the

other two sides, on one of which the exciter must be applied, do

not show similar appearances.
^ ^ .

I have also rendered the phonic molecular vibrations visible,

when produced by the longitudinal oscillations of a column of

air; the following were the means employed : I placed the open

end of Ihe head of a flute or flagiolet on the surface of a vessel

of water, and on blowing to produce the sound, I observed

similar crispations to those described above, forming a circle

round the end of the tube, and afterwards appearing to radiate

in right lines
;
on the harmonics of the tube being sounded, the

crispations were correspondently diminished in magnitude.

These phenomena will be more evident if the tube be raised a

little from the surfiice of the liquid and a thin connecting film

be left surrounding it
;
the vibrating particles will then occupy

a greater space, and be more sensible.

The existence of the molecular vibrations being now com-
pletely established, it becomes a critical question, in what
manner the sensible oscillations induce these vibrating particles.

I do not know whether what 1 am now going to adduce will be
admitted as the right explanation, but it is certainly analogous,
so far as the superficial and transversal linear oscillations are

concerned. A flexible surface, covered with a Coat of resinous
varnish, being made to assume any curve, the cohesion of the
varnish will be destroyed in certain parts, and a number ofcracks
wdl be observed more regularly disposed as the force inducing
the curve has been more regularly applied

;
when the original

sible oscillations, and there is no reason to suppose otherwise
than that their vibrations are isochronous with them. To avoid
confusion, I have restricted the word vibrations to the motions
ot “'e moie minute parts, and the term oscillations to those of
the sensible divisions. We may reasonably suppose that the
molecular vibrations pervade the entire substance of a phonic;
their excursions, hnwpvpr fli/i -..11 1

4.K • X • • • .
vv.. UIJIUCIV UlitUUlUlt:,

IW 1,

transmission through linear conductors
; but howeve^

leu, when they are properly directed, they induce the mechaiiN
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gg Mr. Wheatstone oti Sound, [Aug.

elastic plates, this eminent philosopher found the particles not

only repulsed to the nodal lines, hut at the saitie time accumu-

lated in small parcels, on and near Uie centres of vibration

;

these appearances'he presumed to indicate more minute vibra-

tions, which were the causes of the quality of the sounds sub-

sequently he confirmed his opinion, by observing the crispations

of water, or alcohol, on similar plates, and showed that the

same minute vibrations must take place in the transmitting

medium, as they were equally produced in a surface of water,

when the sounding plate was dipped into a mass of this fluid.

These experiments were inserted in Lieber’s History of Natural

Philosophy, 1813.

Rectilineal Transmission of Sound.

As the laws of the communication of the phonic vibrations are

more evident in linear conductors, I shall confine the present

article to a summary of their principal phenomena.
In my first experiments on this subject, I placed a tuning

fork, or a chord extended on a bow, on the extremity of a glass,

or metallic rod, five feet in length, communicating with a sound-

ing board
;
the sound was heard as instantaneously as when the

fork was in immediate contact, and it immediately ceased when
the rod was removed from the sounding board, or the fork from
the rod. From this it is evident that the vibrations, inaudible

in their transmission, being multiplied by meeting with a sono-
rous body, become very sensibly heard. Pursuing my investiga-

tions on this subject, I have discovered means for transmitting,
through rods of much greater lengths and of very inconsiderable
thicknesses, the sounds of all musical instruments dependant on
the vibrations of solid bodies, and of many descriptions of wind
instruments. It is astonishing how all the varieties of tune,
quality, and audibility, and all the combinations ofharmony, are
thus transmitted unimpaired, and again rendered audible by
communication with an appropriate receiver. One of the prac-
tical applications of this discovery has been exhibited in London
for about two years under the appellation of The Enchanted
Lyre. So perfect was the illusion in this instance from the
intense vibratory state of the reciprocating instrument, and from
the interception of the sounds of the distant excitiiiP’ one, that
It was universally imagined to be one of the highest efforts of
ingenuity m musical mechanism. The details of the extensive
modifications of which this invention is susceptible, I shall
reserve or a future communication

; the external appearance
an e ects of the individual application above-mentioned have
been described in the principal periodicaljournals.

_

the transmission of the vibrations through anv communicat-
ing medium as well as through linear conductors ^is attended by
pecu lar plienqmeiia; pulses are formed similar to those in lon-
gitudinal phonics, and consequently the centres of vibration and
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cularly on the side of a rectilinear rod; the vibrations were,

therefore, communicated at right andes ;
when the axis of the

oscillations of the fork coincided with the rod, the intensity ot

the transmitted vibrations was at its maximum ;
in proportion as

the axis deviated from parallelium, the intensity of the trans-

mitted vibrations diminished
;
and, lastly, when it became per-

pendicular, the intensity was at its minimum. In the second

quadrant, the order of the phenomena was inverted as in the

former experiment, and a second maximum of intensity took

place when the axis of the oscillations had described a semi-

circumference, and had again become parallel, but in an oppo-

site direction. When the revolution was continued, the inten-

sity of the transmitted vibrations was varied in a similar manner,

it progressively diminished as the axis ofthe oscillations deviated

from being parallel with the rod, became the least possible when
it arrived at the perpendicular, and again augmented until it

remained at its first maximum, which completed its entire revo-

lution.

The phenomena of polarization may be observed in many
corded instruments ; the cords of the harp are attached at one

extremity to a conductor which has the same direction as the

sounding board ;
if any cord be altered from its quiescent posi-

tion, so that its axis of oscillation shall be parallel with the

bridge, or conductor, its tone will be full
;
but if the oscillations

be excited so that their axis shall be at right angles with the
conductor, its tone will be feeble. By tuning tw.o adjacent
strings of the harp-unisons with each other, the differences of
force will be sensible to the eye in the oscillations of the reci-

procating string according to the direction in which the other is

excited.

It now remains to explain the nature of the vibrations which
produce the phenomena, the existence of which has been proved
by the preceding experiments. The vibrations generally assume
the same direction as the oscillations which induce them

;
in a

longitudinal phonic the vibrations are parallel to its axis
; in a

transversal phonic, they are perpendicular to this direction
;
a

circular or an ellipdc form can be also given to the vibrations by
causing the oscillations to assume the same forms. Any vibrat-
ing corpuscle can induce isochronous vibrations of similar conti-
guous corpuscles in the same plane either parallel with, or
perpendicular to, the direction ©f the original vibrations, and the
polanption of the vibrat'ons consists in the similarity of their
directions, by which they propagate themselves equally in the
same plane

;
therefore the vibrations being transmitted tliroutdi

linear conductors, it is the plane in which the vibrations jwe
made that determines their transmission, or non-transmission,
when the direction is altered. A longitudinal or a transversal
vibiation may be transmitted two ways to a conductor bent at
iiglit angles

;
Iheir a.\is may be in that direction, as to be in the
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90 Mi\ Moyte on Granite Veins. [A tic,

separately hear<3> or they may botli be heard in combination by

connecting both the conductors with sounding boards.

The phenomena of diffraction regarding only the form of the

surfaces, or the superficies over which the vibrations extend, are

by the conformation of the organs of hearing, not of any conse-

quence to the perception of sound, though the same phenomena

when the chromatic vibrations are concerned, are very evident

to the eye. They, however, undoubtedly take place equally in

both instances, and may be well explained by the theory already

laid down. Each separate vibration propagating itself in the

plane of its vibrating axis, a number of vibrations in different

planes, after passing through an aperture, naturally expand
themselves transversely as ivell as rectilineally, and thereby

occupy a greater space than they would, were they only longitu-

dinally transmitted.

I have still to indicate a new property of the phonic vibra-

tions, but whether it is analogous to any of the observed pheno-
mena of light, I am yet ignorant. When the source of the

vibrations is in progressive motion, the vibrations emanating
from it are transmitted, when the conductor is rectilineal and
parallel with the original direction, and they are destroyed when
the conductor is perpendicular to the direction, though the axis
of vibration and the conductor, being in both instances in the
same place, would transmit the vibrations were the phonic sta-
tionary. These circumstances are proved by the following expe-
riments : When a tuning fork placed perpendicularly to a rod,
communicating at one or both extremities with sounding boards,
and caused to oscillate w'ith its vibrating axis parallel with the
rod, moves along the rod, preserving at the same time its perpen-
dicularity and parallelism, the vibrations will not be transmSted
while the movement continues, but the transmission will take
place immediately after it has remained motionless. When the
tuning fork moves on the upper edge of a plane perpendicular to
a sounding board, the vibrations rectilineally transmitted will
not be influenced by the progressive motion.
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Translated by R. Bruce Lindsay from

“Souvenirs et Memoires—Autobiographie de

Jean-Daniel Colladon” (Geneva) 1893

I then traveled by myself with the principal purpose of occupying myself with

measurement of the velocity of sound in water, following which I would bring

k my instruments to Paris and repeat the measurements there. This was at the

of September [l826]. I went at first to spend eight days at Avully, where my
ler, mother, and sister were living and had not seen me for ten months. It was

eat pleasure to see them again.

I was looking for an inn which was appropriately situated for my measurements,

m M. de Candolle offered to put me up at his country seat “La Perriere” situated

kilometers from Geneva on the right bank of the lake. He offered me the greatest

pitality and said; “You will have the assistance ofmy son Aphonse and my gardener,

)m I place at your disposal; besides that you will have two boats and a small

k where you may keep them.”

I selected a bell, which while suspended in water could be struck by a clapper,

s arsenal still possessed the old bell (with chains) which had been dismantled
I weighed 65 kilograms. It was put at my disposal and I was able to keep it at

de Candolle’s residence. For the day of our first experiment M. de Candolle invited

le friends to help me and I made my first measurement at a distance of about
10 meters. While the gardener and M. de Candolle were located in one boat with

bell, I was in another boat to listen to the sound, and I had a watch which
I been lent to me by M. Tavan and which indicated quarter seconds. At the distance

ntioned I was able to hear the striking of the bell, having for this purpose plunged
head into the water at the moment of the signal accompanying the striking,

de Candolle, who held the watch, started the second hand at the instant the
3per hit the bell and stopped it when I gave him a hand signal that the sound
1 arrived at my ear. There was a light breeze on that particular day, rocking
boat, and I got rather wet. On returning we had tea, our friends left us, and
de Candolle and I went to bed.
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since the purpose of the rockets was to provide the signal that the bell was being

struck*

The man was torn between the desire to let me pass with the rockets and the

fear of losing his job if he were to let me go through. He repeated over and over

again, “The powder cannot pass.” And he showed me at the same time his orders.

“You say these rockets are made with powder; consequently I am not able to let

you pass under any consideration without encountering the risk of losing my job.

I then understood his objection and said “Yes, they are made with powder, but

the work of constructing them destroyed the powder and now one can no longer

use them as ordinary powder.” The man was evidently satisfied by this explanation,

and said; “Ah, if that is so, I can then let you pass with them,” and he gave me

back my rockets.

Having arrived at Thonon, I discharged the carriage and dispatched a man
to hire a boat while I took a hurried dinner and measured off a 200 meter cord.

Then I got into the boat and took up my station 200 meters from the shore. I

then fired a rocket to indicate that the bell should be struck. I instructed them to

strike three times in succession and that only the first would be counted. I heard

the three strokes perfectly distincdy, but I was not able to see any light signal at

Rolle. The experiment was a failure because of this, but I acquired thereby the

assurance that the sound would reach me at this distance.

The distance between the bell at Thonon and the tower at Rolle is 14,237 meters.

The Thonon bell is 350 meters inland from the shore. The distance between the

two banks is then 13,887 meters. In taking out another 400 meters to allow for

the distance of the two boats from the shore, we find 13,487 meters as the distance

between the two boats.

At this distance the sound is just as clear and sharp as it was at 100 meters.
The sound made by a key striking a hard object gives a sufficiently accurate idea
of what it is like.

I put off operation to a later time because I had been unable to see the light

signals. My father was not able to find a boat with a mast 12 meters in height and
had settled for one with a mast only 7 or 8 meters high.

I then changed the striking signal. Near the place where the bell was suspended
I placed a metallic plate on which I put a quarter or a half a pound of powder.
I assured myself that this powder when burning would produce a light several degrees
above the horizon.

With this system I was able to perform various experiments, the three most
exact of which were carried out on the 7th, the 15th, and the 18th of November,
1826. The time which the sound took to traverse the distance of 13,487 meters
was 914 seconds. This yields for the real velocity of sound in water at 8°C, the value
of 1437 meters per second.

The formula for the velocity of sound is

a =

m which D is the density, in this case equal to 1 [Editor’s note: Colladon means
here specific gravity]; P is the pressure of one atmosphere, that is, 0.76 meters of
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Bateau expdditeur du son.

Figure 1
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B.itLMU riiccpteur du son.

Figure 2
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was suspended about two meters below the water surface. A lever bent at right angles

dipped into the water near the bell and served as a striker [see Figure ij. The

other and shorter arm of the lever was manipulated by the hand. A small metallic

plate was placed near the center of suspension of the bell. On this was placed the

powder which a fuse ignited at the moment of striking the bell.

I had my station at Thonon, my ear attached to the extremity of an acoustic

tube [see Figure 2]. The boat was oriented so that my face was turned in the direction

of Rolle. I was thus able to see the light accompanying the striking of the bell and

to hold the watch which served to measure the time taken by the sound to reach

me.

Comments on Sound in Water

I have already said that at all distances the sounds were very sharp, like two
knife blades or two keys striking each other. This sharpness of the underwater sound

makes it easy to identify, in the same way as in air the noise produced by a whistle

can be distinguished in a storm.

It should be remarked that in underwater sound transmission the influence of
baffles is more marked than in the case of air. In experiments which I made with
M. A. de Candolle, near his father’s estate, operating on one side of the lake there
was a wall which intervened 12 or 15 meters between the two stations and when
the line joining the stations encountered the wall there was a marked decrease in

the intensity of the signal.

But the most important point to stress is that concerning the enormous elasticity

of the water transmitting the sound. It takes only a second to strike the bell. The
work done in this action by a single man can hardly exceed 12 kilogram meters.
But these 12 kilogram meters Suffice to excite a mass of water of the order of 50
billion kilograms. From this we deduce the extreme tenuity of the layers of water
that transmit the sound.

One can cite no more striking example of the enormous elasticity of water and
moreover of the conservation of xns viva.
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Translated by R. Bruce Lindsay from

Poggendorfs Annalen dev Physik und Chemie,

20 , 290 (1830)

Several outstanding physicists have sought to determine to what height and depth

in pitch sounds are still perceptible to the ear of man. There is general agreement

that the lower limit corresponds to a tone with frequency about 30 simple oscillations

per second. [Editor’s note: What Savart calls a simple or single oscillation is one

half a complete cycle in modern terminology. Thus his 30 simple oscillations per

second are equivalent to 15 cycles per second or 15 Hz in modern notation.] This

problem, as we shall see a bit further on, cannot be considered as completely solved,

yet we are permitted to believe that we are not too far from the truth. As far as the

upper limit is concerned, with whose determination I shall concern myself in this

article, physicists are by no means in accord. Chladni assumes that tones correspond-

ing to about 12,000 simple oscillations per second are still audible. Biot puts the

upper limit at the sound emitted by an open pipe of length 18 lines to which he

attributes the frequency 8192 simple oscillations per second. Wollaston maintains

that he could never hear tones higher than that produced by a pipe of length one-

quarter of an inch. But since he does not say whether the pipe was open or closed

nor what its diameter was, we have no way of knowing what frequency was associated

with it. In another place this celebrated physicist says that the highest tones which
are perceptible have frequencies from six to seven hundred times as great as the

lowest audible tones. If we assume that the latter correspond to about 30 simple
vibrations per second, it follows that according to Wollaston the upper audible limit

lies between 18,000 and 21,000 simple vibrations per second. In a word, if one relies

on the textbooks of physics w'hich have appeared to date, one is permitted to conclude
that no really exact investigation of this matter has so far been made, and that in
this respect acousdcs has made no real progress since the time of Sauveur.

The requirements for the solution of this problem reduce to two. The first obvi-
ously consists in the precise determination of the freqency of vibration of the body
which serves as the source of sound. The second consists in the production of sounds
which though unusually high in pitch are yet strong enough to be audible. One
might hope to satisfy these conditions by the longitudinal vibrations of cylindrical
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Dr a wedge-shaped sheet of light wood. One is naturally led to believe that in this

case tones will be produced whose frequencies, like those of the siren of Cagniard

Latour, depend on the number of impacts per unit time. Since with this arrangement

one can increase the intensity of the impacts at will by keeping the number of teeth

constant while increasing the diameter of the wheel, it is clear that in this way by

employing suitably arranged wheels one can produce the highest tones of the musical

;cale without decrease in intensity.

My first investigations were made with a wheel of brass, 24 centimeters in diameter

md with 360 teeth on its periphery. The tones produced went up and down in

pitch as the rotational velocity became greater or smaller. Though this first apparatus

carried no numbers, it was easy to ascertain with the help of a chronometer that

the tones obtained had frequencies proportional to the speeds of rotation of the

wheel. If, for example, the speed doubled, the tone went up by an octave. If one

compared the tone produced by the wheel with that produced by a monochord

it was found that the number of impacts of the teeth per second was just as great

as the number of double vibrations per second of the string. [Editor’s note: A double

vibration per second is the same as the modern cycle per second or Hertz (Hz).]

The tones emitted by this apparatus were very pure so long as the number

of impacts per second did not exceed three or four thousand per second, correspond-

ing to six or eight thousand single vibrations per second, since here as in the siren

the impact of the tooth and the silence succeeding it must be considered as a double

oscillation. Above this limit the sound became weak and lost significantly in its purity.

It therefore became clear that in order to go further it would be necessary to take

a wheel of larger diameter but without increasing the number of teeth, so that while

maintaining the original rotational speed, the impacts would be separated more from
each other because of the larger spaces between the teeth. Therefore in place of
the first wheel I took a new one, also made of brass, but 48 centimeters in diameter
and carrying 400 teeth on its periphery. In this way it is possible to produce very
pure tones even when the rotational speed was increased to the point at which ten
thousand impacts per second occurred. Above this point the sound lost its intensity

and from 12,000 to 15,000 impacts per second it ceased to be perceptible.

Since the latter number still failed to exceed that which I had obtained from
longitudinally vibrating rods, I constructed another apparatus with a toothed wheel
82 centimeters in diameter and with 720 teeth on its periphery. With this one could
produce sounds corresponding to 24,000 impacts per second or a frequency of 48,000
single vibrations per second. Although the intensity of the sound was very great
for 12,000 to 15,000 impacts per second, and thereafter began to decrease perceptibly,
I cannot say at what point the sound became completely imperceptible, since the
wheel I was using to set the toothed wheel in rotation was not large enough to
enable me to increase the speed of rotation further.

It deserves to be remarked that I was not the only one that could hear tones
of so high a pitch; they were heard by all persons who helped me in my research.
It is therefore not correct to say, as Wollaston did, that the limits above which high
notes are audible are different for different people. On the other hand the facts
observed by this well-known physicist can be correct in all strictness, only they must
be otherwise interpreted. A tone of high frequency with a definite intensity will
be audible to some people and not to others, but this will be owing not to the level
of Its frequency, but to the level of its intensity.
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of several tones on the scale, and thus arranged so that one may see whether with

the rotational speed, the accord obtained is really that which one intended to produce.

Since four wheels, carrying 200, 250, 300, and 400 teeth, respectively, and which

therefore should be in complete accord, actually produced this accord, it therefore

followed that no one of the thin bodies against which the teeth were striking, was

missing in any way, especially since the cards were held firmly with the fingers, a

circumstance which in itself would make vibrations of the cards almost impossible.

The second scheme, which is much simpler, consists in blowing a thin stream

of air against the teeth, directing it perpendicular to the plane of the wheel. It is

clear that in this way one produces an affect analogous to that of the siren of Mr.

Cagniard Latour, that is, a tone must be produced when the stream of air is interrupted

by the teeth. The tone that is produced must consequently be the same as that produced

by the striking of the teeth against the card, provided no teeth are missed as the

wheel goes around. Now the experiment shows that by simultaneous application

of both schemes one gets the same tone in both cases. So the siren here provides

a means of confirming my investigation and at the same time conversely my research

provides a complete test of the accuracy of the theory which Mr. Cagniard Latour

has developed for his ingenious instrument.

The question of the limit beyond which the high pitch tones become imperceptible

appears to be related naturally with the determination of the more or less long time

the periodic impacts of the teeth must repeat themselves before one gets the sensation

of definite and comparable tones. Indeed there must exist a kind of dependence
between the degree of sensitivity which allows the audibility of very high pitch tones

and that which we must have in order to perceive tones which persist only for an
unusually short time, for the high pitch tones which are comparable must be consi-

dered as the result of a succession of sounds which last only a very short time but

which nevertheless individually make an impression on the ear.

The new method for sound production set forth here is particularly well suited

for the investigation of the question just mentioned. Let us assume, for example,
that we have a wheel equipped with a thousand teeth that rotates once every second.

One makes a note of the tone and then removes the teeth from a half of the periphery.
It is clear that the tone will not thereby be altered, since in one of the half seconds
there will be precisely the same number of tooth impacts as before, only now after
the tone there will come a silent period of half a second, if indeed the effect on
the ear does not last longer than the activity of the cause which produces it. Actually
this is what happens, namely, that after the removal of a substantial number of
teeth, one gets an interrupted tone which however possesses the same pitch as resulted
when all teeth were present.

The question then arises for investigation: how many teeth can be removed
without having the tone lose its essential character? To answer this I prepared a
wheel in such a fashion that one could readily remove all teeth and also restore
them at will. I also fabricated certain other apparatus, which deserves no special
description, but which was all intended to serve the purpose of the experiment.
With this arrangement I found that no matter how fast I drove the wheel and no
matter hoAv large the number of teeth, one could remove all teeth down to the
number two without having the tone lose its pitch and that, with a little care it was
always possible to establish unison between the tone and that on a musical instrument.
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From this it follows (1) that two successive impacts are sufficient to produce

a comparable tone and that accordingly four single oscillations per second giictbe

same result, (2) that the time which passes between the two impacts conditions the

degree of frequency of the tone For example, those which succeed each other m
twice as long a time interval, yield the lower octave, whereas if they follow m three

times shorter time they produce the upper fifth of the octave, etc
, (3) that the duration

that a lone must have in order to be heard depends only on the time interval between

two periodic impacts produang this tone Consequently this time interval is theshoncr,

the higher the pitch

Since we have found that 20,000 single vibrations or 10,000 impacts per second

give a tone which the ear can identify, it follows that this organ is able to pcrccnc

all the characteristics of a phenomenon which lasts only 1/5000 second However,

this conclusion, which initially seemed to be sinctly correct, is not really so, since

It could happen that the vibration of the tooth which was last struck might continue

for a very short time after the cause of the vibration had ceased to act However,

one may assume that this time is very small indeed as long as the sinking body,

as in the present case, has very small dimensions, espeaally lengthwise

If we permit only one tooth to remain on the penphery of the wheel, the single

impact corresponding to each rotation of the wheel, still produces a tone which

however, as far as high or low pitch is concerned, has no relation to that which

is produced when there are two or more teeth on the wheel It is always the same,

no matter what the speed of rotation may be [Editorial note by Poggendorf One

would nevertheless object that if the speed of rotation were great enough so that

the lime interval between two impacts of the one tooth is equal to that between

tmpaas of two teeth in both cases the tone must be the same ]
One can understand

that u must be so, because it always originates from the sound of two bodies against

each other and because in all cases these bodies have the same dimension We must

remark only that if the wheel makes more than 32 revolutions per second the penodic

rcpeiilion of the impacts on the tooth produces a characteristic tone which is the

higher the more considerable the number of revolutions per second

A single impact produces m and for itself a sound or a perceptible noise, and

since on the other hand the ear, as we have seen above, can hear tones corresponding

to about 24,000 impacts per second, it follows that sound which lasts only 1/24 000

of a second, is perceptible, though it is however no longer identifiable Here, as

we shall see at once, resides the source oferror which corresponds to the continuation

of the motion after the impact However, even if from this standpoint these rcsulu

leave something to be desired, we can pretty well assume U as demonstrated that

a sound or noise lasting for a very smalt fracuon of a second can be perceived and

us frequency estimated

It must be remarked here that the duration of the phenomenon which produces

the sensation of the tone must be carefully distinguished from the duration of the

sensation itself For we know that the influence on a sense organ lasts for some

lime after the cause of this innuencc has ceased to function ^Ve know, for example,

tliat v^hen a glowing piece of carbon is moved in a circle, if this takes place with

sufficient velocity, we sec a fiery ime of arcular form One is inclined to belic'C

that the persistence of the sensation winch produces this phenomenon in the case
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of the eye, will also make itself evident in the case of the ear. I have therefore

sought to determine how long the hearing sensation persists after the cause has

ceased. For this purpose the tooth wheels seem to offer an efficient means.

Suppose that a wheel rotates with definitely known uniform speed and one

removes one of the teeth. It is clear that there will thereby take place an interruption

in the tone, assuming that the sensation does not persist after the terminated effect

of the cause producing it. If it continues for a more or less long time, we can measure

it by means of the number of teeth which one must remove in order to make the

interruption perceptible. On various occasions I have investigated this and have

thereby determined that without any doubt the sensation persists for some time after

the cause has ceased to work. However, up to now it has been impossible for me

to secure precise determinations in this matter because the sensation is only gradually

extinguished and because when it has become very weak, one can hardly say whether

it is still there or whether it has vanished completely. In addition it seemed to me
that the sensitivity of my ear was not always the same. For on several occasions

it happened that in order to perceive the interruption I had to remove a larger

number of teeth than was necessary several hours or days previously. I have also

noticed that several individuals who collaborated with me in my researches almost

always made a judgment different from mine for the same set-up.

It cannot be doubted that if a tone is to continue, the sensation due to a given

impact must persist with a definite intensity long enough until the sensation from
the following impact has taken place. If this were not so, one would only hear the

noise of the individual impacts separately. Therefore, if one has a wheel with

a very small number of teeth and starts it rotating with a small velocity, but then

accelerates it more and more, in the beginning the impacts will be heard separately

and there will be no continuous tone. Thereafter one will indeed perceive a tone.

This however will appear if I may use the expression, chopped, and this is due
to the fact that the end of the sensation which the ear receives at every impact
begins to join itself with the following sensation. Finally the impacts follow each
other with greater speed; the tone becomes very pure and intense. However, the
intensity ultimately decreases and the tone disappears entirely, as soon as the rotational
speed becomes very great, without doubt because the impacts are no longer pure
enough.

In a word, it appears indispensable if we are to receive the sensation of a full

and persistent tone that the impressions made on the ear must stand in a certain
relation to each other. This is probably the reason why we must increase the diameter
of the wheel in order to achieve the higher tones, because it is only in this way
that one can change the duration of the impression produced by each impact. Con-
versely it does not appear doubtful that one would perceive lower tones than those
corresponding to 30 to 32 single oscillations per second, if one could find a means
of producing impacts whose impression would last longer than a sixteenth of a second.
I close with a remark that the tones which can be produced by toothed wheels can
be applied to advantage to determine the number of revolutions performed by the
^es of many machines, as well as to assure oneself of the uniformity of their rotation.
The application of this scheme is so simple that I consider it superfluous to provide
turther details about it.

^
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XVII. On a peculiar class of Acoustical Figures; and on certain Foiins assumed

by groups of particles itpon vibrating elastic Surfaces. By M. Faraday,

F.R.S. M.R.T., Corr. 3Ieni. Royal Acad. Sciences of Paris, ^c. ^c.

Read May 12, 1831.

1.

The beautiful series of forms assumed by sand, filings, or other grains,

when lying upon vibrating plates, discovered and developed by Chladni, are

so striking as to be recalled to the minds of those who have seen them by the

slightest reference. Tliey indicate the quiescent parts of the plates, and visibly

figure out what are called the nodal lines.

2. Afterwards M. Chladni observed that shavings from the hairs of the ex-

citing violin bow did not proceed to the nodal lines, but were gathered togethei-

on those parts of the plate the most violently agitated, i. e. at the centres of

oscillation. Thus w’hen a square plate of glass held horizontally was nipped

above and below at the centre, and made to vibrate by the application of a

violin bow to the middle of one edge, so as to produce the lowest possible

sound, sand sprinkled on the plate assumed the form of a diagonal cross

;

but the light shavings were gathered together at those parts towards the middle

of the four portions where the vibrations were most powerful and the excur-

sions of the plate greatest.

3. Many other substances exhibited the same appearance. Lycopodium,

which was used as a light powder by Oersted, produced the eflfect very well.

These motions of lycopodium arc entirely distinct from those of the same sub-

stance upon plates or rods in which longitudinal vibrations are excited.

4. In August 1827, hi. Savart read a paper to the Royal Academj of

Sciences *, in which he deduced certain important conclusions respecting the

subdivision of vibrating sonorous bodies from the forms thus assumed by light

powders. Tlie arrangement of the sand into lines in Chladni’s experiments

* Annales dc Chimie, xxxvi. p. 187.
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shows a division of the sounding plate into paits, all of which vibrate isochro-

nously, and produce the same tone Tliis is the principal mode of division

The fine powder which can rest at the places where the sand rests, and also

accumulate at other places, traces a more complicated figure than the sand

alone, but which is so connected with the first, that, as M. Swart states, "(he

first being gi\en, the other may be anticipated uilh certainty ; from uhicli it

results that every time a body emits sounds, not only is it the seat of man)

modes of division which are siipei posed, but amongst all these modes there aic

always two which are more distinctly established than all the rest My object

in this memoir is to put this fact beyond a doubt, ami to stud) the Ians to

which they appear subject,"

5. M. Swart then proceeds to establi'^h a secondary inode of division in

circular, rectangular, triangular and other plates ;
and in rod«, rings, and

membranes. This secondaiy mode is pointed out by the figiiics delineated h)

the lycopodium oi other light pou dcr ; and as far as I can perceive, its existentt

is assumed, or rather proved, cxchirively fiom these foims. Jlcnccmucliof the

importance which I attach to the piesent papci. A secondaiy mode of division,

so subordinate to the principal as to be alvrajs superposed by it, might liavc

great influence in reasonings upon other points in the philosophy of vibrating

plates; to prove its existence thcieforc is an important mnttei. But its exist-

ence being assumed and supported by such high authority as the name of

Savart, to prove its non-cxistcncc, supposing it without foundation, is of equal

consequence.

6. The essential appearances, as far as I hav e obsen ccl them, arc as folloa s

Let the plate bcfoie mentioned (2), uhirb ma) be three or four inches squau,

be nipped and held in a horizontal position by a pair of pincers of the proper

form, and terminated, at the part touching the glass, by two pieces of corh

,

let lycopodium powder be sprinted ovci the plate, and a violin how be drau n

downwards against the middle of one edge so as to produce a clear full tore

Immediately the powder on those four pails of the plate towards the fom edge'-

will be agitated, whilst that towards the tw'o diagonal cioss lines will icniam

nearly or quite at rest. On repeating (he application of the bow several fimci,

a little of the loose powder, especially that in small masses, will collect upon

the diagonal lines, and thus, showing one of thcfiguics which Chladxi dis-
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covered, will also show the principal mode of division of the plate. Most of

the powder which remains upon the plate will, however, be collected in four

parcels ;
one placed near to each edge of the plate, and evidently towards the

place of greatest agitation. Whilst the plate is vibrating (and consequently

sounding) strongly, these parcels will each form a rather diffuse cloud, moving

rapidly within itself ; but as the vibration diminishes, these clouds will first

contract considerably in bulk, and then settle down into four groups, each

consisting of one, two, or more hemispherical parcels (53), which are in an

extraordinary condition ; for the powder of each parcel continues to rise up at

the centre and flow down on every side to the bottom, where it enters the mass

to ascend at the centre again, until the plate has nearly ceased to vibrate. If

the plate be made to vibrate strongly, these parcels are immediately broken

up, being thrown into the air, and form clouds, which settle down as before

;

but if the plate be made to vibrate in a smaller degree, by a more moderate

application of the bow, the little hemispherical parcels are thrown into com-

motion without being sensibly separated from the plate, and often slowly travel

towards the quiescent lines. When one or more of them have thus receded

from the place over which the clouds are always formed, and a powerful appli-

cation of the bow is made, sufficient to raise the clouds, it will be seen that

these heaps rapidly diminish, the particles of which they are composed being

swept away from them, and passing back in a current over the glass to the

cloud under formation, which ultimately settles as before into the same four

groups of heaps. These effects may be repeated any number of times, and it

is evident that the four parts into which the plate may be considered as divided

by the diagonal lines are repetitions of one effect.

7 . The form of the little heaps, and the involved motion they acquire, are

no part of the phenomena under consideration at present. They depend upon
the adhesion of the particles to each other and to the plate, combined with the

action of the air or surrounding medium, and will be resumed hereafter (53).

The point in question is the manner in which fine particles do not merely
remain at the centres of oscillation, or places of greatest agitation, but are

actually driven towards them, and that with so much the more force as the

vibrations are more powerful.

8. That the agitated substance should be in very fine powder, or very light,

appears to be the only condition ncccssaiy for success ; fine scrapings from a
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common quill, even u-hcn tlic eighth of an inch in length or more, tvill show

the effect. Chemicall}' pure and finely divided siliea rivals lycopodium in the

beauty of its arrangement at the vibrating parts of tlie plate, although the same

substance in sand or Iieaiy particles proceeds to the lines of rest. Peroxide of

tin, red lead, vermilion, sulpliatc of baryta, and other heavy powders wlien

highly attenuated, collect also at the vibrating parts. Hence it is evident that

the nature of the powder has nothing to do with its collection at the centres

of agitation, provided it be dry and fine.

9. The cause of these effects appeared to me, from tlic first, to exist in the

medium within which tlie vibrating plate and powder were placed, and every

experiment which I have made, togctlicr witli all those in M. Savaut’s paper,

either strongly confirm, or agree with this view. Wlien a plate is made to

vibrate (2), currents (24) are csttiblished in tlie air lying upon the surface of

the plate, whicli pass from tire quiescent lines towards tlie centres or lines

of vibration, that is, towards tliose parts of the plates where the excursions

are greiitest, and tlien proceeding outwards from the jilatc to a greater or

smaller distance, return towards the quiescent lines. Tlie rapidity of these

currents, tlie distance to whicli they rise from the plate at the centre of oscil-

lation, or any other part, the blending of the progressing and returning air,

their power of carrying light or heavy particles, and with more or less rapidity

or force, arc dependent upon the intensity or force of the vibrations, the me-

dium in which tlie vibrating plate is placed, the vicinity of the centre of vibra-

tion to the limit or edge of the plate, and other circumstances, which a simple

experiment or two will immediately show must exert much influence on the

phenomena.

10. So strong and powerful are these currents, that when tlie vibrations were

energetic, the plate might be inclined .1°, C", or 8° to the horizon and yet the

gathering clouds retain their places. As the vibrations diminished in forec, the

little heaps formed from tlie cloud descended the hill ; but on strengthening

tile vibrations they melted auay, the particles ascending the inclined plane on

those sides proceeding upwards, and passing again to the cloud. This took

place when neither sand nor filings could rest on tiie quiescent or nodal

lines. Nothing could remain upon the plate except tiiosc particles whicli were

so fine as to be governed by the currents, which (if they exist at all) it is evi-

dent would exist in whatever situation the plate was placed.

fitA
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11. M. Savart seems to consider that the reason why the powder gathers

together at the centres of oscillation is, that the amplitude of the oscillations

being very great, the middle of each of those centres (of vibration) is the only

place where the plate remains nearly plane and horizontal, and where, conse-

quently, the powder may reunite, whilst the surface being inclined to the right

or left of this point, the parcels of powder cannot stop there.” But the inclina-

tion thus purposely given to the plate, was very many times that which any part

acquires by vibration in a horizontal position, and consequently proves that the

horizontality of any part of the plate is not the cause of the powder collecting

there, although it may be favourable to its remaining there when collected.

12. Guided by the idea of what ought to happen, supposing the cause now

assigned were the tnie one, the following amongst many other experiments

were made. A piece of card about an inch long and a quarter of an inch wide

was fixed by a little soft cement on the face of the plate near one edge, the

plate held as before at the middle, lycopodium or fine silica strewed upon it,

and the bow applied at the middle of another edge ; the powder immediately

advanced close to the card, and the place of the cloud was much

nearer to the edge than before. Fig. 1 represents the arrange-

ment; the diagonal lines being those which sand would have

formed, the line at the top a representing the place of the card, 6

and the X to the right the place where the bow was applied.

On appljing a second piece of card as at 5, the powder seemed

indifferent to it or nearly so, and ultimately collected as in the

c represents the place of the cloud when no card is present.

13. Pieces of card were then fixed on the glass in the three

angular forms represented in fig. 2 ; upon vibrating the plate

the fine powder always went into the angle, notwithstanding its

difference of position in the three experiments, but perfectly in

accordance with the idea of currents intercepted more or less by
the card. When two pieces of card were fixed on the plate as

in fig. 3. a, the powder proceeded into the angle but not to the

edge of the glass, remaining about |th of an inch from it ; but
j

on closing up that opening, as at h, the powder ^vent quite up
into the corner.

MDCCCXXXI. 2 R

Fig. I.

a

c

first figure

:

Fig. 3.

a

c
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14. Upon fixing two pieces of card on the plate as at c fig. 3, the powder

between them collected in the middle very nearly as if no card had been

present ; but that on the outside of the cards gathered close up against them,

being able to proceed so far in its way to the middle, but no farther,

15. In nil these experiments the sound vras very little lowered, the form of

the cross vtis not changed, and the light powders collected on the other three

portions of the plate, exactly as if no card walls had been applied on the fourth;

so that no reason appears for supposing that the mode in which the plate

vibrated Avas altered, but the powders seem to have been carried fonvard by

currents which could he opposed or directed at pleasure by the card stops.

16. A piece of gold-leaf being laid upon the plate, so that it

did not overlap the edge, fig. 4, the current of air tow’avds the

centre of vibration was beautifully shown; for, by its force, the

air crept in under the gold-leaf on all sides, and raised it up into

the form of a blister i that part of the gold-leaf corresponding

to the centre of the locality of the cloud, when light powder was used, being

frequently a sixteenth or twelfth of an inch from the glass. Lycopodium or

other fine powder sprinkled round the edge of the gold-leaf, was carried in

by the entering air, and accumulated underneath.

17. When silica u*as placed on the edge of anollicr glass

plate, or upon a book, or block of wood, and the edge of the

vibrating plate brought as nearly as possible to the edge of

the former, fig. 5, part of the silica ^\'as always driven on to the

vibrating plate, and collected in the usual place ; as if in the

midst of all the agitation of tlic air in the neighbourhood of

the two edges, there was still a current towards the centre of

Fir. 5.

vibration, even from bodies not themselves vibrating.

18. When a long glass plate is supported by bridges or strings at the two

nodal lines represented in fig. 6, and made to \-ibrate, the lycopodium

collects in tliree dirislons ; that between the nodal lines Fijr. c.

does not proceed at once into n line equidistant from the
| ^

nodal lines and parallel to them, but advances from the

edges of the plate towards the middle by paths, which arc a little curved and

oblique to the edges where they occur near the nodal lines, but arc almost
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perpendicular to it elsewhere, and the powder gradually forms a line along

the middle of the plate ; it is only by continuing the experiment for some

time that it gathers up into a heap or cloud equidistant from the. nodal lines.

But upon fixing card walls upon this plate, as in fig. 7, the Fig. 7.

course ofthe powder within the cards was directly parallel

to them and to the edge, instead of being perpendicular,

and also directly towards the centre of oscillation. To prove that it u’as not as

a weight that the card acted, but as an obstacle to the currents of air formed, it

was not moved from its place, but bent flat down outwards, and then the fine

powder resumed the courses it took upon the plate when without the cards.

Upon raising the cards the first effect was reproduced.

19. The lycopodium sprinkled over the extremities of such a plate proceeds

towards places equidistant from the sides and near the ends, as at a fig. S ; but

on cementing a piece of paper to the edge, so as to Fig. 8.

form a wall about one quarter or one third of an inch

high, 6, the powder immediately moved up to it, and

retained this new place. In a longer narrow plate, similarly arranged, the

powder could be made to pass to either edge, or to the middle, according as

paper interceptors to the currents of air were applied.

20. Plates of tin, four or five inches long, and from an inch to two inches

wide, fixed firmly at one end in a horizontal position, and vibrated by apply-

ing the fingers, show the progress of the air and the light powders well. The
vibrations are of comparatively enormous extent and the appearances are con-

sequently more instructive.

21. If a tuning-fork be vibrated, then held horizontally with the broad sur-

face of one leg uppermost, and a little lycopodium be sprinkled upon it, the

collection of the powder in a cloud along, the middle, and the formation of the

invoking heaps also in a line along the middle of the vibrating steel bar, may
be beautifully observed. But if a piece of paper be attached by wax to the
side of the limb, so as to form a fence projecting above it, as in the former ex-
periments (19), then the powder will take up its place close to the paper

; and
if pieces of paper be attached on different parts of the same leg, the powder
will go to the different sides, in the different parts, at the same time.

22. The effects under consideration are exceedingly well shown and illus-

2 R 2

217



306 MR. FARADAY ON A PECULIAR CLASS OF ACOUSTICAL PICURES.

trated by membranes. A piece of parchment was stretched and tightly

whilst moist, over the aperture of a funnel five or six inches in diameter; a

small hole was made in the middle, and a horse-hair passed through it, tut

with a knot at the extremity that it might thereby be retained. Upon fixing

the funnel in an upright position, and after applying a little powdered resin to

the thumbs and fore-fingers, drawing them upward over the horse-hair, the

membrane was throrm into vibration with more or less force at pleasure. Py

supporting the funnel on a ring, passing the horse-hair in the opposite direc-

tion through the hole in the membrane, and drawing the fingers over it down-

wards, the direction in which the force was applied could be varied accord-

ing to circumstances.

23. When lycopodium or light powders were sprinhlcd upon this surface,

the rapidity with which they ran to the centre, the cloud formed there, the

involving heaps, and many other circumstances, could be observed very ad-

vantageously.

24. *1110 currents which I have considered as existing upon the surface of

the plate, membranes, &c. from the quiescent parts towards the centres or

lines of vibration (9), arise necessarily from the mechanical action of that

surface upon the air. As any particular part of the surface moves uptrards

in the course of its vibration, it propels the air and communicates a certain

degree of force to it, perpendicular or nearly so to the vibrating surface t as it

reJjjmti in lie fOi'xse afJts jvJwaL'SW, Jt .’fewdnf /intw? tlw jw p'ajierJfiJ,

the latter consequently tends to return into the partial vacuum thus formed.

But as of two neighbouring portions of air, that over the part of the plate

nearest to the centre of oscillation has had more projectile force communi-

cated to it than the other, because the part of the plate urging it was muring

with greater velocity, and through a greater space, so it is in a more unfavour-

able condition for its immediate return, and the other, i. c. the portion next to

it towards the quiescent line, presses into its place. This cfTect is still further

favoured, because the portion of air thus displaced is urged from similar causes

at the same moment into the place left vacant by the air still nearer the Centre

of oscillation ; so that each time the plate recedes from the air, an adrance of

the air immediately above it is made from the quiescent towards the vibrating

parts of the plates.
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25. It will be evident that this current is highly favourable for the trans-

ference of light powders towards the centre of vibration. Whilst the air is

forced forward, the advance of the plate against the particles holds them tight

;

but when the plate recedes, and the current exists, the particles are at that

moment left unsupported except by the air, and are free to move with it.

26. The air which is thus thrown forward at and towards the centre of

oscillation, must tend by the forces concerned to return towards the quiescent

lines, forming a current in the opposite direction to the first, and blending more

or less with it. I endeavoured, in various ways, to make the extent of this

system of currents visible. In the experiment already referred to, where gold-

leaf was placed over the centre of oscillation (16), the upward current at the

most powerful part was able to raise the leaf about one tenth of an inch from

the plate. The higher the sounds with the same plate or membrane, i. e. the

greater the number of vibrations, the less extensive must be the series of cur-

rents ; the slower the ^'ibrations, or the more extensive the excursion of the

parts from increased force applied, the greater the extent of disturbance.

With glass plates (2. 12) the cloud is higher and larger as the vibrations are

stronger, but still not so extensive as they are upon the stretched membrane

(22), where the cloud may frequently be seen rising up in the middle and

flowing over towards the sides.

27. "When the membrane stretched upon the funnel (22) was made to vibrate

by the horse-hair proceeding downwards, and a large glass tube, as a cylindri-

cal lamp-glass, was brought near to the centre of vibration, no evidence of a

current entirely through the lamp-glass could be perceived ; but still the most

striking proofs were obtained of the existence of carrying currents by the effects

upon the light powder, for it flew more rapidly under the edge, and tended to

collect towards the axis of the tube ; it could even be diverted somewhat from
its course towards the centre of oscillation. A piece of upright paper, held with
its edge equally near, did not produce the same effect; but immediately that it

was rolled into a tube, it did. When the glass chimney was suspended very

carefully, and at but a small distance from the membrane, the powder often

collected at the edge, and revolved there ; a complicated action between the

currents and the space under the thickness of the glass taking place, but still

tending to show the influence of the air in arranging and disposing the powders.
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division, or upon any immediate and peculiar action of the plate, but upon the

currents of air necessarily formed over its smface, in consequence of the extra-

mechanical action of one part beyond another. In this point ofview the nature

of the medium in which those currents were formed ought to have great influence

over the phenomena ; for the only reason why silica as sand should pass towards

the quiescent lines, whilst the same silica as fine powder went from them, is, that

in its first form the particles are thrown up so high by the vibrations as to be

above the currents, and that if they were not thus thrown out of their reach they

would be too heavy to be governed by them ; whilst in the second form they are

not thrown out ofthe lower current, except near the principal place of oscillation,

and are so light as to be carried by it in whatever direction it may proceed.

33. In the exhausted receiver of the air-pump therefore the phenomena

ought not to occur as in air ; for as the force of the currents would be there

excessively weakened, the light powders ought to assume the part of heavier

grains in the air. Again, in denser media than air, as in water for instance,

there was eveiy reason to expect that the heavier powder, as sand and filings,

would perform the part of light powders in air, and be carried from the qui-

escent to the vibrating parts.

34. The experiments in the air-pump receiver were made in two ways. A
round plate of glass was supported on four narrow cork legs upon a table, and

then a thin glass rod witli a rounded end held perpendicularly upon the middle

of the glass. By passing the moistened fingers longitudinally along this rod the

plate was thrown into a vibratory state ; the cork legs were then adjusted in

the circular nodal line occurring with this mode of vibration; and when their

places were thus found they were permanently fixed. The plate was then trans-

ferred into the receiver of an air-pump, and the glass rod by which it was to

be thrown into vibration passed through collars in the upper part of the

receiver, the entrance of air there being prevented by abundance of pomatum.
When fine silica was sprinkled upon the plate, and the plate vibrated by the

wet fingers applied to the rod, the receiver not being exhausted, the fine

powder travelled from the nodal line, part collecting at the centre, and other

part in a circle, between the nodal line and the edge. Both these situations

were places of vibration, and exhibited themselves as such by the agitation of
the powder. Upon again sprinkling fine silica uniformly over the plate, ex-
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baustlng the receiver to twenty-eight inches, and vibrating the plate, tlic silica

went from the middle towards the nodal line or place of rest, performing exactly

the part of sand in air. It did not move at the edges of the plate, and as the

apparatus was inconvenient and broke during the experiment, the follow-

ing arrangement was adopted in its place.

35. The mouth of a funnel was covered (22) with a wcll-strctchcd piece of

fine parchment, and then fixed on a stand with the membrane horizontal ; the

horse-hair vs'as passed loosely through a hole in a cork, fixed in a metallic tube

on the top of the air-pump receiver; the tube above the cork was filled to the

depth of half on inch with pomatum, and another perforated cork put over

that ; a cup was formed on the top of the second cork, which was filled with

water. In this v,^y the horse-hair passed first through pomatum and then

water, and by giving a little pressure and rotatory motion to the upper cork

during the time that the horse-hair was used to throw the membrane into

vibration, it ^ras easy to keep the pomatum below perfectly in contact with the

hair, and even to make it exude upwards into the water above. Thus no pos«

sibility of the entrance of air by and along the horse-hair could exist, and the

tightness of all the other and fixed parts of the apparatus was ascertained by tluj

ordinary mode of examination. A little paper shelf was placed in the receiver

under the cork to catch any portion of pomatum that might be forced through

I by the pressure, and prevent its falling on to the membrane.

3C. This arrangement succeeded; irhfntheJt'eeirerwas/uJJofajr^fhelycO'

podium gathered at the centre of the membrane w'ith great facility and rcadi'

ness, exhibiting the cloud, the currents, and the involving heaps. Upon cx^

hausting the receiver until the barometrical gauge was at tivcnty-eight inches,

the lycopodium, instead of collecting at the centre, passed across the mem-

brane towards one side which was a little lower than the other. It passed by

the middle just as it did over any other part ; and when the force of tlie vibra-

tions was much increased, although the powder was more agitated at the

middle than elsewhere, it did not collect there, but went towards the edges or

quiescent parts. Upon allowing air to enter until the barometer stood at

twenty-six inches, and repeating the experiments, the cfiect was nearly the same.

^Vhen the vibrations were very strong, there were faint appearances of a cloud,

consisting of the vciy finest particles, collecting at the centre of vibration

;
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but no sensible accumulation of the powder took place. At twenty-four inches

of the barometer the accumulation at the centre began to appear, and there

was a sensible, though very slight effect visible of the return of the powder

from the edges. At twenty-two inches these effects were stronger ; and when

the barometer was at twenty inches, the currents of air within the receiver

had force enough to cause the collection of the principal part of the lycopo-

dium at the centre of vibration. Upon again, however, restoring the exhaustion

to twenty-eight inches, all the effects were reproduced as at first, and the lyco-

podium again proceeded to the lower or the quiescent parts of the membrane.

These alternate effects were obtained several times in succession before the

apparatus was dismounted.

37. In this form of experiment there were striking proofs of the ckistence of

a current upwards from the middle of the membrane when vibrating in air,

(24), and the extent of the system of currents (26) was partly indicated. The

powder purposely collected at the middle by vibrations, when the receiver was

full of air, was observed as to the height to which it was forced upwards by

the vibrations ; and then the receiver being exhausted, the height to which the

powder was thrown by similar vibrations was again observed. In the latter

cases it was nothing like so great as in the former, tlie height not being two-

thirds, and barely one-half, the first height. Had the powder been thrown up

by mere propulsion, it should have risen far higher in vacuo than in air : but

the reverse took place ; and the cause appears to be, that in air the current

had force enough to carry the fine particles up to a height far beyond what the

mere blow which they received from the vibrating membrane could effect.

38. For the experiments in a denser medium than air, water was chosen. A
circular plate of glass was supported upon four feet in a horizontal position, sur-

rounded by two or three inches of water, and thrown into vibration by applying

a glass rod perpendicular tc the middle, as in the first experiment in vacuo

(34) ; the feet were shifted until the arrangement gave a clear sound, and
the moistened brass filings sprinkled upon the plate formed regular lines or

figures. These lines were not however lines of rest, as they would have been

m the air, but were the places of greatest vibration ; as was abundantly evi-

dent from their being distant from that nodal line determined and indicated

by the contact of the feet, and also from the violent agitation of the filings.

MDCCCXXXI. 2 s
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In factj'tlio Blings proceeded from the quiescent to the mo\ ing parts, and there

were gathered together ; not only forming the cloud ofparticles or er the places

of intense ribration, but also settling dosvn, when the ribrations were ucalver,

into the same inr citing groups, and in every respect imitating the action of

light powders in air. Sand was alTccted exactly in the same manner, and

even grains of platina could be in this nay collected by the currents formed in

so dense a medium as water.

3D The experiments were then made undei vrater with the membranes

stretched over funnels (22) and thrown into vibration by horse hairs drawn

between the fingers The space beneath the membrane could be retained,

filled with air, whilst the upper surface was coveicd two or three inches deep

with water , or the space below could also be filled with water, or tlic force

applied to the membrane by the horsc-lnir could be upw aids or dovmwards

at pleasure In all these cxpciimcnts the sand or filings could be made to

pass with the utmost facility to the most povvci fully vibrating part, that being

cither at the centre onlj, or in addition m circular lines, according to the mode

in which the membrane vibrated Tlic edge of the funnel was alwajs a line of

rest, but circular nodal lines were also foimed, which were indicated, not by

the accumulation of filings upon them, but by the tranquil state of those filings

which happened to be there, and also by being between those parts where

the filings, by their accumulation and violent agitation, indicated the parts in

the most pan erful v ibratoiy state.

to. Even when by the relaxation of the paiclimcnt from moisture, and the

force upwards applied by the horse hair, the central part of the membrane was

raised the eighth of an inch or more above the edges, tlic circle not being four

inches in diameter, still the filings would collect there.

4 1 . Wien in place ofparchment common linen was used, as becoming tighter

rather than looser vv hen w etted, the same effects w ere obtained

42. Both the reasoning adopted and the cfTects described were such as to

lead to the expectation that if the plate vibrating in air was covered with a

layer of liquid instead of sand or lycopodium, that liquid ought to be deter-

mined from the quiescent to the vibrating parts and be accumulated there

A square plate was therefore covered with water, and vibrated as in the former

experiments (2. G ) ; hut all endeavours to ascertain whether accumulation
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occurred at the centres of oscillation, either by direct observation, or the

reflection from its surface of right-lined figures, or by looking through the

parts, as through a lens, at small print and other objects, failed.

43. As ho^rever when the plate was strongly vibrated, the well-known and

peculiar crispations which form on water at the centres of vibration, occurred

and prevented any possible decision as to accumulation, it was only when these

were absent and the vibration weak, and the accumulation therefore small,

that any satisfactory result could be expected ; but as even then no appearance

was perceived, it was concluded that the force of gravity combined ^vith the

mobility of the fluid was sufficient to restore the uniform condition of the

layer of water after the bow was withdrawn, and before the eye had time to

observe the convexity expected.

44. To remove in part the effect of gravity, or rather to make it coincide

with, instead of oppose the convexity, the under surface of the plate was moist-

ened instead of the upper, and by inclining the plate a little,

the water made to hang in drops at a or h or c, fig. 9, at plea-

sure. On applying the bow at x , and causing the plate to vibrate,

the drops instantly disappeared, the water being gathered up and

expanded laterally over the parts of the plate from which it had

flowed. On stopping the vibration, it again accumulated in hanging drops,

which instantly disappeared as before on causing the plate to vibrate, the force

of gravity being entirely overpowered by the superior forces excited by the

vibrating plate. Still, no visible evidence of convexity at the centres of vibra-

tion were obtained, and the water appeared rather to be urged from the

vibrating parts than to them.

45. The tenacity of oil led to the expectation that better results would be

obtained ^vith it than with water. A round plate, held horizon-

tally by the middle (6. 42), was covered with oil over the upper

surface, so as to be flooded, except at X , fig. 10, and the bow ap-

plied at X as before, to produce strong vibration. No crispation

occurred in the oil, but it immediately accumulated at a, h, and c,

forming fluid lenses there, rendered evident by their magnifying power when
print was looked at through them. The accumulations ivere also visible on
putting a sheet of white paper beneath, in consequence of the colour of the oil

2 s 2

Fig. 10.
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being deeper at tlic accumulations thun elsewhere ; and they were also rend ireO

beautifully evident by mahing the experiment in sunshine, or by putting a

candle beneath the plate, and placing screen on the opposite side to receive

the images formed at the focal distance.

4G. When the vibration of the plate ceased, the oil gradually flowed back

until of uniform depth. On renewing the vibration, the accumulations were

re-formed, the phenomena of accumulation occurring with as much certainty

and beauty as if lycopodium powder had been used.

47- To remove every doubt of the fluid passing from the quiescent to the

parte, centres oC vlhratlonwcrc used., nearly surrounded by nodal liaes.

A square plate, fig. 11, being held at and the bow applied at X,

gave with sand, nodal lines, resembling those in the figure. Then

clearing off the sand, putting oil in its place, and producing the

same mode of vibration as before, the oil accumulated at a and

A, forming two heaps or lenses as in the former experiment (45).

48. The experiment made with water on the under surface (44) was now

repeated with oil, the round plate being used (45). The hanging drop of oil

rose up as the water did before, but the lateral diffusion was soon limited; for

lenses were formed at the centres of vibration just as wlien the oil was upon

‘he upper surface, and, as far as could be ascertained by general examination,

)f the same form and power. On slopping the vibration, the oil gathered again

nto hanging drops; and on renewing it, it was again disposed in the lensdike

iccumulations.

49. With white of egg the same observable accumulation at the centres of

vibration could be produced.

50. Hence it is crident that when a surface vibrating normally, is covered

with a layer of liquid, that liquid is determined from the quiescent to tlic

vibrating parts, producing accumulation at the latter places ; and tliat this

accumulation is limited, so that if purposely rendered too great by gravity or

other means, it uill quichly he diminished by the vibrations until the depth

of fluid at any one part has a certain and constant relation to the velocity there

and to the depth elsewhere.

51 . From the accumulated evidence which these experiments afford, I thinh

there can remain no doubt of tlic cause of the collection of fine powders at the
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; or lines of vibration of plates, membranes, &c. under common circum-

i ;
and that no secondary mode of division need be assumed to account

m. I have been the more desirous of accumulating- experimental evi-

because I have thought on the one hand that the authority of Savart

not be doubted on slight grounds, and on the other, that if by accident

laced in the wrong scale, the weight of evidence against it should be

,s fully to establish the truth and prevent a repetition of the error by

It must be evident that the phenomena of collection at the centres or

f greatest vibration are exhibited in their purest form at those places

are surrounded by nodal lines ; and that where the centre or place of

on is at or near to an edge, the effects must be very much modified by

inner in which the air is there agitated. It is this influence, which, in

lare plates (6. 12) and other arrangements, prevents the clouds being at

ry edge of the glass. They may be well illustrated by vibrating tin

under water over a white bottom, and sprinkling dark-coloured sand or

upon various parts of the plates.

the peculiar An'angement and Motions of the heapsformed bxj particles

lying on vibrating surfaces.

The peculiar manner in which the fine powder upon a vibrating surface

imulated into little heaps, either hemispherical or merely rounded, and

or smaller in size, has already been described (6. 28), as well also as the

ar motion which they possess, as long as the plate continues in vibra-

These heaps form on any part of the surface which is in a vibratory

and not merely under the clouds produced at the centres of vibration,

igh the particles of the clouds always settle into similar heaps. They
a tendency, as heaps, to proceed to the nodal or quiescent lines, but are

swept aAvay in powder by the currents already described (6). When on
e of rest, they do not acquire the involving motion. When two or more
2ar together or touch, they ufill frequently coalesce and form but one

which quickly acquires a rounded outline. When in their most perfect

nal form, they are always round.

The moving heaps formed by lycopodium on large stretched drawing-
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paper (28), are on so large a scale ns to be very proper for critical examina.

tion. The phenomena can be exhibited also even by dry sand on such a mem-

brane, the sand being in large quantity and the vibrations slow. When the

surface is thichly covered by sand from a sieve, and the paper tapped ivith the

finger, the manner in which the" sand draws up into moving heaps is veij

beautiful.

55. When a single heap is examined, which is conveniently done by holding

a vibrating tuning-foilc in a hoi izonlal position, and dropping some Ij copodium

upon it, it will be seen that the particles of the heap rise up at the centre, oter-

flow, fall down upon all sides, and disappear at the bottom, apparently pro-

ceeding inwaids ; and this ctolving and involving motion continues until the

vibrations have become very weak.

50. Tliat the medium in u hich the experiment is made has an important

influence, is shown by the circumstance of heavy particles, such as filings, ex-

hibiting all these peculiarities when they are placed upon surfaces vibrating in

water (39) r the heaps being even higher at the centre than a heap of equal

diameter formed of light powder in tire air. In water, loo, they arc formed

indifleicntly upon any part of the plate or membrane which is in a vibratory

state. Tlicy do not tend to the quiescent lines ; but tlrat is merely from the

great force of the cur rents formed in water as already described (38), and the

power with which tliey urge obstacles to the place of greatest vibration.

57. Ifa glass plate bo supported and vibrated (G), its surface baling been

covered with sand enough to hide the plate, and water enough to moisten and

flow over the sand, the sand will draw together in heaps, and these will ex-

hibit the peculiar and characteristic motion of the particles in a very striking

manner.

58. The aggregation and motion of these heaps, cither in air or other fluids,

is a very simple consequence of the mechanical impulse communicated to tlicni

by the joint action of the vibrating surface and the surrounding medium. Tlius

in air, when, in the course of a vibration, the part of a plate under aheap

rises, it communicates a propelling force upwards to that heap, mingled as it

is with air, greater tlian that communicated to the surrounding atmosplierc,

because of the superior spcclfie gravity of the former; upon receding from the

heap, therefore, in perforrrring the other half of its vibration, it forms a partivl
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vacuum, into which the air, round the heap, enters with more readiness than

the heap itself; and as it enters, carries in the powder at the bottom edge of

the heap with it. This action is repeated at every vibration, and as they occur

in such rapid succession that the eye cannot distinguish them, the centre part

of the heap is continually progressing upwards ; and as the powder thus accu-

mulates above, whilst the base is continually lessened by what is swept in under-

neath, the particles necessarily fall over and roll down on every side.

59. Although this statement is made upon the relation of the heap, as a

mass, to the air surrounding it, yet it will be seen at once that the same rela-

tion exists between any two parts of the heap at different distances from the

centre ; for the one nearest the centre will be propelled upward with the greatest

force, and the other will be in the most favourable state for occupying the

partial vacuum left by the receding plate.

60. This view of the effect will immediately account for all the appearances

;

the circular form, the fusion together of two or more heaps, their involving

motion, and their existence upon any vibrating part of the plate. The manner

in which the neighbouring particles would be absorbed by the heaps is also

evident; and as to their first formation, the slightest irregularities in the pow-

der or surface would determine a commencement, which would then instantly

favour the increase.

61. It is quite true, that if the powder were coherent, that force alone would

tend to produce the same effect, but only in a very feeble degree. This is suf-

ficiently shoTVTi by the experiments made in the exhausted receiver (36). When
the barometer of the air-pump was at twenty-eight inches, that in the air being

about 29.2 inches, the heaps, or rather parcels, fonneu very beautifully over the

whole surface of the membrane ; but they were very flat and extensive compared

with the heaps in air, and the involving motion was very weak. As the air was

admitted, the vibration being continued, the heaps rose in height, contracted

in diameter, and moved more rapidly. Again, in the experiments with filings

and sand in water, no cohesive action could assist in producing the effect ; it

must have been entirely due to the manner in whicli the particles were me-
chanically urged in a medium of less density than themselves.

62. The conversion of these round heaps into linear concentric involnng

parcels, in the experiment already described (29. 31), when the membrane was
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On the Reflexion and
Refraction of Sound

GEORGE GREEN

George Green (179S-1841) was one of the great mathematicians of the 19th

century. The self-taught “Miller of Nottingham,” he made an important contribution

to the theory of electricity and magnetism by introducing the concept of potential

and solving the differential equations involving it. He was also interested in wave

propagation and made the first theoretical study of the reflection of plane sound

waves incident obliquely on a plane interface. His paper on this subject published

in the Transactions of the Cambridge Philosophical Society is presented here in full.
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which the surface of separation in a state of equilibrium should

also be in a plane of infinite extent.

The suppositions just made simplify the question extremely.

They may also be considered as rigorously satisfied when light

is reflected. In which case the unit of space properly belonging

to the problem is a quantity of the same order as X=

and the unit of time that which would be employed by light it-

self in passing over this small space. Very often too, when

sound is reflected, these suppositions will lead to sensibly correct

results. On this last account, the problem has here been con-

sidered generally for all fluids whether elastic or non-elastic in

the usual acceptation of these terms
;
more especially, as thus its

solution is not rendered more complicated. One result of our

analysis is so simple that I may perhaps be allowed to mention

it here. It is this : If -4 be the ratio of the density of the reflect-

ing medium to the density of the other, and B the ratio of the

cotangent of the angle of refraction to the cotangent of the angle

of incidence, then for all fluids

the intensity of the reflected vibration

the intensity of the incident vibration ~ A -{-B*

If now we apply this to the reflexion of sound at the surface

of still water, we have A > 800, and the maximum value of

Hence the intensity of the reflected wave will in every
ease be sensibly equal to that of the incident one. This is what
we should naturally have anticipated. It is however noticed
here because M. Poisson has inadvertently been led to a result

entirely different

When the velocity of transmission of a wave in the second
medium, is greater than that in the first, we may, by sufUciently
increasing the angle of incidence in the first medium, cause the
refracted wave in the second to disappear. In this case the
change in the intensity of the reflected wave is here shown to be
such that, at the moment the refracted wave disappears, the
intensity of the reflected becomes exactly equal to that of the
incident one. If we moreover suppose the vibrations of the inci-
dent wave to follow a law similar to that of the cycloidal pendu-
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where we have

or by eliminating s

If J

Similarly, in the lower medium

V*? * df)
where

— 1 ,
P^,

* = = AT'

The above are the known general equations of fluid mo-

tion, which must be satisfied for all the internal points of both

fluids; but at the surface of separation, the velocities of the

particles perpendicular to this surface and the pressure there

must be the same for both fluids. Hence we have the particular

conditions

d^ _ d^
dx dx y (where x — 0),

As^A^s^
.

neglecting such quantities as are very small compared with

those retained, or by eliminating s and s^, we get

d<f) _ d<f>^

dx dx

A^ = A
dt ' dt

(when £c = 0) (.^4),

The general equations (1) and (2), joined to the particular

conditions [A) which belong to the surface of separation (ya),

only, are sufficient for completely determining the motion Of our
two fluids,.when the velocities and condensations are independent
of the co-ordinate z, whatever the initial disturbance may be.

We shall not here attempt to give their complete solution, which
would be complicated, but merely consider the propagation of a
plane wave of indefinite extent, which is accompanied by its

reflected and refracted wave.
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or if we

since

introduce 0, 0,t the angle of incidence and refraction,

a
cot 0 = Ti

<0

cot 0,
=

cot 6\

cot
’

cot 0\

cot

F* A
and therefore ^

A
}*

cot0,

cot 0

cot^/

cot 0

which exhibits under a very simple form, the ratio between the

intensities of the disturbances, in the incident and reflected

wave.

But the equations (6) give

7’g+i)=7;(^' + i):

and hence

7^ 7/

sin 0 sin 0^ *

the ordinary law of sines.

The reflected wave will vanish when

- A, cot ff
o = * —

A cot 0 ^

which with the above gives

cot ^ = A . /> \3 •V (7A)‘-(^7)’
Hence the reflected wave may be made to vanish if 7^ — 7/

and (7A)* — (7,AJ have diffei'ent signs.

For the ordinary elastic fluids, at least if we n'-glect the

change of temperature due to the condensation, A is independent
of the nature of the gas, and therefore

A = A, or 7®A = 7*A,,
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Hence

tan = 2
V,

wliicK is the precise angle at which light polarized perpendicular

to the plane of reflexion is wholly transmitted.

Bat it is not only at this particular angle that the reflexion

of sound agrees in intensity with light polarized perpendicnlar to

the plane of reflexion. Bor the same holds true for every angle

of incidence. In fact, since

7'A = 7,>A,;

and the formulm (7) give

A, _^ _ sin* B

A
~
7,*~Bin’fl,’

sin* 6 tan Q

^ _ sin’ 5, tan S, _ tan {B— S) _

f sill' B tan 6 tan (fl+ 8) ’

sin’ 8, ^ tan

which is the same ratio as that ppven for light polarized perpen-

dicular to the plane of incidence. (Vide Airy’s Tracts, p. 366)*.

What precedes is applicable to all waves of which the front

is plane. In what follows we shall consider more particularly

the case in which the vibrations follow the law of the cycloidal

pendulum, and therefore in the upper medium we shall have,

^— as\n (flx+ i^ + ct) + 0sia {—ax + iy+ci) (8).

Also, in the lower one,

4',^ a, sin {ajr+iy+ ct):

and as this is only a particular case of the more general one, be-

fore considered, the equation (7) will give

If 7,
> 7,

or the velocity of transmission of a wave, be

greater in the lower than in the upper medium, we may by de-

cre-asing a render a, imaginary. Tins last result merely indicates

that the form of our integral must be cluanged, and that as far ns

• [Airy on The VriitUUiry Thtory cf Oftta, p. HI, Art. 129.]
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regards the co-ordinate x an exponential must take the place of

tlie circular function. In fact the equation,

di

may he satisfied by

(where, to abridge, is put for hy + ct) provided

when this is done it will not be possible to satisfy the conditions

(J.) due to the surface of separation, without adding constants to

the quantities under the circular functions in We must

therefore take, instead of (8), the formula,

^= asin(aa;+ hy + ct + e)+fisln {—ax + ly + ct + e).... (9).

Hence when a; = 0, we get
Jt

^ = aa cos 4- e) — cos (-^ + c^),

d<f»

^= ca cos -f e) — c/3 cos + e^),

- a/B siniij
dx

^ = cB cos ijr;

these substituted in the conditions (.4), give

acos («|r4-e)-.^cos + e,) =-^ ^ sin

a cos (^ + e) 4*^ cos 4* e,) = ^ i? cos y/r
;

these expanded, give

a. cos c— ^ cos e, = 0,

»

-a sine4-/3sine B,
CL

cc cos e 4- cos e, = B.
* A ’

a sin e 4- /9 sin e, = 0.
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Hence, tyc get

1

2a8me= -i 5 Ha-i

2a co3e=v^fA '

and, consequentljr,

2y3ame = —

^

5,a '

2^cq3c B.
* A

A . O. A
tane=a+ -4-.

gA,

This result is general for all duids, but if «ve would apjjly it

to those onlj which arc usually called elastict wc have, because

itt this case 7*As=7/A„

. a/A oV*
tane = -4-«-^*

aA, <vf

Bat generally

c’ - x* (- a "+ b') = («* + to (11)

;

and therefore, by siibatitution,

. «/7,* 7, + h') '/ /-=-?—Tfl Ta
tan e ~-Mr =—

—

^ ~ v a’ tau* 6- sec* a,

arf ay ^ ^

because /t — , and - = tan^7 a

As e s= — e,, we see from equation (9), that 2e is the change

of phase which takes place in the reflected wavcj and this is

precisely the sarae value as that which belongs to light polarized

perpendicularly to the plane of incidence ;
{Vide Airy*a Tracis^

p. 362 *.) Wc thus see, that not only the intensity of the reflected

wave, but the change of phase also, when reflexion takes place at

the surface of separation of two clastic media, is precisely t!io

same as for light thus polarized.

• A\ry, vli 9«p. p. .<VrL ^33.
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242 ON THE REFLEXION AND REFRACTION OF SOUND.

Asa^^, we see that when there is no transmitted wave the

intensity of the reflected wave is precisely equal to that of the

incident one. This is what nii2,'ht he expected . it is, howeverj

noticed here hecanse a most illustrious analyst has obtained a

different result. (Poisson, Memoires Je VAcademie des Sciences,

Tome X.) The result which this celebrated mathematician

anives at is, Tliat at the moment the transmitted wave ceases to

exist, the intensity of the reflected becomes precisely equal to

that of the incident wave. On increasing the angle of incidence

this intensity again diminishes, until it vanish at a certain

angle. On still farther increasing this angle the intensity con-

tinues to increase, and again becomes equal to that of the inci-

dent wave, when the angle of incidence becomes a right angle.

It may not be altogether uninteresting to examine the nature

of the disturbance excited in tliat medium which has ceased to

transmit a wave in the regular way. For this purpose, we will

resume the expression,

sin ^|r = sin (bi/ + ct) ;

or if we substitute for B, its value given by the last of the

equations (10) ;
and for a*, its value from (11) ;

this expression,

in the case of ordinary clastic fluids where 7’A = 7®, wull

reduce to

cos e.e a v ^
A being the length of the incident wave measured perpendicular
to its own front, and 6 the angle of incidence. We thus see with
what rapidity in the case of light, the disturbance diminishes as
the depth X below the surface of separation of the two media
increases

;
and also that the rate of diminution becomes less as 6

approaches the critical angle, and entirely ceases when 6 is

exactly equal to this angle, and the transmission of a wave in
the ordinary way becomes po.ssiblc.
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25

On the Definition of a Tone with
the Associated Theory of the Siren

and Similar Sound Producing Devices

GEORG SIMON OHM

Georg Simon Ohm (1787-1854), the German physiast whose name is forever

associated with the law connecting voltage and current in an electric circuit and

with the unit of electrical resistance, was professor of physics at the University of

Munich froml849 until his death In 1843 he put forward a theory of audition

leading to another Ohm s law, this time in acoustics His paper on this subject in

Poggendorfs Annalen for 1843 played a significant role in the foundation of psycho-

logical acoustics The introduction and certain other sections are presented here m
English translation with editorial notes
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Translated by R. Bruce Lindsay from
Poggendorf’s Annalen der Physik und Chemie,

59, 497ff (1843)

1. When a short time ago I undertook to bring my earlier investigations on
combination tones and impulses into clearer definition, I was suddenly assailed by

a not insignificant doubt. For I had always previously assumed as a self-evident fact

that the components of a tone, whose frequency is said to be m, must retain the

form a • sin 2TTmt or a • cos 2Tmt, where t denotes the time and a the amplitude

for the successive tone elements. And conversely I had taken it for granted that

a succession of stimuli on our ear which consists uninterruptedly of the form here
specified must produce the sensation of a tone. But the introduction by Savart and
Cagniard de Latour of special methods of producing tones appears likely to drive

this assumption originating in earlier days out of its secure position. At any rate

the words of several well-known acousticians appear to point in this direction. In
the Reportorium der Physik (vol. 3, p. 30) Roher expresses his opinion as follows:

For this purpose it may be permitted to touch on the well-known
investigations of Savart and Cagniard de Latour on the produc-
tion of tones. Ifwe seek out the common elements in these inves-

tigations as well as of those of Savart on the tones of lowest
and highest pitch that are audible, as well as those of Cagniard
de Latour concerning the use ofthe siren, we find that the produc-
tion of tones is brought about only by the regular repetition
of any type of impulse affecting the hearing mechanism. In all

cases the same dependence of the pitch of the tone on the number
of impulses per second is found to prevail. In the investigations

mentioned here this impulse appears either as a combination
of a condensation and a rarefaction or merely as a condensation.
In particular Savart’s investigations on the lowest audible tones
show that the separation of the two maxima in a succession of
condensations and rarefactions in noway depends on the duration
of the individual impulses. In other words it does not depend
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on the separation of the maxima of two successive condensation

and rarefaction couples From this it accordingly follows that

the conventional productionofmusical tones for which the differ-

ent maxima of condensation and rarefaction follow each other

m equal time intervals must be considered only a speaal case

ofthe general repetition ofan impulse made up ofa condensation
and rarefaction

And further on (p 53) he says

It was only after I had developed the earlier description that

I became acquainted with Secbeck’s publication in which on the

same grouncb as in the previous discussion he explains the nature

of a tone as the regular repetition of any impulse and demon-
strates that the appropnate designation of the pitch of a tone

consists m the indication of the number of simple and compound
impulses per unit time, but not in the usual indication ofcondensa-

tions and rarefactions

2 Since then experiments with the siren performed by Seebeck have been reported

in Poggendorfs (vol 53, p 4l7fT, 1841) Through these even the equality

of the time intervals in which the individual intervals follow each other appears

not to be essential for the formation of a tone Seebeck himself has drawn from

his experiments (see p 423) the following conclusion ‘‘From this investigation He

see that the ear on the one hand possesses the ability to analyze a system of impulses

into two or three systems of isochronous impulses, but that on the other hand u

receives from something only approximately isochronous the impression of a definite

pitch, as if It were completely isochronous ” Since these investigations of Seebeck

contain all that can be brought against the old definition of a tone so far as factji

are concerned , and my present article is fundamentally nothing more than a continuing

commentary on See^ck’s work, for the convenience of the reader and since not

too much space is required, I shall set down Seebeck’s results here and refer to

this outline in the sequel

a) We mount two tubes, one on each side of a row of holes m a siren and

make them perpendicular to the siren disk m such a way that if one of the tubes

faces a hole the other is also opposite a hole If one blows air through one of the

tubes as the siren disk rotates, one gets a definite lone However, if we blow through

both tubes at the same lime, the tone disappears and one hears only the rushing

sound of the air streaming through the openings However, if one arranges the

tubes so that the air impacts from the two tubes do not take place at the same time

but follow each other in alternation, one hears the onginal tone and it is indeed

more intense

b) If one introduces on a disk two concentric rows of holes, one of which has

double the number of holes of the other, the latter gives [Editor’s note with the

same speed of rotation] the octave above the tone from the smaller number of holes

If both sets of holes are blown at once, in general both tones arc heard together
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It is only when blowing takes place from opposite sides of the disk and takes place

in such a way that every air stream impact of the lower tone coincides precisely

with one of the higher that the higher tone disappears and one hears only the lower

one.

c) If a series of impulses in quick succession, but not isochronistically, reach

the ear, in such a way that the interval between the two alternates from t to t'

,

a tone is produced corresponding to the interval t + 1' and if t and t' are not too

different, one hears at the same time a tone of period {t + t')/2, that is an octave

above the previous one. Seebeck remarks that in this case, the higher or the lower

tone tends to predominate accordingly as the values t and t' become more nearly

equal or unequal to each other.

d) If a series of impacts follow in succession in such a way that the intervals

are successively t, t', and one hears a tone with the period t + 1", and at the

same dme, if the three times are not too far apart, a tone with period (^ + «' + i'')/3.

Here again the remark is made that the higher or the lower tone predominates

accordingly as the three times are closer together or further apart.

e) If one lets the hole separations vary in an irregular fashion, but in such a

way that they do not depart too widely from an average value, one hears only one

more or less incomplete tone, whose frequency corresponds to that average value.

f) If in the investigations described under c) t' is an integral multiple of t, the

tone with the period t + t' is still heard, but instead of the tone (t + t')l2, that with

period t makes its appearance.

g) If t' was very much greater than t, but not an exact multiple of t, it seemed

to Seebeck that in addition to the tone t + 1', the tone corresponding to period t

was also present; but that occasionally there was also present a still higher tone,

which sounded with the tone {t 4- t')l2. However, Seebeck was in some doubt about

this.

h) If the time intervals between any three impulses were alternated between
t, t'

,

and on every occasion the tone corresponding to t was heard, no matter
whether t was greater or smaller than t'

.

3. From the statements just presented from qualified scientists and based on
experience concerning the true nature of tones, it seems that everything previously
accepted as true in this matter has been overthrown. At the same time nothing else

of any degree of reliability has been put in its place. It occurred to me that a new
definition of tone is demanded. I had to keep in mind the old rule that in the
explanation of a natural phenomenon no other causes should be assumed than are
both necessary and sufficient. Moreover my own personal feelings did not incline
me to dismiss at once previously established results in favor of the attraction of
a new viewpoint. So I set myself the task of determining whether the definition
of a tone as it has come down to us from our predecessors does not after all contain
what is necessary and sufficient for an explanation of the newly discovered facts.
However, as a result of this investigation the previously accepted definition of a
tone has been placed in its proper place in a fashion which has seemed to me to
jmtify publication. I now propose to show how by penetrating into the obscurity
of Seebeck’s researches with their help I believe I have arrived at a real understanding
of them. The old definition of a tone, however, I now formulate as follows:
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a) For the formation of a tone of frequency m, the necessary impulses must
follow each other in time intervals of the length 1/m, and m every one of these

intervals the impulses must carry in themselves the pure form a sin 2TT(mi + p) or
at any rate this form must be able to be separated out of these impulses

b) These forms whether they are actually contained in the individual impulses

or can be separated out from them must be connected m such a way that the phases

of the successive forms maintain the same relation to each other, or m other vsords

the quantity p must be the same for all

c) The quantity a must cither always be positive or always negative, for a change

m sign of<2 IS equivalent to a change in the value of/>, because —a sin 2n{ml + ^) = + a

sin 2Tr(mf +p ±Vi)
It will of course be understood, though it has not been expressly included in

the foregoing definition, that the perceptibility of the pitch of a tone demands the

invariability of the quantity p m successive impulses only in so far as the ear requires

It for the precise estimation of the pitch Indeed, if after so many waves have struck

the ear that it is in a position to estimate prcasely the pitch, by some means the

value of p were changed and then persisted that way for a long enough time that

the ear, other things being equal, was able once again to hear the same pitch, no

occasion would be given thereby for any change in its judgment as to the pilch

of the lone being received The tone, therefore, so far as pitch is concerned can

be considered as unchanged

4 As a means ofjudging whether m a given impulse the form a sin 2iT{mt +p)
15 contained as a real component or not, 1 use the theorem of Fourier, which has

become famous for us many important applications IfF^ denotes any arbitrary con

unuous or discontinuous function of t, which has arbitrary real values in the mtenal

from / » — / to t = + /, then between these limits, the theorem states that

*=Ao + cosily + Ai cosff-^

+ A 3 cos IT— +

+ Fi sin JT

y
+ sm ji

+ ^3 smir-^ +

[Editor’s note Ohm then quotes the values of the coefficients and which

we need not reproduce here
J

If we now represent by F‘ any sound impulse striking the ear at time then

Fourier’s theorem says that this impulse is analyzable into the components

Ao,Ai cos IT -^
+ ^1 smir-p,

cosji-^ + Fr

3/ 3/
Ai cosrr~+F3 smv-j-, etc
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Jo corresponds to no oscillation but represents merely a displacement of the oscillating

parts of the ear. The other components, however, all correspond to oscillations which

take place around the displaced position. The expression 1 cos 7r(t/l) +Bism 7r(tll)

produces an oscillation belonging to the tone whose frequency is 1121, and so on

for the other components with frequencies 2/21, S/21, etc.

[Editor’s note: Ohm now takes a sin 2'iT{mt + p) and substitutes into the

expressions for the Fourier component amplitudes. He thus finds:

for m = 1
= ^ ^Trp, Bi =acos 2np

for m = ^Trp, B^= a cos 27rp, etc.

withfl^ etc.

A.
and = tan iTip

Then he goes on.]

If now a succession of impulses is given, each one of which lasts during the

same time interval 21, and if we want to know whether the tone of frequency 1/21

is contained in this succession of impulses, we merely have to compute the values

of .^ 1 , 5i, etc. corresponding to the given impulse and from these we can get at

once the corresponding value ofp from

tan 2'itp — A i/Bi

One can also find a in terms ofA i and Bi.

[Editor’s note: The author continues his long paper with an application of the

foregoing theory to the various uses of sound produced by the siren as reported

by Seebeck. He begins by assuming that in every successive time interval 21 a sinusoidal

impulse strikes the ear. He then shows how this is analyzed into component tones.

He then derives for this case the following theorems.]

a) Impulses which are repeated in time intervals of length 2Z produce a tone
of frequency 1/2/ if the impulses in the successive intervals maintain one and the

same pattern at least as long as the ear needs in order to identify a tone.

b) Impulses which repeat each other in intervals of length 21 produce no tone
of frequency 1/2/ if the pattern of the interval changes from interval to interval.

[Editor’s note: The remainder of the article is devoted to a detailed examination
of the cases in which there are two or three impulses per given time interval. The
mathematical details become very complicated, but the essential nature of the results
remains fundamentally the same as for the simpler case. In essence what Ohm
sought to do was to establish the law that the human ear is able to analyze any
complex sound into a set of simple harmonic tones in terms of which it may be
expanded by means of the theorem of Fourier. This law has engaged the attention
of acoustical scientists from the time of Helmholtz to the present. Helmholtz in his
famous volume. Sensations of Tone, showed how the Ohm’s law could be justified
and used it as a basis for his theory of hearing (see the reproduction of his article
later in this volume).]
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26

On the Effects of

Magnetism Upon the Dimensions of

Iron and Steel Bars

JAMES PRESCOTT JOULE

James PrescottJoule ( 1 81 &-1 889) \vas a celebrated British amateur ph)siast whose

remarkably careful and precise measurement of the mehcanical equivalent of heal

established this quantity as one ofthe important physical constants and the key quantity

tn ihe theory of thermodynamics Long interested also m magnetism, m 1841 he

began a senes of expenments on the effect of magnetization on the dimensions

of iron and steel His results were summarized in a paper published in 1847, an

extraa from which appears here Though Joule’s work was followed up and extended

by continental researchers, he is usually given the credit for establishing the effect

now known as magnetostnction It was soon found that a magnetic field could produce

an oscillation in a bar of magnetizable material Hence out ofJoule’s discovery came

the de\ elopment of the magnetostnetive transducer, which has proved of great \aluc

m underwater sound technofogy, such as sonar
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Reprinted from Philosophical Magazine, series 3, 30, 76-87 (1847)

XVII. On the Effects ofMagnetism upon the Dimensions of
Iron and Steel Bars. Bp J. P. Joule, JSsy.*

A BOUT the close of the year 1841, Mr. F. D. Arstall, an
incenious machinist of this town, suggested to me a new

form of electro-magnetic engine. He was of opinion that a
bar of iron experienced an increase of bulk by receiving the

magnetic condition ; and that, by reversing its polarity rapidly

by means of alternating currents of electricity, an available

and useful motive power might be realized. At Mr. Arstall’s

request I undertook some experiments in order to decide how
far his opinions were w'ell-founded.

The results of my inquiries were brought before the public
on the occasion of a conversazione held at the Royal Victoria
Gallery of Manchester on the 16th of February 184il, and are
printed in the eighth volume of Sturgeon’s Annals of Elec-
tricity, p. 219. As many of my readers may not have access
to that work, I will, with the permission of tlie Editors of the
Philosophical Magazine, quote a small portion of the paper,
which is necessary to complete the history of this interesting
branch of investigation.

A length ofthirty feet ofcopper wire, one-twentieth of an
inch thick, and covered with cotton thread, was formed into a

• CommunicBted by the Author.
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coit t\renty*two inches long and ane*third ofan inch in interior

dinmeter. This coU was secured in a iv:rpendicu1ar position;

and the rod of Iron* of which I wUhed to ascertain the incre-

ment^ was suspended in its axis so as to receive the magnetic
•influence whenever a current of e1eciricit3' was passed through
the coll. Lastly, the upper extremity of the rod vias fixed,

and the lower extremity was aliaebct! to a system of levers

which multiplied its motion three thousand times.
** A bar of rectangular iron wire, two feet long, one quarter

ofan inch broad, and one-eighth of an inch thi^, caused the

index of the multiplying apparatus to spring from its position

and vibrate about a point one-tenth ofanincli in advance, when
the coil was made to complete the circuit of a battery capable

of magnetizing the iron to saturation, or nearly so. After n

short interval of time, the index ceas^ to vibrate, and began
to advance very gradually lit conseijnence of the expansion of
the bar from the neat which was radiated from the coil. On
breaking the circuit, the index immediately* began to vibrate

about a point, exactly one-tenth of an indi lower than that to

which it had attained.

“By multiplying the advance of the index by the power of

the levers, wc have ;n^t;th ofan inch, the increment of the

bar, which may be otherwise stated as whole

length.
“ Similar results were obtained by the use of an iron \«ire,

(wo feet long and one-twelfth of an inch in diameter. Five

pairs of llte nitric acid battery produced an increment of the

thirty-thousandth part of an incli ; and when only one pair

ofthe battery was employed, I had an itscremeni: scry slightly

less, viz , tlie thirty-tliree thousandth pan of on inch.

“ This increment does not appear todepend upon the thick-

ness of the bar; for an electro-magnet madeofiroo, three feet

long and one inch square^ was found to expand under themag-
netic influence to nearly the same extent, compared with its

length, as the wires did in the previous experiments.

I made some experiments in order to ascertain the low of

the increment. Their results proved it to be vertf nearljf pro-

portional to the intemitif tfthe magnetism and the lengthfthe

bar.

Trial was mode whether any efiect could be produced by
using a copper \»\xct two feet long and about one-tenlh of an

inch in diameter ; but I need scarcely observe that the attempt

was unattended nitb the slightest success.
“ A very good way of ouserving tlie above phtenomena is

to examine one end of an electro-magnet with a powerful mi-

croscope while the other end is fixed, 'llie increment U then
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observed to take place with extreme suddenness, as if it had

been occasioned by a blow at the other extremity.
^

The ex-

pansion, though very minute, is indeed so very rapid that it

may be felt by the touch ; and if the electro-magnet be placed

perpendicularly on a hard elastic body, such as glass, the ear

can readily detect the fact that it makes a slight jump every

time that contact is made with the batterer.

“ When one end of the electro-magnet is applied to the ear,

a distinct musical sound is heard every time that contact is

made with, or broken from, the battery ; another proof of the

suddenness with which the particles of iron are disturbed.”

In another part of the lecture I stated my reasons for sup-

posing that whilst the bar of iron was increased in length by
the magnetic influence, it experienced a contraction at right

angles to the magnetic axis, so as to prevent any change taking

place in the bulk of the bar. I intended as soon as possible

to bring this conjecture to the test of experiment, and I pre-

pared some apparatus for tlie purpose ; but owing to other

occupations I was obliged to relinquish the experiments until

the beginning of last summer. In the meantime the inquiry

has been taken up by De la Rive, Matteucci, Wertheim,
Wartmann, Marrian, Beatson and others, whose ingenious

experiments have invested the subject with additional interest.

The researches of Beatson have taken a similar direction to

mine; and he appears also to have employed a somewhat
similar apparatus to that which I shall presently describe. I
have confirmed several of the results at which this gentleman
has arrived, and have added new facts, which 1 hope will

throw further light upon tliis rather obscure department of
physics.

In order to ascertain how far my opinion as to the invaria-

bility of the hulk of a bar of iron under magnetic influence was
well-founded, I devised the following apparatus. Ten copper
wires, each 110 yards long and one-twentieth of an inch in
diameter, were bound together by tape so as to form a good,
and at the same time very flexible conductor. The bundle of
wires thus formed was coiled upon a glass tube 40 inches long
and l \ inch in diameter. One end of the tube was herme-
tically sealed, and the other end was furnished with a glass
stopper, which was itself perforated so as to admit of the in-
sertion of a graduated capillaiy tube. In making the experi-
ments, a bar of annealed iron, one yard long and half an inch
square, was placed in the tube, which was then filled up with
water. The stopper was then adjusted, and the capillary tube
inserted so as to force the waterto a convenient height witliin it.

'J'he bulk of the iron bar was about 4,500,000 times the

251



upon the Hhnensiotts ofIron and Steel Sars, 79

capacity of each division of the graduated tube ; consequently

n very minute expansion of the former would have product
a perceptible motion ofthe water in the capillary tube ; but, on
connecting the coil with o Dnnieirs battery of five or six cells

(a voltaic apparatus quite adequate to saturate the iron), no
perceptible effect whatever was produced either in making or

Creaking contact with the battery, whether the water was sta-

tionary m t})e stem, or gradually rising or falling from a change

of temperature. Now had the usual increase of length been

unaccompanied by a corresponding diminution ofthe diameter

of the bar, tbc water vrould have been forced through twenty

divisions of the capillary tube every lime that contact was made
with the battery.

Having thus ascertained that the bulk of the bar was in-

variable, 1 proceeded to repeat my first experiments with a
more delicate apparatus, in order, by a more careful inves-

tigation of the laws of the increment of lengtli, to ascend to

the probable cause of the phenomenon.
A coiled glass lube, similar to that already described, was

fixed vertically in a wooden frame. Its length wos such that

when a bar one yard long was introduced so as to rest on

the scaled end, each extremity of the bar was a full inch

within the corresponding extremity of the coil. The ^pa-
rattts for observing the increment of length consisted of two

levers of the first order, and a powerful microscope situated

at the extremity of the second lever. These levers were
furnished with brass knife edges resting upon glass. Tbe
connexion between the free extremity of the bar of iron and
the first lever, and that between the two levers, were esta-

blished by means of exceedingly fine platinum wires.

The first lever multiplied the motion of the extremity of

the bar 7'6 times, the second multiplied the motion of the

first 8 times, and the microscope was furnished with a micro*

meter uYvid'cd' into parts each correspondTng to ofan
inch. Consequently cocli division of llie micrometer passed

over by the index indicated an increment of the length of tlie

bar amounting to ‘^'ch.

The quantities of electricity passing through the coil were
measured by an accurate galvanometer of tangents, consisting

of a circle of thick copper wire one foot in diameter, and a
needle half an inch long furnished with a suitable index.

The quantities of magnetic ^lolarlty communicated to the

iron bar >rcre mcasurcci by a finely suspended magnet ]8
inches long, placed at the distance of one fool from the centre

of the coil. This magnetic bar wos furnished with scales

precisely in tlie manner of nn ordinary balance, and the weight
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required to bring it to a horizontal position indicated the in-

tensity of the magnetism of the iron bar under examination.

After a few preliminary trials, a great advantage was found

to result from filling the tube with water. Tlie effect of the

water was, as Dela Rive had already remarked, to prevent the

sound. It also checked the oscillations of the index, and had

the important effect of preventing any considerable irregu-

larities in the temperature of the bar.

The first experiment which I shall record was made with

a bar consisting of two pieces of very well-annealed rectan-

gular iron wire, each one yard long, a quarter of an inch broad,

and about one-eighth of an inch thick. The pieces were

fastened together so as to form a bar of nearly a quarter of

an inch square. The coil was placed in connexion with a
single constant cell, the resistance being further increased by
the addition of a few feet of fine wire. The instant that the

circuit was closed, the index passed over one division of the

micrometer. The needle of the galvanometer was then ob-
served to stand at 7° ‘20', while the magnetic balance required
0'52 of a grain to bring it to an equilibrium. It had been
found by proper experiments that a current of 7° Stf passing
through the coil was itself capable of exerting a force of
0-03 of a grain upon the balance; consequently the magnetic
intensity of the bar was represented by 0’4-9 of a grain. On
breaking the circuit, the index was observed to retire O’S of a
division, leaving a permanent elongation of 0*7, and a per-
manent polarity of 0*42 of a grain. More powerful currents
were now passed through the coil, and the observations re-
peated ns before, with tne results tabulated below.

Experiment 1.

Deflection of
gilnnometer.

Tangent of
deflection.

Elongation or
horteninn of

bar.

Total
dongation.

Magnetic
inteciitj

of bar.

Stjuare of ma^etic
intenait; divided

by total

elongation.

ft »- 7 20 128 10 E. 1-0 -049 240
0 0 0-3 S. 0-7 -0-42 252

- 9 30 167 2-9 E. 3-6 -0^3 240
0 0 1-2 S. 2-4 -0-74 228

-14 48 264 5-9 E. 8-3 -1-42 243
0 0 3-8 S. 4-5 222

-23 10 428 10-3 E. 14-8 -1-87 236
0 0 7-6 S. 73 -1-26

-47 25 1088 161 E. 23-3 -2-22 211
0 0 13-9 S. 9-4 -1*35 194

-58 50 1653 14-8 E. 24-2 -2-21
0 0 13-3 S. 109 -1-35 168
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E^crylliing being left In the some position, the clcclrlcUy

was now transmitted in the *}- or contrary direction, so as

first to remove the polarity ecnulrcd b^ne — current, and
then to Induce the opposite polarity. The total elongation

op 10*9, acquired in tne last experiment, is cnrricil forward

in the 4th column of the following second table of results.

Experiment 1 (continued).

OcBccboD ef T»ne«it ot
dcftMtion.

or
(boneniBgol

btr.

Tout
UeogUioa.

Urgoctic
lolmitr
ofbar.

Squwc of mknctM
iBlenut;

bj ioul
OoegUwa

+ hi 109 3 4S. 75 -0-13 3
0 0 0 75 -0-17 4

+ 9 55 175 OlE. 7-6 +0-57 43
0 0 1-OS. +0T5 9

fis 40 m 3 7E. 10^3 +1 30 184

0 0 4-0 S. £3 +0-78 97

4-3S 45 108 E. 231 +230 299
0 0 USS. 6-« +1*12 148

+51 30 1257 16 7 E. 253 +235 218
0 0 16-3 S. 94> +I'0i5 122

The next series of results was obtained with a fre*h bar of

exactly the same size and temper ns the preceding. To
avoid nil unnecessary occupation of space, I shall omit the

frebh heading of the table for a change in the direction of the

current, ana simply designate the commencement of a new
condition by ruling a line.

Experiment 2.

D«Certio« of

folnno.
BMler

Tongrot of
defloeboa.

Elongotioa ot
»bort«nuig

Totol
cleogitiOD.

VigBcbe
Utceut7
cdUr.

of B>Jg

nebe ioteuiir
djndM b]'

total tloogtbo*.

+ S il sr Of E. 91 +tHW
0 0 0 o-i +003 9

+ 8 27 J48 1-9 E. 20 +0-50 125

0 0 1-OS. 1-0 +030 90

+13 27 239 58E. C8 +M6 198

0 0 3 1 S. 37 +009 129

+33 SO 070 18 8 E. 225 +2-20 215
0 143 S. 8-2 +10! 124

+53 50 13C8 190 E. 27-2 +232 198
0 U 171 S. 10-1 +1-03 105

- 7 5 124 20S. 81 >0-15 8
0 0 01 S. 80 -007 0

-SS 10 1437 200 E. 280 -2-20 173
0 0 14-0 S. 134 -139 144
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The next experiment was with a bar of well-annealed irooi

one yard long and about half an inch square. Its weight was

45y oz. I have introduced an additional column into the table,

in order to reduce the action on the magnetic balance to the

section of the former bars, the weight of each of which was

8 oz.

Experiment 3.

Deflection

of galruo-
meter.

Tangent of
deflection.

EJon^tlon
or abort*

cning of
bar*

TotnJ
elongation.

Bfagnetic
intensity

of bar.

Bfagnetic
intenaitj

per unity
of section.

Square of mag-
netic intensity

per unity,

nisided by
eioogation.

e i

+ 5 10 SO 0-4 E. 0-4 + M8 0-21 110
0 0 01 S. 03 + 0-45 0-08 21

+ 82 141 0-7 E. 1-0 + 1-82 0-32 102
0 0 0-2 S. 0-8 + 067 0-12 18

+U 43 262 2 0 E. 2-8 + 4-10 0-72 185
0 0 1-OS. 1-8 + 0-90 0-16 14

+40 3 840 12-0 E, 13-8 +11-08 1-95 275
0 0 8-4 S. 5-4 + 1-20 0-21 8

+54 0 1376 13-8 E. 19-2 + 13-53 2-38 295
0 0 12 0 S. 7-2 + 1-20 0-21 6

+62 5 1887 14-4 E. 21-6 +14-13 2-48 285
0 0 13-5 S. 8-1 + 1-20 0-21 5

- 6 30 114 1-2 S. 6-9 - 0-70 0-12 2
0 0 0 6-9 - 0-30 0-05 0

-14 25 257 0-7 E. 7-6 - 3-80 0-67 59
0 0 1-3 S. 6-3 - MS 0-20 7

-41 15 877 11-0 E. 17-3 -11-33 1-99 229
0 0 8-8 S. 8-5 - 1-50 0-26 8

-62 45 1941 IG O E. 24-5 -13-71 2-41 237
0 0 13-0 S. 11-5 - 1-55 0-27 6

+ 5 35 98 0-8 S. 10-7 + 0-16 003 0
0 0 0 107 — 0-40 007 0

+ 90 158 0-2 S. 10-5 + M7 0-21 4
0 0 0-2 S. 103 + 0-15 0-03 0

+14 20 255 0-3 E, 106 + 3-30 0-58 32
0 0 1-2 S. 9-4 + 0-50 009 1

+24 45 461 3-3 E. 127 + 7-16 1-26 125
0 0 3-4 S. 9-3 + 0 82 0-14 2

+39 50 834 9-6 E. 18-9 +11-43 2-01 214
0 0 8 0 S. 109 + 0-95 0-17 2

+54 15 13S9 12-6 E. 23-5 +13-47 2-37 239
0 0 11-6 S. 11-9 + 1-00 0-18 3

+60 45 1785 13-2 E. 251 +13-84 2-43 235
0 0 12-4 S. 12-7 + 1-00 0-18 3
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Experiment 3 (continued).

OtSfttioa
>( f«lTtDI}<

Tln^mt Of
ddltctioiu

CtoDfftrien

Of .bort
ra RSOlW

Tout
tlooftboa

IfigwCie

«l bar

lateiMltr

pcrwtl^
of •eebm

S<]«u« of ntf.
firde intadif
pcfuin
iniOal 6j
etofUloB.

- 7 13 127 1-0 s 117 - 113 0-20
1

8
0 0 0*18 lie - aso 009 1

-10 25 IS4 0 it-e - 2*16 038 12
0 0 03S 114 - i-oo 018 8

-15 BT 286 0-5 E tI9 -4 14 073 45
0 0 IIS 10-8 - 1-25 022 4

0 488 3SE 143 - 745 131 120
0 0 3-3 S 111 - 150 026 6

-40 85 867 96E 20-7 -1146 2-02 197
0 0 8-OS 127 - 170 030 7

-C3 48 1946 14-6 E 273 -13 76 2 42 214
0 0 130S 143 - 173 030 6

From the Inst column of each of the preceding tables we
iTi’i}, I think, safely infer thatMc elongation is tn the duplicate

ratio tj'the magnetic intensity ofthe har^ both when the majg-

netism is maintained by the influence of the cod, and m the

case of the permanent magnetism after the current has been
cut off The discrepancies observable will, 1 think, be satis-

factorily accounted for when we consider the nature of the

magnetic actions taking place When a bar experiences the

inductile influence ofa coil traversed by an electrical current
the particles near its axis do not receive as much polarity as

those near its surface, because the former have to withstand

the opposing inductive influence of a greater number ofmag-
netic particles than the latter. This phmnomenon will m
diminished m the extent of its manifestation with on increase

of the electrical force, and will finally disappear when the cur-

rent 15 sufTicicntly powerful to saturate the iron. Agolr^ when
the non, after having been magnelired by tbe cod, is aban-
doned to Its own retentne powen. by cutting off tbe clcctncoJ

current, the magnetism ot the interior particles will suffer a
greater amount ofdeterioration than that of the exterior par-

ticles 1 he polarity of the former may indeed be sometimes

actually reversed, as Dr. Scoresby found it to be in some ex-

tensi\e combinations of steel bars. Now whenever such influ-

tnees as the abo>c occur, so as to make the different ports of

the bar magnetic too various extent, the elongation will neces-

sarily bear a greater proportion to the square of the magnetic

intensity measured by the balance than would otherwise be

the case
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81 Mr, J. P. Joule on the Effects ofMagnetism

For similar causes the interior of the bar will in general

receive the neutralization and reversion of its polarity before

the exterior, and hence we see in the tables that there is a

considerable elongation of the bar after the reversion of the

current; even when the effect upon the balance has become
imperceptible, owing to the opposite effects of the interior and
exterior magnetic particles.

The bars employed in the preceding experiments wei*e an-

nealed ns perfectly as possible. The next series was made
with a bar of exactly the same dimensions and quality as the

bars employed in Experiments 1 and 2, excepting that it was
not annealed.

Experiment 4.

Dencction of
galranomvter.

Tarpent of
deflection.

Eion^tion or
Bborteaingof

bur.

Total
elongation.

Magnetic
intcDBit;

of bar.

Square of znagoetic
intensity dirided

by total

elongation.

+ 9 20 164 0-2 E 0^ +015 112
0 0 0 0-2 +0-08 32

+ 15 20 274 09 E. 11 +0-50 227
0 0 0-7 S. 0-4 +0-33 272

+38 32 796 7-1 E. 7-5 +1-36 247
0 0 5-2 S. 2-3 +0-80 278

+50 30 1213 10-2 E. 12-5 +1-76 247
0 0 9-6 S. 2-9 +0-97 324

+57 40 1580 13 0 E. 159 +1-94 236
0 0 11-8 S. 4-1 +1-00 244

+62 20 1907 14-0 E. 181 +210 243
0 0 14-0 S. .41 + 1-01 249

- 6 50 120 1-2 S. 2-9 +0-58 116
0 0 0 2-9 +0-65 145

-10 35 168 0-4 S. 25 +0-21 17
0 0 0 2-5 +0-35 49

-14 57 267 0 2-5 -0-30 36
0 0 0-2 S. 2-3 -013 7

-40 10 844 5-7 E. 8-0 -1-36 231
0 0 4 0 S. 3-4 -0-88 228

-53 50 1351 10 0 E. 13-4 -1-70 215
0 0 9-5 S. 3-9 -0-05 231

+ 9 27 166 1-3 S. 2-6 -036 50
0 0 0-1 E. 2-7 -0-40 59

+22 30 414 O-I S. 2-6 +0-38 55
0 0 0 2-6 +0-22 18

+38 27 794 4-9 E. 7-5 +1-50 300
0 4-6 S. 2-9 +0-97 324
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In ibc foregoing scries tliediscrepnneics before ftd\ cried to

do not mnke (hetr appearance to considerabie extent^

except in die cose of the reversion of die magnetic polarity.

Token nltogelher the series is strikingly confirmatory of the

law of elongation already announced.
The nc'tt series of observations was obtained with a piece

of soft steel wire one jard long and a quarter of an inch in

diameter. Its weight being exactly 8 oz.f no reduction of

magnetic intensity nnd to be made for unity of section.

Experiment 6.
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86 Mr. J. P. Joule oti some Effects of Magnetism,

Experiment 7.

Deflection of
galcsnometer.

Tangent of
deflection.

Klongntion
or sliortcning

of bar.

Totnl
elongation.

Itfagnctic

intensity

of bar.

Square ofmag-
netic intenaity

iliridcd by
total elongation.

+3§ 2(1 790 1-4 E. 1-4 +074 391

0 0 0 7 S. 07 +0-46 302

4-01 5 1810 5-3 E. 60 +1-64 448
0 0 3-2 S. 2-8 +1-07 409

4-69 55 2735 4-7 E. 7-5 481
0 0 4-5 S. 30 480

-26 40 502 3 0 S. 0 +6-20
0 0 0-2 S. -0-2 +0-32

The uniformity of the numbers in the Inst columns of the

preceding tables shows that where the metal possesses a con-

siderable degree of retentive power the anomalies occasioned

by the reaction of the magnetic particles upon one another,

which have been already adverted to, do not exist to any con-

siderable extent, and presents an additional confirmation of

the law I have stated, viz. the elongation is proportionalf in a
given bar, to the square of the magnetic intensity.

I now made trial of a bar of steel one yard long, half an
inch broad, and a quarter of an inch thick, weighing 23 oz. It

was hardened to a certain extent throughout its whole length,

but not to such a degree ns entirely to resist the action of the

file.

Experiment 8.

Deflection of

gtilv-anowctcr.

Tnnpcnt of
deflection...

Klongation
or shortening

of bar.

ToUl
elongation.

Wagnetic
intensity

of bar.'
'

Slagnctic
intensity

per unity
of aection.

Square of
magnetic
intensity

per unitv,
divided By
elongation.

o e

+39 0 810 0 0 +M1 0-38

0 0 0-2 E. 0-2 + 1-36 0-47 1104

+52 35 1307 0-8 E. 10 +409 1-42 2016
0 0-3 E. 1-3 +2-85 0-99 754

1750 0 5 E. 1-8 +510 1-77 1740
0 <>1 E. 19 +3-52 1-22 783

+69 45 2710 0-6 E. 2'5 +5-91 206 1697ym 0 0-2 E. 27 +4-20 1-46 790

-41 15 877 16 S. M -0-43 20
0 0 12 +o;j5 12

-5(r 5 1487 1-4 E. 2-6 -3-90 711
0 0 01 E. 27 -263 307
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In the above table it will be observed that the hard steel

bar was slightly Increased In length every time that contact

with the battery was brokeot although n considerable dimu
nution of the magnetism of the bar took place at the same
time. I om disposed to attribute this effect to the state of
tension in the hardened steel, for 1 find that soft iron wire

presents a similar anomaly when stretched (tglilly.

On insjiecting the tables, it will be remarked that Uie elon*

gotion is, for the same intensity of mognetism, greater in pro*

portion to the softness of the metal. It Is greatest of ail In

the welhannealed iron bars, and least in the hardened steel.

Tins circumstance appears to me to favour the hypothesis that

the plimnomena are produced by the attractions taking place

between the magnetic panicles of the bar, nn hypothesis in

perfect accordance with the law of elongation which 1 have
pointed oat.

be euntlaned.^



7

Sound Attenuation Due to Viscosity

GEORGE GABRIEL STOKES

George Gabriel Stokes (181&-1903), British mathematician and physicist, is well

known for his theorem in vector analysis and for his work on viscous fluids and
on fluorescence. It was in connection with his research on fluid motion that he disco-

vered the effect of fluid viscosity on sound propagation. An extract from his 1845
article on this subject follows. It was the failure of the experimentally measured
attenuation of sound in a fluid to agree with Stokes’ theoretical prediction that was
the starting point of the modern attempts to account for attenuation in terms of
molecular relaxation.
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[From Ite Traiuactions of the Cambridge PhUosophxccd Societ^y

Vol. VIII. p. 287.]

0:? THE Theories op the Internal Friction of Fluids

IN Motion, and of the Equilibriusi and Motion of

Elastic Solids.

[Read Aprfl 14, 1845.]

The equations of Fluid Motion commonly employed depend

upon the fundamental hypothesis that the mutual action of two

adjacent elements of the fluid is normal to the surface which

separates them. From this assumption the equality of pressure

in all directions is easily deduced, and then the equations of

motion ?Lre formed according to D'Alembert*8 principle. This

appears to me the most natural light in which to view the sub-

ject; for the two principles of the absence ^f tangential action,

and of tbo equality of pressure in all directions ought not to be

assumed as independent bypotbeses, as is sometimes done, inas-

much as the latter is a necessary consequence of the former*.

The equations of motion so formed are very complicated, but yet

they admit of solution in some instances, especially in the case

of small QstuUalJona, The results of the theory a^ree on the

whole with observation, so far as the time of oscillation is con-

cerned. But there is a whole class of motions of which the

common theory takes no cognizance whatever, namely, those

which depend on the tangential action called into play hy the

sliding of one portion of a fluid along another, or of a fluid along

the surface of a solid, or of a different fluid, that action in fact

which performs the same part with fluids that friction docs with

solids.

• Tins may te oaBjly alicwn by tbo consideration of a tetrahedron of the fluid,

as in Art. 4.
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76 ON THE FBICTION OF FLUIDS IN MOTION,

Tiiiis, wliBD SL Tjcill pGiid-ulum oscillfttGS m 3.u indcfinitGly 6X"

tended fluid, the common theory gives the arc^ of oscillation

constant. Observation however shews that it diminishes very

rapidly in the case of a liquid, and diminishes, but less rapidly,

in the case of an elastic fluid. It has indeed been attempted to

explain this diminution by supposing a friction to act on the ball,

and this hypothesis may be approximately true, but the -imper-

fection of the theory is shewn from the circumstance that no

account is taken of the equal and opposite friction of the ball on

the fluid.

Again, suppose that water is flowing down a straight aqueduct

of uniform slope, what will be the discharge corresponding to

a given slope, and a given form of the bed ? Of what magnitude

must an aqueduct be, in order to supply a given place with

a given quantity of water ? Of what form must it be, in order

to ensure a given supply of water with the least expense, of

materials in the construction ? These, and similar questions are

wholly out of the reach of the common theory of Fluid Motion,

since they entirely depend on the laws of the transmission of that

tangential action which in it is wholly neglected. In fact, accord-

ing to the common theory the water ought to flow on with

uniformly accelerated velocity; for even the supposition of a

certain friction against the bed would be of no avail, for such

friction could not be transmitted through the mass. The practical

importance of such questions as those above mentioned has made
them the object of numerous experiments, from which empirical

formulae have been constructed. But such formulae, although
fulfilling well enough the purposes for which they were con-

structed, can hardly be considered as affording us any material
insight into the laws of nature; nor will they enable us to pass
from the consideration of the phenomena from which they were
derived to that of others of a different class, although depending
on the same causes.

In reflecting on the principles according to which the motion
of a fluid ought to be calculated when account is taken of the
tangential force, and consequently the pressure not supposed the
same in all directions, I was led to construct the theory explained
in the first section of this paper, or at least the main part of it,

"w ic consists of equations (13), and of the principles on which
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they are formed. I afterwards found that Poisson had written
a memoir on the same subject, and on referring to it I found that
he had arrived at the same equations. The method which he em-
ployed was however so different from mine that I feel justified in

laying the latter before this Society*. The leading principles ofmy
theory will be found in the hypotheses of Art. 1, and in Art. 3.

The second section forms a digression from the main object of

this paper, and at first sight may appear to have little connexion

with it. In this section I have, I think, succeeded in shewing

that Lagrange's proof of an important theorem in the ordinary

theory of Hydrodynamics is untenable. The theorem to which I

refer is the one of which the object is to shew that udx+vdy+wdt,
(using the common notation,) is always an exact diflferentij when
it is so at one instant I have mentioned the principles of

M. Cauchy’s proof, a proof, I think, liable to no sort of objection.

I have also given a new proof of the theorem, which would have

served to establish it had M. Cauchy not been so fortunate as to

obtain three first integrals of the general equations of motion.

As it is, this proof may possibly be not altogether useless.

Poisson, in the memoir to which 1 have referred, begins with

establishing, according to his theory, the equations of equilibrium

and motion of elastic solids, and makes the equations of motion

of fluids depend on this theory. On reading bis memoir, I was

led to apply to the theory of clastic solids principles precisely

analogous to those which I have employed in the case of fiuida

The formation of the equations, according to these principles,

forms the subject of Sect III

The equations at which I have thus arrived contain two arbi-

trary constants, whereas Poisson’s equations contain hut one. In

Sect. IV. I have explained the principles of Poisson's theories of

clastic solids, and of the motion of fluids, and pointed out what

appear to me serious objections against the truth of one of the

hypotheses which ho employs in the former. This theory seems

to be very generally received, and in consequence it is usual to

deduce the measure of the cirhical compressibility of elastic solids

from that of their extensibility, when formed into rods or wires,

• The Eamo eqaations bars also been obtained by Ntricr in tbo case of an in

comiiesiihio fluid (Jl/m. de fAeadlrn'r, t. -n. p. 389). but bi» principles difler nran

fflino stni moTO rhaij do Poisson’s.
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78 ON THE FEICTION OF FLUIDS IN MOTION,

or from some quantity of the same nature. If^the views which

I have explained in this section be correct, the cubical compres-

sibility deduced in this manner is too great, much too great in

the case of the softer substances, and even the softer metals.

The equations of Sect. ill. have, I find, been already obtained by

M. Cauchy in his Exercises Mathematiques, except that he has not

considered the effect of the heat developed by sudden compression.

The method which I have employed is different from his, although

in some respects it much resembles it.

The equations of motion of elastic solids given in Sect. III.

are the same as those to which different authors have been led,

as being the equations of motion of the luminiferous ether in

vacuum. It may seem strange that the same equations should

have been arrived at for cases so different
;
and I believe this has

appeared to some a serious objection to the emplovment of those

equations in the case of light. I think the reflections which

I have made at the end of Sect, iv., where I have examined the

consequences of the law of continuity, a law which seems to per-

vade nature, may tend to remove the difficulty.

Section I.

Explanation of the Theory of Fluid Motion proposed. Foimation

of the Differential Equations. Application of these Equations

to afew simple cases.

1. Before entering on the explanation of this theory, it will

be necessary to define, or fix the precise meaning of a few ‘terms
which I shall have occasion to employ.

In the first place, the expression “ the velocity of a fluid at

any particular point” will require some notice. If we suppose
a fluid to be made up of ultimate molecules, it is easy to see that
these molecules must, in general, move among one another in an
irregular manner, through spaces comparable with the distances
between them, when the fluid is in motion. But since there is

no doubt that the distance between two adjacent molecules is

quite insensible, we may neglect the irregular part of the velocity,
compared with the common velocity with which all the molecules
in the neighbourhood of the one considered are moving. Or, we
may consider the mean velocity of the molecules in the neigh-
bourhood of the one considered, apart from the velocity due to
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gQ ON THE FRICTION OF FLUIDS IN MOTION,

not be affected by any motion of translation common to tbe whole

element. If the molecules of i? were in a state of relative equi-

librium, the pressure would be equal in all directions about F,

as in the case of fluids at rest. Hence I shall assume the follow-

ing principle ;

—

That the difference between the pressure on a plane in a given

direction passing through any point T of a fluid in motion and the

pressure which would exist in all directions about P if the fluid in

its neighbourhood were in a state of relative equilibi'mm depends

only on the relative motion of the fluid immediately about P; and

that the relative motion due to any motion of rotation may be elimi-

nated without affecting the differences of the pressures above men-

tioned.

Let us see how far this principle will lead us when it is

carried out.

2. It will be necessary now to examine the nature of the

most general instantaneous motion of an element of a fluid.

The proposition in this article is however purely geometrical, and

may be thus enunciated :
—

“ Supposing space, or any portion of

space, to be filled with an infinite number of points which move
in any continuous manner, retaining their identity, to examine

the nature of the instantaneous motion of any elementary portion

of these points.”

Let u, V, w be the resolved parts, parallel to the rectangular

axes, Ox, Oy, Oz, of the velocity of the point P, whose co-ordinates

at the instant considered are x, y, z. Then the relative velocities

at the point P', whose co-ordinates are x x
, y +y', z V, will be

du , du . du , 1 , , ^S ® ^ y + 3;
“ *0 ®'

dv

dx
X ' X*+^ 2' +

dv

dz
z y*

dw dw dw

neglecting squares and products of x\ y, z. Let these velocities
e compounded of those due to the ang\ilar velocities w

,
w", to'"

about the axes of a, y, z, and of the velocities U, V, W parallel
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82 ON THE FJIICTION OF FLUIDS IN MOTION,

vrliere

‘^=^- ^=dJ' dz^ dy*

- dw
.
t?u

,
c^y

2^ = 3P+<S-

If we eliminate from equations (3) the two ratios which exist

between the three quantities x
, y, z, we get the well known cubic

equation

which occurs in the investigation of the principal axes of a rigid

body, and in various others. As in these investigations, it may be

shewn that there are in general three directions, at right angles

to each other, in which the point P' may be situated so as to

satisfy the required conditions. If two of the roots of (4;) are

equal, there is one such direction corresponding to the third root,

and an infinite number of others situated in a plane perpendicular

to the former; and if the three roots of (4) are equal, a line

drawn in any direction will satisfy the required conditions.

The three directions which have just been determined I shall

caU axes of extension. They will in general vary from one point

to another, and from one instant of time to another. If we denote
the three roots of (4) by e, e", e'", and if we take new rectangular
axes Ox,, Oy,, Oz^, parallel to the axes of extension, and denote
by M,, CT, &c. the quantities referred to these axes corresponding
to w, U, &c., equations (3) must be satisfied by y/= 0, = 0, e= ,

by xl= 0, z/=: 0, e= e", and by a;/= 0, y/= 0, e = e'", which requires
that/,=s 0, g^^ 0, 0, and we have

' dx.

dw^

dz.

The values of 17,, F, W,, which correspond to the residual
motion after the elimination of the motion of rotation correspond-
mg to to', to" and to'", are

’
^

^ s^gular velocity of which to', to", to'" are the components
IS m ependent of the arbitrarj^ directions of the co-ordinate axes;

e same is true of the directions of the axes of extension, and of
e va ues of the roots of equation (4). This might be proved in
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various ways
;
perhaps the following is the simplest The condi-

tions by which o', o", tu"' are deteimined are those which express

that the relative velocities J7, V, W, which remain after climinaling

a certain angular velocity, are such that Vdy'-i- Wdz' is

ultimately an exact differential, that is to say when squares and

products of <c\ y' and z* are neglected. It appears moreover from

the solution that there is only one way in which these conditions

can he satisfied for a given system of co-ordinate axes. Let us

take new rectangular axes, Ox, Oy, Oz, and let U, V,W he the

resolved parts along these axes of the velocities U, V, W, and

/» z, the relative co-ordinates of P'; then

27 SBU cos arx +V cos ary -t-W cos xz,

dx = cosa:xdx'-pcosxy<iy'-hco3iPzJz',&c,;

whence, taking account of the well known relations between the
^

cosines involved in these equations, we easily find

Udx-\- rdy+ Tfdz =^U(/x'+Ydy'-f'Wdz.

It appears therefore that the relative velocities U, V, W, which

remain after eliminating a certain angular velocity, are such that

TJdx'-h Vdy'-f-W<f2' is ultimately an exact differential Hence

the values of U, V, W are the same as w'ould have been obtained

from equations (2) applied directly to the new axes^ whence the

truth of the proposition enunciated at the head of this paragraph

is xnamfef^t

The motion corresponding to the velocities F',, TT, may bo

further decomposed into a motion of dilatation, positive or negative,

which is alike in all directions, and two motions which I shall call

motions of shifting, each of the latter being in two dimensions, and

not affecting the density. For let 5 be the rate of linear extension

corresponding to a uniform dilatation ; let axl — <ryl be the velo-

cities parallel to x^, y^, corresponding to a motion of shifting parallel

to the plane xjy^, and let be the velocities parallel to

corresponding to a similar motion of shifting parallel to tho

plane xs^. The velocities parallel to a:,, y„ z, respectively corre-

sponding to the quantities S, c and a will be (5+ c + tr') «/, (5 — d)y,

»

(S — and equating these to ff,, IF, we shall get

® *= i (c -J- c" -h e "), IT «= J (c + e" — 2e"), <r' = J (o' + «
' )•

Hence the most general instantaneous motion of an clementaiy

portion of a fluid is compounded of a motion of translation, a

6—2

270



ON THE FRICTION OF FLUIDS IN MOTION,
8^

motion of rotation, a motion of uniform diLatation, and two motions

of shifting of the kind just mentioned.

3. Having determined the nature of the most general instan-

taneous motion of an element of a fluid, we are now prepared to

consider the normal pressures and tangential forces called into

play by the relative displacements of the particles. Let p he the

pressure which would exist about the point P if the neighbouring

molecules were in a state of relative equilibrium: let be

the normal pressure, and t, the tangential action, both referred to

a unit of surface, on a plane passing through P and having a given

direction. By the hypotheses of Art. 1. the quantities p^, t, will

be independent of the angular velocities o)', a/', depending

only on the residual relative velocities Z7, V, Tf, or, which comes

to the same, on e, e" and e"\ or on o-, a and B. Since this re-

sidual motion is symmetrical with respect to the axe i of extension,

it follows that if the plane considered is perpendicular to any one

of these axes the tangential action on it is zero, since there is no

reason why it should act in one direction rather than in the

opposite
;

for by the hypotheses of Art 1 the change of density

and temperature about the point P is to be neglected, the consti-

tution of the fluid being ultimately uniform about that point

Denoting then by p+p', p+p'\ p+p" the pressures on planes

perpendicular to the axes of ic^, we must have

b \ e') denoting a function of e\ e" and e" which] is sym-
metrical with respect to the two latter quantities. The question
is now to determine, on whatever may seem the most probable
hypothesis, the form of the function

^

Let us first take the simpler case in which there is no dilata-
tion, and only one motion of shifting, or in which e" = - e', e"' = 0,
and let us consider what would take place if the fluid consisted of
smooth molecules acting on each other by actual contact. On
t IS supposition, it is clear, considering the magnitude of the pres-
sures acting on the molecules compared with their masses, that

ey would be sensibly in a position of relative equilibrium, except

+V, f
equilibrium of any one of them became impossible from

^

e isp acement of the adjoining ones, in which case the moleculem question would start into a new position of equilibrium. This
wou cause a corresponding displacement in the molecules
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iramediatoly about the one wbicb started, and this disturbance

would be propagated immediately in all directions, the nature of

the displacement however being different in different directions

and would soon become insensible. During the continuance of

this disturbance, the pressure on a small plane drawn through the

element considered would not be tbe same in all directions, nor

normal to the plane: or, which comes to the same, we may sup-

pose a uniform normal pressure to act, together with a normal

pressure and a tangential force p„ and t,, being forces of

great intensity and short duration, that is being of the nature of

impulsive forces. As the number of molecules comprised in the

element considered has been supposed extremely great, we may

take a time t so short that all summations with respect to such

intervals of time may’bo replaced without sensible error by inte-

grAtions, and yet so long that a very great number of starts shall

take place in it. Consequently we have only to consider the aver-

age effect of such starts, and moreover we may without sensible

error replace the impulsive forces such as and which succeed

one another with great rapidity, by continuous forces. For planes

perpendicular to the axes of extension these continuous forces will

bo the normal pressures

Let US now consider a motion of shifting differing from the

former only in having e* increased in the ratio of 7?* to 1. Then, if

W'e suppose each start completed before the starts which would be

sensibly affected by it are begun, it is clear that the same series of

starts will take place in the second case as in the first, but at

intervals of lime which are less in the ratio of 1 to wi. Conse-

quently the continuous pressures by which tbe impulsive actioM

due to these starts may he replaced must be increased in tbe ratio

of m to 1. Hence the pressures 7?',^",y" must be proportional

to e', or we must have

p* = Ce, 7?"= CV, 7)'" = CV.

It is natural to suppose that these formulm hold good for nc^-

tive as well as positive values of Assuming this to bo true, le

the sign ot c' bo changed. This comes to interchanging a: ana y,

and consequently 7)"' must remain tbo same, and p andp

be interchanged. tVe must therefore have 0, O' = -

ting then 0=— 2/i wo have

7
)' = — p"e 2fi$\ p'" « 0.

272



86 ON THE FaiCTION OF FLUIDS IN MOTION,

It has hitherto been supposed that the molecules of a fluid are

in actual contact. We have every reason to suppose that this is

not the case. But precisely the same reasoning will apply if they

are separated by intervals as great as we please compared with

their magnitudes, provided only we suppose the force of restitution

called into play by a small displacement of any one molecule to be

very great.

Let us now take the case of two motions of shifting which co-

exist, and let us suppose e = e" = — cr, e" — — a. Let the

small time t be divided into 2n equal portions, and let us suppose

that in the first interval a shifting motion corresponding to e'= 2o-,

e"= — 2cr takes place parallel to the plane xjy^, and that in the

second interval a shifting motion corresponding to e'=2(r\ e'"= — 2<r'

takes place parallel to the plane and so on alternately. On
this supposition it is clear that if we suppose the time rj^n to be

extremely small, the continuous forces by which the effect of the

starts may be replaced will be p'= — 2/^ (o- + a), p’= 2fia-, 2/icr'.

By supposing n indefinitely increased, we might make the motion

considered approach as near as we please to that in which the two

motions of shifting coexist
;
but we are not at liberty to do so, for

in order to apply the above reasoning we must suppose the time

t/271 to be so large that the average effect of the starts which
occur in it may be taken. Consequently it must be taken as an
additional assumption, and not a matter of absolute demonstration,

that the effects of the two motions of shifting are superimposed.

Hence if S = 0, i.e. if e' + e"+ e"' — 0, we shall have in general

= f' = -2ixe"’ (5).

It was by this hypothesis of starts that I first arrived at these
equations, and the differential equations of motion which result
from them. On reading Poisson’s memoir however, to which I
shall have occasion to refer in Section iv., I was led to reflect that
however intense we may suppose the molecular forces to be, and
however near we may suppose the molecules to be to their posi-
tions of relative equilibrium, we are not therefore at liberty to
suppose them in those positions, and consequently not at liberty
to suppose the pressure equal in all directions in the intervals of
time between the starts. In fact, by supposing the mv.lwCular
orces indefinitely increased, retaining the same ratios to each
ot er, we may suppose the displacements of the molecules from
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tlieir positions of relative equilibrium indefinitely diminisbed, but
on the other hand the force of restitution called into action by a
given displacement is indefinitely increased in the same proportion.

But be these displacements what they may, we know that tte

forces of restitution make equilibrium with forces equal and oppo-

site to the effective forces ;
and in calculating the effective forces

we may neglect the above displacements, or suppose the molecules

to move in tho paths in which they would move if the shifting

motion took place with indefinite slowness. Let us first consider

a single motion of shifting, or one for which e" « — e', e' — 0, and

let p, and denote the same quantities as before. If wo now sup-

pose e* increased in the ratio of m to 1, all the effective forces will

be increased in that ratio, and consequently and will be in-

creased in the same ratio. We may deduce the values of p'p", and

just as before, and then pass by the same reasoning to the case

of two motions of shifting which coexist, only that in this case the

reasoning will be demonstrative, since we may suppose the time

T/2n indefinitely diminished. If we suppose the state of things

considered ir this paragraph to exist along with the motions of

starting already considered, it is easy to see that the expressions

forp'ip" and p"' will still retain the same form.

There remains yet to be considered the effect of the dilatation.

Let us first suppose the dilatation to exist wthout any shifting

:

then ii is easily seen that the relative motion of the fluid at tho

point considered is the same in all directions. Consequently the

only effect which such a dilatation could have would be to intro*

duce a normal pressure alike in all directions, in addition to

that due to the action of the molecules supposed to be in a stale

of relative equilibrium. Now^ the pressure p, could only arise

from ihe aggregate of the molecular actions called into play by

the displacements of the molecules from their positions of relative

equilibrium
;
but since these displacements take place, on^ an

average, indifferently in all directions, it follows that the actions

of which p, is composed neutralize each other, so thatp, = 0. The

same conclusion might be drawn from the hypothesis of starts,

supposing, as it is natural to do, that each start calls into wtion

as much increase of pressure in some directions as diminution o

pressure in others.

If the motion of uniform dilatation coexists with two motions
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of Biiifting, I shall suppose, for the same reason as before, that the

effects of these different motions are superimposed. Hence sub-

tracting B from each of the three quantities e\ e" and e'", and

putting the remainders in the place of e, e” and e" in equations

(5), we have

/ = + o'" - 2e'), f = + e' - 2e"),

= (6).

If we had started with assuming ^ (e', e", o'") to be a linear func-

tion of e\ e" and e'", avoiding all speculation as to the molecular

constitution ofa fluid, we should have had at oncep'~Ce+C(e"+e"),

since p' is symmetrical with respect to e" and e"; or, changing the

constants, p' = |/i (e" + e" — 2e) -f /c (o'+ c" + e'"). The expressions

for p" and p” would be obtained by interchanging the requisite

quantities. , Of course we may at once put « = 0 if we assume

that in the case of a uniform motion of dilatation the pressure at

any instant depends only on the actual density and temperature at

that instant, and not on the rate at which the former changes

with the time. In most cases to which it would be interesting to

apply the theory of the friction of fluids the density of the fluid is

either constant, or may without sensible error be regarded as con-

stant, or else changes slowly with the time. In the first two cases

the results would be the same, and in the third case nearly the

same, whether k were equal to zero or not. Consequently, if

theory and experiment should in such cases agree, the experiments

must not be regarded as confirming that part of the theory which
relates to supposing k to be equal to zero,

4. It will be easy now to determine the oblique pressure, or

resultant of the normal pressure and tangential action, on any
plane. Let us first consider a plane drawn through the point P
parallel to the plane yz. Let Ox^ make with the axes of x, y, z
angles whose cosines are T, w', n* let 1”, m", n" be the same for

and ri" the same for Oz^. Let be the pressure,
and {xty), [xtz) the resolved parts, parallel to y, z respectively, of
the tangential force on the plane considered, all referred to a unit
of surface, (xty) being reckoned positive when the part of the
fluid towards — x urges that towards -j- a; in the positive direction
of y, and similarly for {xtz). Consider the portion of the fluid

comprised within a tetrahedron having its vertex in the point P,
its base parallel to the plane yz, and its three sides parallel to the
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in wliicli cc^uatious we must put /or DujDt its value

du
,

dll
,

dll

dt dx dy dz

and similarly fur Rojdt and Dwidt In considering tlie general

equations of motion it will be needless to write down more than

one, since Ihe other two may be at once derived from it by inter-

changing the requisite quantities. The equations (10), the ordi-

nary equation of continuity, as it is called,

dp
,

dpu
,

dpv dpw
f ^

A+di + dy

which expresses the condition that there is no generation or

destruction of mass in the interior of a fluid, the equation con-

necting p and p, or in the case of an incompressible fluid tbe

equivalent equation DpIDt = 0, and the equation for the propa-

gation of heat, if we choose to take account of that propagation,

are the only equations to be satisfied at every point of the interior

of the fluid mass.

As it is quite useless to consider cases of the utmost degree

of generality, I shall suppose the fluid to be homogeneous, and of

a uniform temperature throughout, except in so far as the

temperature may be raised by sudden compression in the case of

small vibrations. Hence in equations (10) p may be supposed to

be constant as far as regards the temperature
;

for, in the case

of small vibrations, the terms introduced by supposing it to vary

with the temperature would involve the square of the velocity,

which is supposed to be neglected. If we suppose p. to be in-

dependent of the pressure also, and substitute in (10) the values

of Pj &c. given by (8), the former equations become

/Du dp fd'u d*u d'u\

p d (du dv did
’)= 0, &C.

(
12).3 dx \dx dy~^ dzt

Let us now consider in what cases it is allowable to suppose

p to be independent of the pressure. It has been concluded by
Dubuat, from his experiments on the motion of .water in pipes
and canals, that the total retardation of the velocity due to
friction is not increased by increasing the pressure. The total
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retardation depends, partly on the friction of the ^yate^ agaiaat

the sides of the pipe or canal, and partly on the mutual friction,

or tangential action, of the different portions of the water. Now
if these two parts of the u hole retardation were separately variable

withp, it is very unlikely that they should when comhined give

a result independent of p. Tlie amount of the internal friction

of the water depends on the value of /t. I shall therefore suppose

that for water, and hy analogy for other incompressible fluids,

fi is independent of the pressure. On this supposition, we have

from equations (11) and (12)

dx'^dt/'^ dz

These equations are applicable to the determination of the motion

of water in pipes and canals, to the calculation of the effect of

friction on the motions of tides and waves, and such questions.

If the motion is vciy small, so that we may neglect the square

of the velocity, we may put DalDt^dujdt, d:c. in equations (13).

The equations thus simplified arc applicable to the determination

of the motion of a pendulum oscillating in water, or of that of

a vessel filled with water and made to oscillate. They are also

applicable to the determination of the motion of a pendulum

oscillating in air, for in this case we may, with hardly any error,

neglect the compressibility of the air.

The case of the small vibrations by which sound is propagated

in a fluid, whether a liquid or a gas, is another in which dnjJp

may be neglected. For in the case of a liquid reasons have been

shewn for supposing p to be independent of p, and in the case

of a gas we may neglect dpjdp^ if ive neglect the small change

in the value of p, arising from the small variation of pressure due

to the forces X, y, X
6. Besides the equations which must hold good at any point

in the interior of the mass, it will be necessary to form aMo (he

equations which must be satisfied at its boundaries. Bet M be

a point in the boundary of the fluid. Let a normal to the surfa^^

at M, dra^n on the outside of the fluid, make with the axes

angles whose cosines are 1. in, n Let P*, Q\ R' ho the componen

280



94i ON TJIE FRICTION OF FLUIDS IN MOTION,

of tho pressurG of th6 fluid about ilf on tho solid or fluid with

which it is in contact, these quantities being reckoned^ positive

when the fluid considered presses the solid or fluid outside it in

the positive directions of a, y, s, supposing I, m and n positive.

Let ^ be a very small element of the surface about M, which

will be ultimately plane, S' a plane parallel and equal to S, and

directly opposite to it, taken within the fluid. Let the distance

between S and S' be supposed to vanish in the limit compared

with the breadth of S, a supposition which may be made if we

neglect the effect of the curvature of the surface at M\ and let

us consider the forces acting on the element of fluid comprised

between S and S', and the motion of this element. If we suppose

equations (8) to hold good to within an insensible distance from

the surface of the fluid, we shall evidently have forces ultimately

equal to PS, QS, RS, (P, Q and R being given by equations (9),)

acting on the inner side of the element in the positive directions

of the axes, and forces ultimately equal to P'S, Q'S, JRS acting

on the outer side in the negative directions. The moving forces

arising from the external forces acting on the element, and the

effective moving forces will vanish in the limit compared with the

forces PS, &c. : the same will be true of the pressures acting

about the edge of the element, if we neglect capillary attraction,

and all forces of the same nature. Hence, taking the limit, we
shall have

P' = P, Q'=Q, P' = P.

The method of proceeding will be different according as the

bounding surface considered is a free surface, the surface of a
solid, or the surface of separation of two fluids, and it will be
necessary to consider these cases separately. Of course the surface
of a liquid exposed to the air is really the surface of separation
of two fluids, but it may in many cases be regarded as a free

surface if we neglect the inertia of the air : it may always be
so regarded if we neglect the friction of the air as well as its

inertia.

Let us first take the case of a free surface exposed to a pres-
sure n, which is supposed to be the same at all points, but may
^ary with the time

; and let L = 0 be the equation to the surface*
In this case we shall have P' = m, Q' = mU, R' = nJI; and
putting for P, Q, R their values given by (.9), and for P, &c. their
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values given by (8), and observing that in this case 8 = 0, ue
shall have

1 {n -rt ^ [
2ig+ m

(I+ J)
+ ng +g] = 0, &c.. ..(U),

jQ which equations vxy « will have to ho replaced by dL|ix^

dLjdyf dLjdzt to which they are proportional.

If we choose to take account of capillary attraction, we hare

only to diminish the pressure 11 by the quantity

H is a positive constant depending on the nature of the fluid, and

Tj, r,, are the principal radii of curvature at the point considered,

reckoned positive when the fluid is concave outwards. Equations

(14) with the ordinary equation

dL
,

dL
,

dL, dL .— + u:7-4-v->- +to^*0„
at dx dy dz

..(15),

are the conditions to he satisfied for points at the free surface.

Equations (14) are for such points what the three equations of

motion are for internal points, and (15) is for the former what (11)

is for the latter, expressing in fact that there is no generation or

destruction of fluid at the free surface.

The equations (14) admit of being differently expressed, in, *

way which may sometimes be usefuL If we suppose the origin to

be in the point considered, and the axis of a to he the external

normal to the surface, we have =0, ;* = 1, and the equationi

become

^ + ^“,= 0
, ^ +^= 0, n -

j,+ 2;.^=0 (16).

dx dz * dy dx ^

The relative velocity parallel to r of a point {ptVt 0)

free surface, indefinitely near the origin, is diojdz.x -^dwldy.y-

hence we see that dwfdx, dvjjdy are the angular velocities, reckone

from a: to r and from y io z respectively, of an element of the ree

surface. Subtracting the linear velocities due to tbeso

velocities from the relative velocities of the point (®jy»*/*

calling the remainieg relative velocities £7, K, IT, we shall have

282



ON THE FIIICTION OP FLUIDS IN MOTION,

Hence we see that the first two of equations (16) express' the con-

ditions that dUJdz' — 0 and dVidz’ =0, which are evidently the

conditions to he satisfied in order that there may be no sliding

motion in a direction parallel to the free surface. It would be

easy to prove that these are the conditions to be satisfied in order

that the axis of z may be an axis of extension.

The next case to consider is that of a fluid in contact with a

solid. The condition which first occurred to me to assume for

this case was, that the film of fluid immediately in contact with

the solid did not move relatively to the surface of the solid. I

was led to try this condition from the following considerations.

According to the h}q)otheses adopted, if there was a very large

relative motion of the fluid particles immediately about any imagi-

nary surface dividing the fluid, the tangential forces called into

action would be very large, so that the amount of relative motion

would be rapidly diminished. Passing to the limit, we might sup-

pose that if at any instant the velocities altered discontinuously

in passing across any imaginary surface, the tangential force called

into action would immediately destroj-^ the finite relative motion

of particles indefinitely close to each other, so as to render the

motion continuous; and from analogy the same might be supposed
to be true for the surface of junction of a fluid and solid. But
having calculated, according to the conditions which I have men-
tioned, the discharge of long straight circular pipes and rectangular
canals, and compared the resulting formulae with some of the
experiments of Bo.ssut and Dubuat, I found that the formula did
not at all agree with experiment. I then tried Poisson’s conditions
in the case of a circular pipe, but with no better success. In fact,

H appears from experiment that the tangential force varies nearly
as the square of the velocity with which the fluid flows past the
s\irface of a solid, at least when the velocity is not very small. It
appears however from experiments on pendulums that the total
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friction varies as the first power of the velocity, and consequently

we may suppose that Poisson’s conditions, which include as a
particular case those which I first tried, hold good for very small

velocities. I proceed therefore to deduce these conditions in a
manner conformable with the views explained in this paper.

First, suppose the solid at rest, and let j[i= 0 be the equation

to its surface. Let M' be a point within the fluid, at an insensible

distance k from JW*. Let zr he the pressure which would exist

aboutM if there were no motion of the particles in its neighbour-

hood, and let p, he the additional normal pressure, and the tan-

gential force, due to the relative velocities of the particles, both

with respect to one another and with respect to the surface of the

solid. If the motion is so slow that the starts tahe place independ-

ently of each other, on the hypothesis of starts, or that the mole-

cules are very nearly in their positions of relative equilibrium,

and if we suppose as before that the effects of different relative

velocities are superimposed, it is easy to shew that p, and t, are

linear functions of u, v, w and their differential coefficients with

respect to y and s; u, v, &c. denoting here the velocities of tbe

fluid about the point M', in the expressions for which however tbo

co-ordinates of J/ may be used for those of since h is neglected.

Now the relative velocities about the points and depending

on (?«/<&, &c. arc comparable with dujdx.h, while those depending

on u, V and w are comparable with these quantities, and therefore

in considering the action of the fluid on the solid it is only neces-

sary to consider the quantities n, v and w. Now since, neglecting

h, the velocity at M' is tangential to the surface at M, u, v, and tv

are the components of a certain velocity V tangential to the sur-

face. The pressure p^ must be zero ;
fbr changing the signs «, v,

and to the circumstances concerned in its production remain the

same, whereas its analytical expression changes sign. The tangen-

tial force at Af will he in the direction of V, and proportional to it,

and consequently its components along the axes of will he

proportional to «, if, w. Reckoning tho tangential force positive

when, m, and n being positive, the solid is urged in the positive

directions of x, y, z, the resolved parts of the tangential force ivj

therefore he vu, vv, pia, where v must evidently he positive, since

the effect of tbo forces must be to check the relative motion of t o

fluid and solid. The normal pressure of the fluid on the soi

being equal to xv, its components will be evidently ftx, ntvr, ncr.
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98 ON THE FRICTION OF FLUIDS IN MOTION,

Suppose now the solid to be in motion, and let u', v, w be the

resolved parts of the velocity of the point ilf of the solid, and © ,

oj"f a" the angular velocities of the solid. By hypothesis, the

forces by which the pressure at any point differs from the normal

pressure due to the action of the molecules supposed \o be in a

state of relative equilibrium about that point are independent of

any velocity of translation or rotation. Supposing then linear and

anc^ular velocities equal and opposite to those of the solid impressed

both on the solid and on the fluid, the former will be for an

instant at rest, and we have only to treat the resulting velocities

of the fluid as in the first case. Hence F'=1'st + v(u~-u'), &c.;

and in the equations (8) we may employ the actual velocities «,

V, w, since the pressures P, Q, R are independent of any motion

of translation and rotation common to the whole fluid. Hence

the equations P' — P, &e. gives us

l(‘!jr—p) + v(u — u')

which three equations with (15) are those which must be satisfied

at the surface of a solid, together with the equation L — 0. It

will be observed that in the case of a free surface the pressures

P, Q', R' are given, whereas in the case of the surface of a solid

they are known only by the solution of the problem. But on the

other hand the form of the surface of the solid is given, whereas

the form of the free surface is known only by the solution of the

problem,

Dubuat found by experiment that W'hen the mean velocity of

water floAving through a pipe is less than about one inch in a
second, the water near the inner surface of the pipe is at rest.

If these experiments may be trusted, the conditions to be satisfied

in the case of small velocities are those which first occurred to me,
and which are included in those just given by supposing p= co,

I have, said that when the velocity is not very small the tan-
gential force called into action by the sliding of water over the
inner surface of a pipe varies nearly as the square of the velocity.
This fact appears to admit of a natural explanation. When a cur-
rent of water flows past an obstacle, it produces a resistance varying
nearly as the square of the velocity. Now even if the inner surface
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of a pipe is polislied we may suppose that little irregularities
exist, forming so many ohstacles to the current. Each little pro-
tuberance will experienco a resistance varying nearly as the square
of the velocity, from whence there will result a tangential action
of the fluid on the su.-face of the pipe, which will vary nearly os
the square of the velocity

; and the same will he true of the equal
and opposite reaction of the pipe on the fluid. The tangential

force duo to this cause will be combined with that by which the

fluid close to the pipe is kept at rest when the velocity is suf-

ficiently small*.

[• Except in the case o( capiUarj tnhes, or, in case the lube he somewhat wider,

ol ciceasiTely slow motions, the main part of the resistance depends npon the
formation of eddies. This much appears cfcarj hut the precise way in which the

eddies act is less evident. The explanation in the text gives probably the correct

account of what tahes place in the case of a river flowing over a rough stony bed;

but in the case of a pipe of fairly smooth interior surface the minute protuberances

would ho too small to prodnee mneh resistance of the same land as that con*

templatcd in the paragraph beginning near the fool of p. 53.

^Vhat aclnally happens appears to be this. The rolling motion of the fluid

belonging to the eddies is continnally bringing the more swiftly moving flnid which

is found nearer to the centre of the piptt close to the surface. And in consequeDCS

th? gliding cr ehiMin® motion of the flt»M in the immpdlAte neighbourhood of the

surface In such places is very greatly increased, and with it the tangential preisure.

Thna while in some respects these two classes of resistances are similar, in

others they ore materialljf different. As ^ical exafoples of the two classes we
way tahe, for the first, that of a polished sphere of glass of seme size desfcnfling

by its weight in deep water; for the second, that of a very long circular glass pips

down which water is flowing. In both casts alike eddies are produced, and the

eddies once produced nltimately die away. In both cases alike the Internal friction

of the flnid, and the friction between the flnid and the solid, are intimately

connected with the formation of eddies^ and it is by friction that the eddies die

away, and the kinotio energy of the mass is converted into molecular kinetic

energy, that is, heat. But in the first case the resistance depends mainly on the

cilercDceoI thopressorep in front and rear, tho resultant of the other forces of which

the expressions are given in equations (8) being comparatively insignificant, while

in the second case it Is these latter pressures that we ore concerned with, the

resnltaut of the pressure p in the direction of the axis of the tube being practically

all, e.rt though the polish of the surface bo not mslhematicaliy perfect.

Hence if, the motion being whnt it actually is, the fluidity ol the fluid were

suddenly to become perfect, tho immediate effect on the resistance in the first cais

would bo insignificant, whilo In tho second case the resistance would practiesUy

vanish. Of course if tho fluidity were to remain perfect, the motion after some

time would be very diffcrcut from what it bad been before; hut that Is not a p® I

Under consideration.

Some questions connected with the effect of friction In altering the motion of

a nearly perfect fluid will be considered further on iu discussing the case of mo oa

Riven In Art. 63 of a paper On the CrffiVal rafwc* of the Sumt cf Periodie SerUt.)

7-2
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Thors romSiins to bo coHSKlorod tho cftso of two fluids h&vin^ &

common surface. Let u\ -if, w, 8' denote the quantities belong-

ing to the second fluid corresponding to it, &c. belonging to the

first. Together with the tv;o equations L = 0 and (15) we shall

have in this case the equation derived from (15) by putting m', v\ w

for w, v, w

;

or, which comes to the same, we shall have the two

former equations with

l{u — u) — v) + niw — to') = 0 (18).

If we consider the principles on which equations (17) were formed

to be applicable to the present case, we shall have six more equa-

tions to be satisfied, namely (17), and the three equations derived

from (17) by interchanging the quantities referring to the two

fluids, and changing the signs I, m, n. These equations give the

value of -cr, and leave five equations of condition. If we must

suppose y = 00
,
as appears most probable, the six equations above

mentioned must be replaced by the six u = w, v* = y, = w, and

Ip — pf{u, V, w) — Ip' — pf{u', y', w'), &c.,

f{u,v,w) denoting the coefficient of p in the first of equations (17).

We have hero six equations of condi^i

the equation (18) becomes identical.

ox>iauii,iOn instead of five, but then

7. The most interesting questions connected with this subject

require for their solution a knowledge of the conditions which
must be satisfied at the surface of a solid in contact with the fluid,

which, except perhaps in case of very small motions, are unknown.
It may be well however to give some applications of the preceding

equations which are independent of these conditions. Let us then
in the first place consider in what manner the transmission of sound
in a fluid is affected by the tangential action. To take the simplest
case, suppose that no forces act on the fluid, so that the jDressure

and density are constant in the state of equilibrium, and conceive
a series of plane waves to be propagated in the direction of the
axis of X, so that u=f (x, t), v=0, io = 0. Let be the pressure,
and the density of the fluid when it is in equilibrium, and put

P~p,+p'. Then Ave have from equations (11) and (12), omitting
the square of the disturbance.

— ,
dip' 4 d'u

p, dl dx ' dt'^ dx'~ 3^ dx*
0 (19),
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102 ON THE FRICTION OF FLUIDS IN MOTION,

tion of sound is sensiMy the same whatever he its pitch. Hence

it is necessary to suppose that for air is insensible com-

pared with A or pjp,. I am not aware of any similar experiments

made on water, but the ratio of (jijXpy to A would probably be

insensible for water also. The diminution of intensity as the time

increases is, in the case of plane waves, due entirely to friction

;

but as we do not possess any means of measuring the intensity of

sound the theory cannot be tested, nor the numerical value of p.

determined, in this way.

The velocity of sound in air, deduced from the note given by

a known tube, is sensibly less than that determined by direct

observation. Poisson thought that this might be due to the

retardation of the air by friction against the sides of the tube.

But from the above investigation it seems unlikely that the effect

produced by that cause would be sensible.

The equation (21) may be considered as expressing in all

cases the effect of friction
;

for we may represent an arbitrary

disturbance of the medium as the aggregate of series of plane

waves propagated in all directions.
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Reprinted from Philosophical Transactions of the Royal Society, London, 150, 133-148 (1858)

[ 133
]

VIII. 0?i the Mathematical Theory of Sound. By the Bev. S. Eaexshaw, M.A.,

Sheffield. Communicated hy Professor W. H. Miller, F.R.S.

Eecelved November 20, 1858,—Head January 6, 1859*.

In making certain investigations on the properties of the sound-wave, transmitted

through a small horizontal tube of uniform bore, I found reason for thinking that the

equation

dt^ (!•)

must always be satisfied; F being a function of a fonn to be determined. Differen^

tiating this equation mth regard to t, we find

which by means of the arbitrary function F can be made to coincide, not only with the

ordinai-y dynamical equation of sound, but with any djmamical equation in which the

ratio of^ and^ can be expressed in terms of

Equation (1.) is a partial first integral of (2.), and by means of it we shall be able to

obtain a final integral of (2.), which ^^ill be shown to be the general integral of (2.) for

wave-motion, propagated in one direction only in such a tube as rve have supposed, by

its satistjang all the conditions of such wave-motion.

It will be convenient to begin with the simplest case of sound,—that in which the

development of heat and cold is neglected.

I. AVAYE-ISIOTION AVHEN CHANGE OF TEAIPEEATURE IS NEGLECTED.

1. The equations for this case of motion are, the djTiamical equation

(dyV
\dxj dP

and the equation of continuity,

%_lo.
dx q'

(3.)

(4.)

Pi am the equilibrium density and pressure at any point of the fluid
; f, p the same

for a particle in motion
; x the equilibrium distance of the same particle from a fixed

plane cutting the tube at right angles ; and t is the time Avhen the same particle, being
m motion, is at the distance y from the same plane

;
pc is the constant which connects g

and p by Boyle’s law p=pcg.

* Subsequently recast aud abridged by tbe author, but without iulroduciug now matter.

MDCCCLX. T
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4.

We have now to express these results in terms of the original genesis of the

motion. Let us suppose the motion generated by a piston pushed forwards in the tube

in a given manner. Let the piston at the time T (having the same origin as t) be at

the distance Y firom the plane of reference, and moving forwards with the velocity U

;

and by K denote the density of the air in contact with the piston at that moment. For

all particles in contact with the piston x=Q (we suppose the piston to commence its

motion at the origin of x). Then since at the time T the particles in contact with the

piston are Avithin the limits of the wave, equations (6.) and (7.) must be satisfied;

Y=± log,«'. T+(p{u')
]

0 =±\/f^T+ay(a') i

In these equations and at present we have not sufficiently connected the two

systems of eq’iations (7.) and (8.). We shall further connect them by assuming R=f,
which gives a'=a; the effect of which assumption is to limit the meaning of T, Y, U
as follows :

—

T is the time of genesis of the density g which at the time f has been trans-

mitted to the place denoted by y;
Y is the place where the density g was generated

;

U is the velocity of the piston when g was generated by it.

We may now write a for a', and then eliminate a, (p(a), and (p\a) between the four

equations (7.), (8.). By this means we obtain

y=Y-i-(U+yp)(t-T) (9.)

x=z+^t^^(f-T) (10.)

(11.)

5. By these equations the state of a wave at any moment is connected with its genesis;

and they contain in fact the complete solution of the problem of every kind of motion,

in a tube, which can be generated by a piston.

6. From (11.) it appears that n=U; that is, that the particle-velocity generated by
the piston is transmitted through the medium without suffering any alteration. The
same equation (11.) shows that between the density and the velocity there is an inva-

riable relation, which is independent of the law of original genesis of the motion ; so

that in the same wave, or in different waves, wherever there is the same density, there

will also be the same velocity.

7. One of the most ob^ious facts on looking at the equations just found is, that for

the same genesis there are two values of x, two of y, and two of g. The signification of

Number of tbe Magazme it appears tbst Professor Ds MoEGArr bad discorered ard communicated to
the Astronomer Eoyal trro particular forma of tbe function F ;

nitbont perceiving, hoTverer, that a slight

genersdimtion of bis results tvould put bim in tbe WBy to tbe integral expressed by tbe eqnations (5.).

T 2
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this is, that a single disturbance generates two waves; and (11.) shows that for one cf

them f is greater, and for the other less than f,.
Equation (10.) shows that they art

propagated in contrary directions on opposite sides of the piston, and arc therefore
ijoj

parts of the same wave.

8. In the gcncas of the wave we have supposed the piston pushed forwards, that
i,,

in the direction of Hence for the wave generated on that side of the piston ve

must, as appears from (10.), take the lower sign, which in (11.) gives g greater than

This wave we call the positive wave, and the rvave of condensation. For the wave gcn^

rated on the other side of the piston we must take the upper sign, which gives
g

than p* ; and this wave we call the negative wave, and the wave of rarefaction.

9. As it will be useful to have a definition of these two waves, which shall be inde.

pendent of their position wath regard to the generating piston, we may state that in

general,—

apositive wave is one in which the motions of the particles arc in the direction of

wave-transmission: and

a negative wave is one in which the motions of the particles are in a dircctioa

opposite to that of wave transmission.

10. If gi and f, be the densities of the air in contact with the piston before asd

behind at any moment, and ifp, and p, be the corresponding pressures; then from (11.)

we have
i a

and

and (,e,=ii;

which may be thus expressed in words:—^if a piston move in a tube, filled with air, in

any manner whatever, the densities of the air in contact with it at its front and liaek

ate such that the equilibrium density is a mean proporlionni between them. And since

P=M’ l"rvey>j.=/;, which furnishes us with a similar properly for tie prinnrn on

the piston.
V

t?

11. Since andp,— it follows that the resistance to the motion of the

piston (calling S its area) is

1—Ji)s= (>•^—

Hence in different gases, ifp. be thc>5ame in all, those will offer the greatest resistance

to the piston for which ft is the least

It will be convenient from this point to consider the two kinds of waves separately.

1. 7^ Wave of (hndensation.

12. The equations for this wave ere
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13. Now with respect to the genesis of this wave, we have seen that U must satisfy

the same conditions as w, and Y asy. But therefore U=:^: and again, as

one of the equations of the general integi-al (7.) was obtained from the other by dif-

ferentiation with regard to a, it follows that both a and U must vary continuously ; and

that^ must not pass through infinity ; in other words, if the velocity of the piston

vary it must vary continuously. Neither Y nor U must be discontinuous with regard

to T. Hence there must be no discontinuity of pressure -within the limits of the wave

at its genesis : and if discontinuity should afterwards occur in the wave during its trans-

mission, our equations will cease to be applicable for that part of the wave where the

discontinuity has occiuxed. For the wave in any one position may be supposed to

generate its next position ; and a piston or diaphragm may at any time be supposed to

act the part of the generating wave. What is necessary for the diaphragm to observe as

a law of genesis must be necessary for the wave considered as the generator of its next

position ; and therefore the part of the wave (if any) where discontinuity occurs ^vill

be beyond the reach of our equations.

14. It has been sho-wn that the density g, which at the time t is at the distance from

the plane of reference, was generated at the time T when its distance from the same

plane was Y. Hence it has been transmitted through the space y—Y in the time t—T,

and consequently the velocity of its transmission (as appears from the first equation of

(12.))

«

15. The wave as a whole is included between two points of it for each of which U=0,
and consequently for each of those points the velocity of transmission is Hence

the wave as a whole is transmitted -with this uniform velocity. But all the parts of the

wave, with the exception of its front and rear, are transmitted mth velocities greater

than this,—^^vith velocities dependent on their respective densities. Hence every part

of the wave, with the exception of its rear, is perpetually gaining on the front, and the

result is a constant change of type,—the more condensed parts hm-rying towards the

front, with velocities greater as their densities are greater. This cannot go on perpe-

tually without its happening at length that a lore (or tendency to a discontinuity of

pressure) will be formed in front ; which -will force its way, in -violation of our equations,

fitster than at the rate of feet per second ; and consequently in experiments, made
on sound at long distances from the origin of the sound-wave, we should expect the

actual velocity observed to be greater than \//I> especially if the sound be a -violent one,

generated mth extreme force (see art. 17).

16. We have .seen that the velocity of transmission of the density § is->/^-l-U. Now
the velocity of the particles where the density is g is %i, w'hich we have shomi to be equal
to U. In a certain sense we may consider the velocity to be a wind-velocity in that
part of the medium, and then we have an indefinitely small disturbance at that point
transmitted in that wind with the velocity imposed upon the uind. In other
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obeyed, and the rej^ort of the gun, might be heard at a long distance in an inverse order

;

i. Q, first the report of the gun, and then the word “ fire*.’* In. a slight degree, therefore,

the experimental velocity of sound will depend on its intensity, and the violence of its

genesis. I consider this article as tending to account for the discrepancy between the

calculated and observed velocities of sound (which most experimentalists have remarked

and wondered at), when allowance is made (as will be done in a future part of this paper)

for change of temperature.

18. It seems reasonable to suppose that the audible character of a wave is in some

way dependent on its type ; and consequently, if this be the case, the soimd imdergoes

a perpetual modification as the distance of transmission increases. One modification of

the sound-wave is, as we have seen, the formation of a bore in front ; but there is another

which cannot but have some influence on its audible properties, as it corresponds to a

remarkable change of type; and this takes place when the greater densities begin to

overtake the less.

Now when one degree of density overtakes another, the values of y corresponding to

those two densities are equal ; and hence at the time t the equation

3,=Y+(^/i;+tIXt-T) (12.)

will give two equal values ofy for two consecutive values of T. Hence differentiating it

with regard to T, remembering that t is constant, or the same for both, as is also y, we have

0=U-(v';i+U)+(?-T)

or

«=T+^. (13.)

dT

The right-hand member of this equation is of course a continuous expression, and there-

fore its least or minimum" value will be the value of f when the modification of type, of

which we are speaking, j/Jr-st begins to take place; and because of the continuity of (13.),

this modification once begun will gradually spread itself over the fore-part of the wave.

Now t will be a minimum when
<PU

\dTj

From this equation we may find T, the time of genesis of that part of the wave where
this modification begins. Then (13.) -will give t, the actual time when the modification

begins; and (12.) will give the place in the tube where it begins.

19. It is perhaps impossible to say what is the audible characteristic corresponding to

the wave-modification just investigated ; but whatever it be, we perceive from (13.) that

those sound-waves soonest begin to be affected by it for which is largest ; i. e. those

• See Supplement to Appendix of Pabet’s Voyage in 1819-20, Art. “ Abstract of Experiments to deter-
mine the Velocity of Sound."
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«hose genesis is most violent. And wc may also consider it as proved that

sounds mil retain their original characteristics the longest which are the most gcjjUj

generated.

It is also quite crident from (13.) if the same cause generate sound-waves in difle^e-t

tubes filled with difierent gases, the wave will be soonest afiected by the above modis,

cation in that tube which contmns the gas for which ft, is least

\Ve come now to speak of

2. The ff'ate ofItarefaction.

20. IVc shall obtain the equations for this kind of wa\e by writing —U for +11 jj

the equations of art. 12, which is cquhalent supposing a negative wave generated

on the +y side of the piston. Hence the equations of a negative wave are

T),

_,o

f=f.<

21. Reasoning in the same manner as in art. 14, it appears that the velocity ivith

which the density g b transnulted b
v^-u.

From this it appears that, speaking generally, the velocity of transmissioa of eicry part

of a negative wave is less than of every part of a positive wave. The exceptions to tbii

statement are the front and rear, which in both kinds of waves move with the saifie

velocity because for those points U=0. It is evident also that the most ninjfied

parts of a wave will be transmitted the most slowly, and vrill consequently drop con-

tinually towards the rear. Hence in this species of wave, ns in the former, a comtant

change cF tjjfc takes phee ; sad ta the end also a uc^<L(iceor rarefrdSons wtU Jre

in the rear of the wave.

By a process of reasoning analogous to that of art. 17, we infer that a negitivc

bOund-wave, from the moment that d tendency to discontinuity begins in its rear, bu
the property of constantl) shortening its rear, and by this means its rear travels fastfr

than at the rate yffi ; and also as it progresses it is constantly casting off from its rear

in a regressive direction a long continuous wave of a negative character. Art. 18 also

admits of easy modification to this kind of wave.
22. Tlic velocity of transmission of n negative wave being •ffl—V, and the last lero

of this expression admitting of arbitrary increase, it is evident that is a critical

vTilnc, and that the part of the wave cerresponding to that value of U is statiobaiy.

Tile corresponding value of g b

Every part of the wave v\licre the density exceeds this travels forwanlsjbut the parti

where the density is less than this are TegTcssi\e; hence a wave, ns a v%hole, in whicbf
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begins at fo, and after tmce passing through ^ ends at will have two stationary points

in its type, viz. those where g=~- Between these points the wave will be stationary

though constantly changing type ; beyond them progressive.

23. But instead of supposing the piston to generate such a wave as this, let us sup-

pose it to begin from the velocity zero, and according to any proposed law (continuous

of course) increase its velocity till it becomes infinite ; and let us consider the state of

the medium at this moment*.

Denote by A and B the places of the piston where its velocity became respectively

and infinite. Then whatever was the law of motion from A to B, and whether AB
be great or small, provided it remains of finite length, the density at A will remain

unchanged and equal to yj and the velocity of every particle as it passes by A wll be

equal to The mass of air also which will rush through the section of the tube at

A will be and this, be it observed, cannot be made either more or less by causing

the piston to move in a different manner from A to B. It is also equally independent

of the law of the piston’s motion before it reached A. Hence the mass of air that flows

through the section at A is altogether independent of the law of the piston’s motion

throughout its whole course.

24. Now let us inquire what quantity of air rushes through any other section of the

tube. In every part where there is motion the same relation between density and velo-

city obtains, viz. and consequently the quantity which rurhes through any

section is at the rate of
U

SgfUe per second.

It is obvious this admits of a maximum value, which in the usual manner we find to be

~7~’

at which value and

25. Hence one part of the tube cannot supply air to another part faster than at this

rate
; and consequently the greatest possible mass of air passes through the section atA

;

and it may be stated as a general property of motion through a tube, that a gas cannot

be conveyed through a tube faster than at the rate of cubic feet per second of gas

of the density
f,.

Hence the escaping powers of different gases through equal tubes are proportional to

the velocities wth which they respectively transmit sound.

26. Since this result is independent of the law of velocity of the air, both before and
after passing the section A, we are entitled to say that air cannot rush through a pipe

of finite length, even into a vacuum, faster than at the rate of cubic feet per

MDCCCLX. IT
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second. The length of the pipe seems to he a matter of perfect indifference, and eu»

be nothing more than a hole through a partition of finite thickness,

27. Since one part of a tube cannot supply air to, nor comey air a^vay from, anotifr

part. A, faster than at the maximum rale, it is easy to see that if the pipe be suppes^i

of finite length, which comejs air into a \-acuum, the \clocity in c>cry part of

pipe will soon be the same throughout, and equal to s/ and density c\cr)Tvhcre

to

From this it ^^ould appear that the rate of discharge into a mcuum, which hn

generally been supposed to be that which is due to the height of the homogcoeouj

atmosphere, is in reality that which is due to the fh part only ; that is, to hltlt

more than the fifteenth part of it; but this requires correction for change of ten-

perature.

28. If the generating piston mote forward and then backward, so as to generate i

positive watc followed continuously by a negative wa\e, they will not separate; for,«

we ha%c seen, they arc each transmitted, as wholes, at the same ratc\/^' But the main

body of the positive wave will gradually advance in the type towards its front, and thsl

of the negative wave fallback towards Us rear; and consequently for the purposes of

audibility the central part of the compound wave, between the front of the positive and

the rear of the negative w a\ c, will become so attenuated that it may be considered of little

audible effect, after the waves have been in existence a sufficient length of time to nllow

the formation of bores. The compound wave will therefore have a tendency to prodoce

the audible effect of two separate waves, separated by an interval of space nearly cqod

to its whole length. If therefore the length of such a compound wave be suffidenlly

great, It will ultimately produce tvoo distinct sounds separated by a verybrief interval of

time.

29. If the generating piston move backward and then forward, so as to generate*

negative wave followed continuously by a positive wave, the positive and negative boiw

will destroy each other as rapidly os they are formed. Tliis, however, supposes the

positive and negative portions of the original compound wave to be cqujd. If oce

exceed the other in quantity of motion, the result will be a little modified. K compoao^

wave of the kind supposed in this article will therefore be entirely devoid of bores, and

the sound corresponding to it will be free from that harshness which is probably the

audible character of a bore.

30. If there be a continuous succession of positive and negative waves, constitulla?

one long compound wave, such a wave will produce a continuous even sound, called *

musical note, probably owing its svvectness in some degree to the property Just mcB*

tioDcd ; and ns ever)’ negative jiortion is succeeded by a positive portion, and cvery'P®*^*

live by a negative, the length of each portion will remain unchangeable, wh.itcvxrbc ihf

distance through which the compound wave travels. Hence the pitch of a uiusicid

cannot change by distance of transmission.
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31 Suppose a portion of the tube to be filled with air of a different kind firom that

which fills the first part. Let
s'o

the quantities for this air which coiTcspond to

p u, of the former ;
and to prevent the two aii's or gases from mixing, let them e

supposed to be separated by an impenetrable film without weight and inertia. Then as

there is equilibrium in the tube before the wave is generated, we have

Let now a wave be generated in the first medium and transmitted towards the second;

then when it has reached the common boundary of the media, the velocities of the

particles in contact with the film on both sides will always be equal. Let U' be this

velocity at any moment, and U the velocity which the film would have had at that

moment, if the second medium had been the same as the first. Then U—U is the

velocity lost by the particles of the first medium by the resistance due to their contact

with the film. In other words, this velocity has been impressed on the particles of the

fir-st medium by the resistance of the film, in the reflex direction. This gives rise to a

reflex wave in the first medium, which we may consider superimposed on the wind of

the original wave. And conseqrrerrtly if p be the pressure at the film due to the original

wave, the pressm'e when this reflex wave has been superimposed, i. e. the actual pressure

U-U< 8U-U‘ p

at the film, is =pE ,
which —pjt

But if we now turn to the other side of the film, the velocity U' has been impressed

upon the particles of the second medium in contact with the film ;
and hence the pressure

of those particles on the film
O'

and consequently, as the pressures on the two sides are equal, we have

U> 2U-U'
fX.*

jjl

Hence the velocities the particles at the film, for the incident, reflected and refracted

waves, are respectively proportional to

and 2\/^.

There is nothing new in these formular, except that they are here deduced rvithout

supposing the motions small.

II. WAA^E MOTION AVHEN CHANGE OF TE^IPEEATUEE IS NOT NEGLECTED.

32. The heat developed by that change of temperature which is produced by the

sudden alteration of density due to the passage of a wave, is probably taken account of

by using the following equation as that rvhich connects pressure and density.

u 2
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h being ibe ratio of tbc specific heat of tlio gas unfier a constant prcssurci to its sj>oci£*

heat undcra constant volume. The dynamical djuation takes for this case the followup

form to be used instead of that in art. 1,

[dsj

*rhis equation being integrated as explained in ait. 1, gives

y=«+(CT?j^a--)^+?Wl
33.

From these we obtain

For the same reasons as oefore we shall suppose «=0 and to bo siraultineoai

equations; wbicb gives

...

This equation gives the relaUon between density and velocity; from which IhatbelTrtta

pressure and xekidty u easily found.

34.

The general intogral (14.) may be «ipressed in terms of the original gcaeshpf*'

ciscly in the same manner as was employed in art. 4 ; and the result is

y=-y+(i^u+v^)(«-T). .

««i

T=:FN/A^(iq:^u)’”((_T).

«=U, nnd j>=j>,Q-y
0®-)

These equations. sTith (15.), are those from sihich the properties of the motion mt >»

be deduced. The degree of modiScation of former results required by these fn'®'^

nill be iu most cases sutncicntly crident, and need not therefore to he part!™™?

pointed out

35.

The result of art. 10 tabes the foUowing form—
iri *-«

f.’ +f.’ =-e,‘ ;
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and that of art. 11 the following—

JIL JL'

36.

From (16.) it appears that the velocity of transmission of the front and rear of

either a positive or negative wave is \/^ ; but the velocity of transmission of that part

of the wave of which the density is is, for a positive wave,

and for a negative wave,

Jt+ 1
The part of these expressions to which the bore is due is the teim U ; and as k is

known to be greater than unity, this is greater than U ; and consequently change of

temperature hastens the formation of a bore, and also renders the property of art. 16

inapplicable here.

37.

As in the case of a negative wave the equation (15.) involves a negative term, it

is manifestly possible for the piston, in generating a negative wave, to move so quickly

as to leave a vacuum behind it. The least velocity with which this can happen is

Ar—l
*

which for common air is about 6722 feet per second. But it is necessary to notice, that

in this and similar extreme results, we are hardly justified in supposing^ to be constant

up to such high velocities.

38.

The expression Sgu is a maximum (see art. 24) when

u 2 v'Af*~ *+l ’

which in the case of common air is equal to about 904 feet per second ; and the corre-

sponding density is ,

or, for common air, about gf#*

Hence no gas can rush through a pipe faster than at the rate of

*±i

cubic feet per second.

39.

The change of temperature due to the transmission of a wave through an elastic

medium has been taken account of, by assuming a law different from that of Boyle, to

connect pressure -with density (art 32).

If we generalize the law by assuming
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the djuamicnl equation takes the form

If now we assume

the integral of the djnamical equation rvill he

|y=(0:+{C+ro:3<+/«,

[i=:pF<£.<—/'tt,

with tt=^, and «=C±Fa=C4;F^&y

40. These equations arc true of any motion which ran be generated by a piston

moung subject to the laws of continuity. See art, 13. The last shows that the rela-

tion between 'kclocity and density is independent of the law of genesis of the motion.

Tlie medium may be, as a whole, in motion with the uniform >elocit) CiT(l), acd the

motion of the particles caused by the motion of a piston %viU be superimposed on this.

For convenience we shall suppose the medium as a whole at rest, and CiF(I)ssO.

If there be a point, or any number of points, within that part of the medium ffhldi

is in motion for which for all such points asl, and the equation

which is alwajs true for all such points, shows that at those points s changes

at the rate of F(l) feet per second, i. c. the front of the waic tra\els at the rate of

feet pet second,

which is constant, and depends not at nil on the law of genesis, but only on the assumed

relation between pressure and density, and not on the general \nlue of c\cn that, hat

onl) on its limiting >-aluc when f=f*. Now many diflbrent forms of the fiujclion fna"}

ghe the same limiting ^aluc; and consequently all the media corresponding to thc«

rarious forms f will transmit a wa^c, as o whole, with the same velocity. Uccce U

the relation between pressure and densit) be gi'en, the wa>c-\elocity maybe instai^^^I

deduced from the expression or from its equal,

\ising the tobscript 0 to signify that after the tUfferentiation has been performed {,
« •“

bo written for f.

41, Since u=Cd;F^^^, by diOcrentiation we obtain

M(^)-
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42. And if c denote the velocity of transmission of the density then we have

consequently

dc 1 jdp\^
'

Now the former of these equations shows that unless the term constant, the

property of the superposition of wave-transmission on particle-velocity, proved in art. 16,

does not hold good. But if it be constant, then which is the general relation

between pressm’e and density when that principle of superposition holds good. Hence,

as mentioned in art. 36, the development of heat puts an end to this property in all

known gases.

43. In the case of negative waves we may institute a method of reasoning similar to

that employed in arts. 23 et se^., and arrive at analogous results. We shall also find

that, taking c= —

u

for this case, the maximum value of SfW will occur in that

section of the tube where c=0 ; from which it follows that at that section

“=(!)*

which is always possible and finite. Hence may be determined the limit to the quantity

of a gas that can pass through a pipe in a given time, even into-a vacuum.

44. The expression in ai-t. 42 for ^ shows that c is in general a function of g, so that

in general there will be a constant change of t
5
p)e. In one case, how'ever, there will be

dc
no change of type. This >viU take place Avhen ^=0, that is when is constant.

Assume for this rase

-R.

B

This equation expresses the nature of the medium which is distinguished by the pro-

perty, that it transmits waves w'ithout change of type. And if we pass from this to the

dynamical equation, we find

d^y B d^
>5 di®

Now it has been usual to reduce the equation (3.) to this form for the purposes of

approximation; but the process appears to be allowable only so far as the equation
, B

^'^y taken to be a physical approximation to Boyle’s law j)=p/o. To me it

does not seem to be an allowable approximation ; and consequently I do not consider
the solution of the dynamical equation, wliich has been obtained by this means, to be
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9

On the Theory of Sound

JOHN JAMES WATERSTON

John James Waterston (1811-1883), the Scottish engineer and amateur scientist,

a somewhat neglected figure in the history of 19th century science, is now recognized

to have made an outstanding contribution to the molecular theory of fluids in a

memoir he submitted to the Royal Society of London in 1 845. This contained the

first theoretically well founded calculation of the root-mean-square velocity of

molecules. It also calculated the velocity of sound on the basis of the theory that

sound propagation is essentially a molecular phenomenon. The paper was not accepted
and lay ignored in the archives of the Society until exhumed by Lord Rayleigh in

1892. It was then published with an introduction by Rayleigh (see p. 407 of this

volume).

Waterston developed his ideas on sound propagation further in a paper which
appeared in the Philosophical Magazine in 1858. This is presented here in its entirety.

Though from the standpoint of modern physical acoustics and statistical mechanics
it contains errors and unsuccessful hypotheses, it still entitles Waterston to be regarded
as the pioneer in the field of molecular acoustics.
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take for this measure only the density of caloric produced in a

space by the radiation of neighbouring bodies.^^

P. Ill, line 19. "A supposition that it appears very natural

to admit is, that the action of the caloric of a molecule of gas on

the caloric of another molecule, &c.”

P. 113, line 6. "We have supposed, in that which precedes,

that the caloric of a molecule was retained on it by the attraction

of the molecule, which experienced no sensible action except by

the repulsive force exerted on this caloric by the caloric of the

surrounding molecules.^^

P. 117, line 16. "It is then extremely probable that the at-

tractive force of the caloric of one molecule by another molecule

is insensible in the state of gas.^'

Professor Thomson, who has written largely on the dynamical

theory of heat (Philosophical Magazine ; Edinb. Phil. Trans.

;

London Phil. Trans.), has the following in a memoir “ On the

ThermalEffectsofFluidsinMotion^^ (Phil. Trans. I854,p. 361) :

—

"In the notes (Prof. ThomsoiPs notes) to Mr. Joule’s paper

on the Air-engine (Phil. Trans. 1852, p. 82), it was shown that

if Mayer’s hypothesis be true, we must have approximately

—

Specific heat of air with constant pressure *2374

Specific heat of air with constant volume *1684

because observations on the velocity of sound,, with Laplace*

s

theory, demonstrate that 1*410 within y^jjth of its own value.

Now the experiments at present communicated to the Royal
Society prove a very remarkable approximation to the truth in

that hypothesis* and we may therefore use these values as very

close approximations to the specific heats of air.”

The ratio h was found by MM. Gay-Lussac and AVelter to be
1*37, and by ]\IjM. Clement and Desormes 1*35. The same
experiments repeated by the author of the article ^ Hygrometry ’

in the Encyc. Brit., impressed him •with the conviction that the
initial ratio was exactly

Here, therefore, we have an instance of a zealous adherent and
expounder of the dynamical theory of heat showing such confi-

* At p. 341, under the heading “ Thcorctic.al deduetions from these Ex-
periments,” Prof. Thomson arrives at the conclusion that air and carbonic
acid “ evolve more he.at than the amount mechanically equivalent to the
work of compression,” thus representing the experiments as proving an
exception to Stayer’s hypothesis. That such cooling effects must take
place in consequence of the deviation from ^lariotte’s law discovered by
Regnault, if Mayer’s hypothesis .and the dynamic theory of heat hold
^od, seems obvious enough (see Phil. Mag. vol. xiv. p. 2/9). So that
they arc aetually a delicate test of the accurac}' of that h3 pothesis ; and
taken ns supplementary to Mr. Joule’s jirevious experimental inquiries,
seem completelj’ to establish it ns a theory proved by induction.
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Thus if the motion of a particle is oscillatory, likeacom^
plctccjcloulal pendulum, the required sequence offeree demands
the ahose specific sequence of change m the distance of the par-
ticles Again, if the motion of each particle is oscillatory, the

required sequence in it« velocity (vir that it should vary as x
the sine) demands also a specific scqucpcc of change in the di-

stance of the particles j and this sequence is precisely the same
as i\hat 13 required by the sequence of force.

To obtain a clear idea of the proofof this (which is a prohlcra

of pure matb‘'matics), uc may suppose with the same radius/

another semicircle to be described, placed also m the line of the

pulse, and rcmo\cd to the distance X from the preceding semi-

circle Let a third also be drawn, removed the same distance X
from the second. IVc ha\c further to suppose these semicircles

diiidcd into ns nianj paits &c , ;

cc„ CjCj, CjCs, ), beginning at where the Imc of pulse inter-

sects them as X enters into L (or number of parts). The
A.

length of each of these parts or rteps is thus S/ttsss (being in-

hnitcsimal with regard to X)«

Having made this con‘»tructton, we have next to consider that

the motion of each paiticlc to be oscillatory niust be such that,

tit the instant when particle A has traversed the versed sine of

(ja„, the particle B (next m adtonce of A) being one step behind

in its motion, has traversed only the lerscd sine of hon^i, and

particle C the \cr»cd sme of ccn..} If B had traversed as many

steps as A, thu distance X that separates them would not alter;

but since it is a step behind, AB is at this point less thanX by the

difi’crcncc betw cen i ers aoa vers hh^-i, or vers nOn—vers

which cqualo s. sin 00^.4 In the same way, C being

behind B, their distance is less than X by s . sin aon-u*

we have BC—B\.=tf(5m<ro«— 5moiTn_j)s=sco5<7ff»j. [Heref,

being an absolute magnitude, has to be divided by the absolute

radius / to represent the differential of arc ] At the beginning

of the vibmtion n=l, and coscen= ruims; hence

the luitnl point b, C at c«i (w step back on the returning half ol

the previous oscillation), and A nt 0| (the points on the circle

being supposed projected ou the diameter), the difference

This initial amount determines the accclcraiivc force acting at

the beginning of the iiiolion of each jnrticlc, which is obninca

bj coinpaniig it with the rcupiocal of X, winch represents InC
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whole static force of repulsion hetween two particles at the ili-

stance X. This force having to support the weight of ^ par-

ticles (H being the height of a uniform atmosphere), - repre-

sents the force P g, viz. a force that in one second is capable of

communicating a velocity of —^ feet per second.

To obtain the value of the initial force acting on particle B
when it is at 5, we have the following proportion

:

The time (t) taken by a particle to traverse 2/, with this force

diminishing as the distance from the centre of the semicircle, is

the same as the time required for one oscillation of a pendulum

whose length is I, if subject to an influence of gravity equal to

this force, and is the same as the time taken by the pulse to

travel through By the law of the pendulum, r is equal to

TT multiplied by the square root of quotient of length of pen-

dulum by force of gravity, hence

and the velocity of the pulse per second is

This supposes l\Iariotte’s law maintained ; but the experiments
made at the suggestion of Laplace, proved that for rapid com-
pressions the clastic force increases in a higher ratio than the
density ; and for small increments of density, the correspondent
increments of elastic force are very nearly | those computed on
the hypothesis that Mariotte’s law is maintained

; that is, as if

the repulsive force of a particle supported the weight of 5—3 X
particles ; hence Newton’s theorem for the velocity of sound in

clastic fluids is strictly represented by v'

The numerical results from this formula, taking Ilcguault’s
data, compared with observations made at low temperatures (so
that the influence of aqueous vapour should be avoided), show a
difference at most of about or as if ^ should be augmented
-f^th part. Thus no objection to Newton’s theory can well be
made on the ground of its not according with observation, as no
theory can be expected to embrace all the circumstances that may
affect the result j e. g. the repulsive force may not emanate from
the centre of the particles, so that the size of the i)articles may
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influence the icsult. Also the repulsive action is necessarily
assumed to be li\nitcd to adjacent pa\ titles, not extending throu'^b
the intcreticcs of these to the paiticles beyond (for such is the
extraordinary and improbable hypothesis rcqinrcd to deduce
Jlariotte's law from a static repulsive force). This may be sup-
posed subject to modification during vibratory action.

_

But the hypothesis upon which the mathematical demonstra-
tion rests is open to tlnec grounds of objection:—1. It docs
not take account of the condition of the fiont of a pulse tvhen

the particles from a coudition of rest enter into the cycle of

motion defined by the theory. 2. The force of repulsion be-

tween two adjacent paiticles required by the tbcovy is extrava-

gantly large. 3. The other physical properties of gases arc not

dcdueiblc fiom the hypothesis.

To these may be added, that the dynamical theory of beat has

suggested another hy-pothesis which is free from these objections,

and which tbcrcfoic claims a picfcicnce accouling to Kewton^s

lirat “ lulc of icasoning in philosophy,'* \\i.
“ arc to admit

no mo4C causes of natural things than such as arc both true and

sufficient to explain their appearances. To this puipose the

philosophers say that Nature docs nothing in vain, and more is

in vfim tchen less tvillsene) for Nature is pleased with simplicity,

and affects not the pomp of supeifluous causes."

1. The theory docs not take account of the condition of the

front of the pulse, or rather of the fiont of the first of the series

of pulses of which r. sound consists. Th\a is apparent if we con*

sider that a paiticlc is vepresewted by the theory as at rest at

each extremity of its oscillation, and at those points the nccclc-

nitiic force is a* its madmum, and is deri\cd fiom the difference

htiweew \hx5 of Xhe VvntsAus wwe fre-m the

in front and ia rear, TIic fiont lincola cannot differ from the

mean length so long as the front particle is at rest unaffected by

the adinncing pulse. The roar lincola is less than the mean

length by a certain sniaU amount a. If the front paiticlc were

in action in a pulse cy'clc, the length of the front lincola would

be gt eater than the mean length of n lincola by the same amount

«, so that the ntcelcratiic foicc at each extremity of the oscilla-

tion of a particle is represented by 2a; and unless it were so,

the condition required to sustain the beautiful relation of iclo*

city and propelling force wou|d be wanting. But at tbc front

of the first pulse the lincola docs not differ from the mean length,

so that the accclcrntiic force is represented by a, and this is only

one-half the amount required by the theory to begin the oscilla-

tion. In truth, the dcnionstrauon only applies to a pulse haiiug

similar puhes ojicrating on both sides.

2. Thu force of repulsion between two adjacent particles rc-
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quired by the theory is extravagantly large. The recent ad-

vances in the theory of heat have, in a measure, compelled us to

realize the dynamie value of natural forces. To compute the

absolute value of the repulsive force acting between two adjacent

molecules of air, we have to consider that it has to support the

gravity of the number of molecules in the height of a uniform

atmosphere
J

. it must therefore exceed the force of gravity

of one molecule in this ratio. Now the force of gravity in one

second can communicate a velocity of 32 feet per second, so that

the force of repulsion between t^YO adjacent molecules of air must

be capable in one second of communicating a velocity of 32 —

feet. Tlic absolute value of X, the distance between two adjacent

molecules of air, we can now with great probability deduce from

the phienomena of capillarity (Pliil. ]\Iag. vol. xv. p. 1). At
the boiling-point of water the number of molecules of steam in a

cubic inch is the same as the number of molecules of air in the

same volume. At 86° the number of layers of aqueous mole-

cules in a cubic inch is 215 millions (Phil. Mag. vol. xv. p. 11).

Hence at ordinary temperatures the distance between two adja-

cent molecules of air must be about ^ millionth of an inch,

and the value of ^32 the velocity communicable in a second,

is 160 thousand times the velocity of light. Can we for a mo-
ment believe that such a force has any real existence, that it is

other than a mathematical fiction ?

3. The othci’ physical properties are not deducible from the

hypothesis of a static force of repulsion. The deductive power
of Newton's theory is confessedly limited to Mariotte's law and
the velocity of sound. Laplace, by the invention of calorific

atmosj)hcrcs, is allowed to have added to these Dalton and Gay-
Lussac's theory of expansion ; but it is a question whether the
reciprocal action between heat-atmospheres and molecules, which
he expresses by mathematical symbols, can be realized by the
miud. In judging of this, we must not forget the chapter of
the Mccanique Celeste, in which the author speculates upon
what the laws of motion u'ould have been if force had been as
a function of the velocity, instead of as the simple velocity*.
What is to be expected from a superstructure resting upon
such a foundation as this reveals? Nevertheless, granting that

Tlie author of the article ‘ Virtual Velocities ’ in the Penny Cyclopaedia
has the following remark upon this chaj)ter of the Celeste :

—

Wc have never met with any one who could give us an intelligible account
ot the meaning of this investigation.”
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Jlariotte’s law, Dalton and Gay-Lussac's law, and the velocity
of sound arc represented bv the statical hypothesis, we have
still Dalton and Graham’s law of diffusion and diffusive velo-
city; Gay-Lussac's law of volumes; Dulong and Petit's law
of specific heat, extended to the more simple gaseous bodies
by Haycraft and the French physicists; the law of latent heat
partially discovered by Gay-Lussac and 'Welter's experiments

;

also the diminution of temperdturc in ascending the atmo»
sphere,—all as yet undcduccd from any statical theory of elastic

fluids. It may be that additions to the mathematical hypo-
theses of Laplace will be attempted with the view of extending

their capacity, as indeed there seems to be no limit to this arti-

ficial and barren system of procedure, which is as far removed
from the simplicit}’ of nature as the hideous epicycles of Ptolemy.

There is another mode by which pulses may be conceived to

be transmitted, nbich admits of being set forth in a popular way.

Suppose we range a number of ivory balls in a straight line

upon n billiard table, and strike the first of the row upon the

second, the initial velucity will be carried forward from one ball

to the next adjacent, and sou ill make its appearance in the last

—supposing perfect elasticity and no resistance in rolling—

uudirninished as if the motion of the first ball bad continued,

and the impulse had been carried by it alone, and not trans-

ferred by impact through others. These balls, confined to one

line, arc supposed to be in notion among themselves, lo that

those adjacent alternately strike against each other in opposite

directions ; the end ones being reflected from the cushions, and

then back again after striking the next adjacent ball, the vis viva

in one direction Lciug at all times equal to the vis viva in the

opposite.

If we now suppose one cushion to move forward with compa-

ratively slow velocity, each time the adjacent ball strikes it it

will be reflected with a velocity greater than that with which

it impinged. This increment of velocity it transfers to the

next b.ill, and so on ; and the velocity with which the impulse is

transferred along the line is equal to the common velocity with

whicb the balls move. We may suppose tbc line extendea inde-

finitely, and the motion of the cushion to be alternately fon'ards

and bnckwnrda. While the adjacent ball impinges many times

during each advitnec and retreat—during tlic former carr^fing

forward a succession of small incicmcnts of vis viva, during the

latter a succession of small decrements of vis viva—a pulse is

formed, the intensity and dunition of whieh depends on the

inoliun of the cushion, but the velocity of propagation upun the

mutiuns of the balls, iqiun their cummun velocity.
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Now suppose these balls reduced excessively in their dimen-

sions, and to be ]jerfecthj elastic as well as the cushion, and we

shall have obtained an idea of how pulses may be conveyed in a

manner quite different from that depending upon a statical re-

pulsive force between adjacent particles. Instead of such stu-

pendous force, we have to substitute molecules simply moving

with the velocity of a cannon-ball, and assume the atmosphere

to maintain its elasticity by its particles striking against each

other with such velocity, which, viewed cosmically, by no means

exceeds what is moderate, and even highly probable if heat is

molecular motion.

Such a theory of elastic fluids was started by Mr. Herapath

so far back as 1831 in the pages of the Annals of Philosophy,

and has more recently suggested itself to 1\I. Kronig, as we find

noticed by M. Clausius in his memoir “On the Nature of the

Motion we call Heat” (Phil. Mag. vol. xiv. p. 108).

The following is an extract from IMr. llerapatVs memoir,

p. 278, vol. i. Annals of Philosophy, April 1821 :—" if

gases, instead of having their particles endued with repulsive

forces, subject to so curious a limitfition as Newton proposed,

were made up of particles or atoms mutually impinging on one

another, and the sides of the vessel containing them, such a con-

stitution of aeriform bodies would not only be more simple than

repulsive powers, but, as far as I could jicrceive, would be con-

sistent with phamomcna in other respects, and would admit of

an easy application of the theory of heat by intestine motion.

Such bodies, I easily saw, possessed several of the properties of

gases ; for instance, they would expand, and if the particles be
vastly small, contract almost indefinitely; their elastic force

would increase by an increase of motion or temperature, and
diminish by a diminution; they would conceive heat rapidly
and conduct it slowly ; would generate heat by sudden compres-
sion, and destroy it by sudden rarefaction

;
and any two having

ever so small a communication, would quickly and equally
intermix.'^

At p. 341, in paragraph beginning These impulses,” &c.,
and in those which succeed, ending have from one another,”
we have a very clear announcement of the mode by which a
static force of pressure is counterbalanced by a dynamic force of
clastic impact.

At p. 345, Prop. 8. “ The same tilings remaining, the elas-
ticity of a gas under a variable temperature and compression is

proportional to its numcratom (number of atoms in constant
volume) and the s(juare of its temperature conjointly

; or the
elasticity varies as the square of the tcmperalure directly, and the
siuijdc of the space inversely.
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Mr. Hcrapath imfoitunatcly assumed heat or temperature to
be represented bv the simple ratio of the velocity instead of the
square of the velocity—bemg in this apparently led astray* by
the dcfmition of motion generally received—and thus was baffled
in bis attempts to reconcile his theory with observation. If we
make this change in Mr. Hcrapath’s definition of heat or tempe-
rature, viz. that it is proportional to the vis viva or square velocity

of the moving particle, not to the momentum or simple ratio of
the velocity, we can without much difficulty deduce, not only tbe
priniary laws of clastic fluids, but also the other physical proper-
tics of gases enumerated above in the third objection to Newton^s
liypothesis. In the Archives of the Royal Society for 1845-46,
there is a paper " On the Physics of Media that consists of per-

fectly Elastic Molecules in a state of Motion,'^ which contains

the synthetical reasoning upon which the demonstration of these

matters rests. The velocity of sound is therein deduced to be

equal to the velocity acquired in falling through three-fourths

of a uniform atmosphere. This theoiy docs not take account

of the size of the molecules. It assumes that no time is lost at

the impact ;
and that if the impacts produce rotatory motion, the

vis viva thus invested bears a constant ratio to the rcctilincsd vis

vivat so as not to require separate consideration. It also does not

take account of the probable internal motion of composite mole-

cules J yet the results so closely accord with observation in every

part of the subject, as to leave no doubt that Mr. Herapath's

idea of the physical constitution of gases approximates closely

to the trutli. M. Kronig appears to have entered upon the sub-

ject ill an independent niauncr, and arrived at the same result;

M. Clausius, too, as we learn from his paper “On the Nature

of the Motion we call Ilcat^^ (PJiil. Mag. vol. xiv. p. 108).

The physics of such media is a study that must be ungenial,

perhaps repulsive, to mathematicians brought up in the statical

school. The fundamental hypothesis docs not permit us at once

to tiunsfcr the subject to the domain of pure mathematics, ns

Newton’s hypothesis converted jdiysical ostrouoniy into a purely

matlicmaticai study. The mode of action by which certain pha-

noniena make their appearance must he realized at "ach step in

conformity with the conservation of force : the causal relation

must he ever present to the mind, or no true progress can be

made. On the other hand, the mathematics required is simple,

am) almost every one of the applications of the theory admits of

popular illustration. An attempt of this kind I have given above

in reference to the conveyance of sonorous impulses, introducing

a dynamic thcoiy of sound. The strict demonstration of the

velocity is given iii the nieiuoir above referred to. A few further

illustrutioiis may here be nddcil to show in brief the capabilities
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of the tlieory
;
but it is difficult to limit these to one branch, all

the physical projjcrties of elastic fluids being so interwoven with

each other; and it is an admirable instance of the simplicity of

nature, that the cluster of elegant quantitative relations which

the physics of gases present, should flow from the constitution

assigned, which indeed is the simplest that it is possible to

imagine.

The velocity of sound is not affected by the height of the ba-

rometer, but it is sensibly influenced by a change of temperature.

This latter is to be looked for ; since the velocity of the particles

of air increases with the temperature, the velocity with which

they convey pulses must increase in the same proportion : but

it is not so obvious that the height of the barometer or weight

of the atmosphere should have no effect either to accelerate or

retard.

Let 771 be an clastic ball traversing the ver-

tical P ]\1 backwards and forwards from the

sphere, ]\I, to the plane, P, the surfaces of

771, M, and P being perfectly elastic. The
condition of permanence in the mean di-

stance of M from ? requires that the im-

j)acts of 771 upon should have the effect of

changing the velocity of IM downwards into

the same velocity upwards. Gravity affects

M in the interval of time that elapses while

m descends from hi to P and ascends from P to hi ; during half

this time gravity is employed in destroying the upward motion
of hi, and during the second half in producing the velocity

downwards with which it encounters ni on its return,—

m

and hi

thus meeting each other, and separating after impact with the

same velocity, but with directions reversed.

The relation between the distance hlP(=X), the velocity of

77i[—v), the weight of hl^= simple, and

enables us to compute the absolute value of v.

Tlie time taken by 771 to traverse hlP is
^

part of a second

;

and in this time gravity communicates to hi the velocity — y.

From the law of clastic collision, two bodies impinging and
reflected back in the direction they came with unaltered veloci-
ties, must have their velocities inversely proportioned to their
masses, so that

hi : 77i ; ; V
V771 X Xcr

,= T7 v=— as above
hi H V
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Tims wc have or tljc velocity is that producedby gravity
in a body falling through [Strictly, the square velocity of
air-molecules must be six times this, because the above calculus
only takes account of the action in one of the six rcctanindir
directions of space,]

To tiuce the influence of the harometer or weight of the uni.
form atmosphere, we may suppose the weight of M doubled and
X reduced one-half: this leaves K and u unaltered; so that if

the density of air increases as the weight of the uniform atmo-
sphere, the velocity of sound is unaffected by the barometer. If

with M constant the density represented by
^

diuunishes, II

must increase in the same ratio, and thence u* or the volume

under constant pressum as the square molecular velocity,—which

conforms to Dalton and Gay-Lussac’s law, if temperature

from zero of gaseous tension.

If we view these relations in another elastic fluid, where the

weight of the molecule is twice that of air, M being unaltered,

and the number of molecules in a unit volume also the same as

with air, we have H inversely as in, or one-half the height of a

uniform atmosphere of air, and v* reduced in the same propor-

tion ; also the velocity of sound reduced inversely as the square

root of the molecular weight or cpccific gravity of the gas.

To cxplaiu the increase of temperature that arises from sud-

denly coudensiug air, we may imagine an clastic ball traversing

a vertical between two horizontal plates and striking alternately

against them. Those plates being also considered as perfectly

clastic, the velocity of the ball will continue uniform without iU

motion being impaired. If we now suppose the distance between

the platen to be gradually diminished by one of them assuming

a velocity incomparably less than that of the ball, the ball tvill,

each lime it strikes this advancing plane, receive an incrci.:cat

to its velocity, and thus to its vis viva*

Let V represent the velocity of the ball, B the distance between

the planes,
^
the velocity of the plane. Tlie number of impacts

upon the advancing plate in a unit of time is Tlie velocity

after one impact has increased froni v to u-f- and the square

velocity from v’ ton* 4- ”, the increment being " of the square

velocity ; at the same time the decrement of space is - (the space

moved over by the plate in a unit of time) divided by ogJ
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jrives — : and the ratio of this to S is also thus the increment

of vis viva is equal to the decrement of distance, irrespective of

the velocities and distance, and is equal to the mechanical force

exerted by the plate. In an clastic medium, the increment of ab-

solute temperature is equal to one-third the decrement of volume,

and the increment of temperature is the equivalent of the force

expended in the act of compression. We thus gain a knowledge

of the mechanical equivalent of heat, and further deduce the

amount of vis viva in a gas to be equal to the work performed

by its pressure acting through three times its volume.

The diminution of temperature found when ascending the

atmosphere may be illustrated by supposing a series of

elastic balls, a, b, c, d, &c., to be arranged in a vertical,

and moving in the vertical so that those adjacent shall

alternately strike against each other at the extremity

of their up-and-down motion unthout any transference

of vis viva, which requires that they should encounter

each other with equal velocities, c. g. b in its up-motion

striking c, and in its down-motion striking fl. Now
we have to mark, that, between the upper and lower

impact, b receives an accession of vis viva from the

force of gravity which is proportional to the vertical

distance traversed ; so that comparing the vis viva of

b v/ith any other of the scries, such as z, we shall find

that the higher ball z has less vis viva than b, and the

difference is equal to gravity acting through bz. Tlius in the

atmosphere we might expect the decrease of temperature to be
uniform if its constitution agrees \yith this hypothesis.

Tlie strict demonstration represents this to be the case, and
that the gradient of temperature is 1° in 319 feet; also that the

absolute height of the atmosphere is six times tlie height of a
uniform atmosphere, the density in a stratum as the fifth power
of the depth of that stratum below the summit, and the clastic

force or height of barometer as the sixth power of that depth.
Here we find that the diminishing temperature, in ascending

the atmosphere, is represented as the natural condition of ver-
tical equilibrmm

; and the question occurs, may not the increas-
ing temperature found in descending through the carth^s crust
be also its natural condition of vertical equilibrium ? This may
be cited as one of many instances of the suggestive power
of the vis viva theory, marking it as specially the natural intro-
duction to the dynamic theory of heat, and as likely to promote
a beneficial change in the application of mathematics to mole-
cular physics generally. Upon this account it seems to merit
the attention of the educational authorities in the higher dej^art-
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mcnts of scientific instruction. Tlic subject, however, is so

remote fioni pinctical appViCittion, that thcic is little hope of any

impression being made in such qunitcrs for many years. In the

mean time it seems the duty of those who have profited by it,

to do uliut lies in their power toproclaimits merits and achnow-

ledge the value of the idea first struck out by Mr. Ucrapath, and

perhaps sared from obliriou by the Philosophical Magazine of

that period.

Eilmburgh, Nov. 6, 1858.

322



Sensations of Tone

HERMANN VON HELMHOLTZ

ermann von Helmholtz (1821-1894) was probably the most distinguished Ger-

hysicist ofthe 19th century. Trained as an army surgeon he early made important

eries in physiology and from 1849-1872 held chairs in physiology in German
•sities. In the meantime his intensive study of physics led him to combine the

;lds in research in vision and audition. In 1 872 he became professor of physics

university of Berlin and investigated many fields of theoretical physics. A
sts ofvery wide interests, he devoted much attention to mathematics, philosophy,

le arts.

he three extracts from Helmholtz’s work presented here are taken from his

is book. Sensations of Tone, in which he endeavored to provide a physical and
(logical basis for hearing and in particular for the perception of musical sounds,

atroduction sets forth the plan of the work and gives an insight into the author’s

anging interests in science and the arts. The second extract describes Helmholtz’s

)d of analyzing sound waves by means of resonators, which he invented and
are known by his name. The third extract discusses the analysis of musical
by the ear.
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Excerpts reprinted from an English translation of Die Lehre son den Tunernnnnd
Phjsiologische Gnindlage fur die Theone der Musik 3rd ediuon (1895) (Dmer Pti"*'"
Inc New York 1954)

^ miicatronj

INTRODUCTION.

In the present worlc on attempt wll be made to connect the bonndanes
of two sciences, which, although drawn towards each otlier by many
natural affinities, hare hitherto remained iractic*!!!^ dibtinct—I rrean the
boundaries of pltytxcal and physiolotjical acotisUca on the one side, and of
mutxcal fciencc and esihetia on the other The class of readers addressed
will, consequently, hare had \ery different cuUixation, and will be affected
by very different interests It will therefore not be superfluous for the
author at the outset distinctly to stale his intention m undertaking the
work, and the aim he has sought to attain The honzors of phj-sics,

philosophy, and art have of la\e been too widely separated, and, as a
consequence, the language, the methods, and the aims of any one of these

studies present a certain amount of diffituUv for the student of any other?
of them, and possibly this is the principal cause why the problem here

undertaken has not been long ago more tboroughl) considered and advanced
towards its solution

It IS true that acoustics constantly employs conceptions and names
borrowed from the theory of hamiony, and speaks of the ' scale,* * intervals,'

•consonances,* and so forth, and similnrl;, manuals of Thorough Bass
generally begin with a jihysical chapter which speaks of 'the numbers of

vibrations,’ and fixes tlieir ‘latios'for the different intervals, but, up to

the present time, this apparent cennecUon of acoustics and music has been
wholly external, and ma} bo regarded rather as an expression given to the

feeling that such a connection mist exist, than as its actual formulation

Phj'sical 'nowlcdge may indeed have been useful for musical instrument
makers, tut for the development and foundation of the theory of harmony f

it has hitherto been totally barren And yet the e'»seniial facts withm the

field here to be explained and turned to account, have been known from the

earliest times Even Pythagoras (ft circa dc 540-510) knew that when
strings of different lengths but of the same make, and subjected to the

same tension, were used to give the perfect consonances of the Octave,

1-iflh, or Fourth, their lengths must be m the ratios of l to 2, 2 to 3, or

3 to 4 respectively, and if, ns is proltable. Ins knowledge was partly derived

from the Egjjitian priests, it is impossible to lonjccture m what remote

antiquity this law was first known Later physics lias extended the law of

Pythagoras by passing from the lengths of strings to the number of vibr»*

lions und thus making it n\ phcnblo to the tones of all musical instniraents,

and tljc nuioincdl uJ ilions 4 to 5 mid 5 to 6 havcbccn added to the above
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ISTBOD,
, PLAN OF THE WORK.

for the less perfect consonances of the major and minor Thii’ds, hut I am

not aware that any real step was ever made towards answering the ques-

tion: Whnt have musical consonances to ilo with the ratios of the first six

nwibcrs ? Musicians, as weU as philosophers and physicists, have generally

contented themselves with saying in effect that human minds were in some

unknown manner so constituted as to discover the numerical relations of

musical vibrations, and to have a peculiar pleasure in contemplatu)g simple

ratios which are readily comprehensible.

Meanwhile musical esthetics has made unmistakable advances in those

points which depend for their solution rather on psychological feeling than

on the action of the senses, by introducing the conception of movement in

^ the examination of musical works of art. E. Hanslick, in his book ‘ on the

Beautiful in Music’ {Ueber das mvsikalisch Schbne), triumphantly attacked

the false standpoint of exaggerated sentimentality, from which it was

fashionable to theorise on music, and referred the critic to the simple

elements of melodic movement. The esthetic relations for the structure of

musical compositions, and the characteristic differences of individual forms

of composition, are explained more fully in Vischer’s ‘Esthetics ’ {Aesthetik).

In the inorganic world the kind of motion we see, reveals the kind of moving

force in action, and in the last resort the only method of recognising and

measuring the elementary powers of nature consists in determining the

motions they generate, and this is also the case for the motions of bodies

or of voices which take place under the influence of human feelings. Hence

^ the properties of musical movements which possess a graceful, dallying, or

a heavy, forced, a dull, or a powerful, a quiet, or excited character, and so

on, evidently chiefly depend on psychological action. In the same way
questions relating to the equilibrium of the separate parts of a musical

composition, to their development from one another and their connection

as one clearly intelligible whole, bear a close analogy to similar questions in

architecture. But all such investigations, however fertile they may have
been, cannot have been otherwise than imperfect and uncertain, so long as

they were without their proper origin and foundation, that is, so long as

there was no scientific foundation for their elementary rules relating to the

construction of scales, chords, keys and modes, in short, to all that is

usually contained in works on ‘ Thorough Bass.’ In this elementary region

^ we have to deal not merely with unfettered artistic inventions, but with the
natural power of immediate sensation. Music stands in a much closer

connection with pure sensation than any of the other arts. The latter

rather deal with what the senses apprehend, that is with the images of

outward objects, collected by psychical processes from immediate sensation.
Poetry aims most distinctly of all at merely exciting the formation of
images, by addressing itself especially to imagination and memory, and it

is only by subordinate auxiliaries of a more musical kind, such as rhythm,
and imitations of sounds, that it appeals to the immediate sensation of
hearing. Hence its effects depend mainly on psychical action. The -plastic
arts, although they make use of the sensation of sight, address the eye
almost in the same way as poetry addresses the ear. Their main purpose
B to excite in us the image of an external object of determinate form and
colour. The spectator is essentially intended to interest himself in this
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jmagp, tvnd enjoy its bcsuty » not to diAcIl upon the means by which it^
created It must at least be allowed that the pleasure of a counouseur or

virtuoso in the constructive art shewn m a statue or a picture, is not an

essential clement of artistic enjoyment

It 13 onlym painting that we find colour as an element which la directly

appreciated by sensj! on, without any intervening act of the intellect On
the contrary, in music, the sensations of lone are the material of the art

So far as the^e sensations are excited in music, we do not create out of

them raiy images of external objects or actions Again, when in hearing a

concert we rt-cogmse one tone as due to a violin and another to ft darnel,

our artistic enjoyment does not depend upon our conception of a vioUn or

clanoet, but solely on our hearing of the tones they produce, whereas the^

artistic enjoyment resulting from \iewmg a marble statue does not depend

on the white light which it reflects into the eye, but upon the mental unsge

of the beantiful human form which it calls up In this sense it is dear that

music has a more immediate connection with pure sensation than any other

of the fine arts, and, consequeiitIy> that the theory of the sensations of

hearing is destined to play a much more important partm musical esthetics,

than, for example, the theory of c/ttaroscuro or of perspective in painting

Those theories arc certainly useful to the artist, as means for attaining the

moht per^ct representation of nature, but they have no part m the artu.tic

cfTcct of his work In music, on the other hand, no such perfect represen

tatiOD of nature is aimed at, (ones and the sensations of tone exist for

themselves alone, and produce their effects independently of anythmg behmd f

them
This theory of the sensations of hearing belongs to natural science, and

comes m the first place under phi/stolwitcal neouttiet Hitherto it is the

^ part of the theory of loi nd that has been almost exdusivdy treated

at length, that is the investigations refer exclusively to the motions produced

by solid, n^uid, or gaseous bodies when they ocutbion the sounds which (he

car appreciates This pJtv$tcal acoustics is esseutiolly nothing but a section

of the theory of the motions of elastic bodies It is physically mdifferent

whether observations are made on stretched btnngs, by means of spirals of

brass wire, (which vibrato so slowly that the eye can easily follow their

motions and, consequently, do not excite any senbation of sound,) or by

means of a viohn string (where the eye can starccly perceive the vibrations^

which the ear readily ftppreeiftUs) The laws of vibratory motion are pre-

cisely the came in both cases , its rapidity or slowness does not affect the

lawB themselves in the slightest degree, although it compels the obberver to

apply diffirint methods of observation, the eye for one and the car for

the other In physical acoustics, therefore, the plienoroena of bearing are

tiken into conbideration eolely because the ear is the mobt couveuicut and

handy means of obbcnnig the more rapid tla'^tic vibrations, and thephjsicist

IS compelled to study the jitcnli inties of the natural instrument whub be is

cinplojing m order to control the correctness of its indications In this

way, although yhjsical acoustics ah hitherto pursued, has, undoubtedly,

coUccted many obbervations and much knowledge concerning the action of

the car, which, therefore, belong to jlpttolngirul aroi thet, these rcbulls were

not the princijil object of its iiuchtignlioiis, they weremcrtlj secondary
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and isolated facts. Tlie only justification for devoting a separate chapter

to acoustics in the theory of the motions of elastic bodies, to which it

essentially belongs, is, that the application of the ear as an instrument

of research influenced the nature of the experiments and the methods of

observation.

But in addition to a physical there is o. physiological theory of acoustics,

the aim of which is to investigate the processes that take place within the

ear itself. The section of this science which treats of the conduction of the

motions to which sound is due, from the entrance of the external ear to the

expansions of the nerves in the labyrinth of the inner ear, has received

much attention, especially in Germany, since ground was broken by

H Johannes Mueller. At the same time it must be confessed that not many

results have as yet been established with certainty. But these attempts

attacked only a portion of the problem, and left the rest untouched.

Investigations into the processes of each of our organs of sense, have in

general three different parts. First we have to discover how the agent

reaches the nerves to be excited, as light for the eye and sound for the ear.

This may be called the jihysical part of the corresponding physiological

investigation. Secondly we have to investigate the various modes in which

the nerves themselves are excited, giving rise to their various sensations,

and finally the laws according to which these sensations result in mental

images of determinate external objects, that is, in perceptions. Hence we

have secondly a specially jihysiological investigation for sensations, and

If thirdly, a specially psychological investigation for perceptions. Now whilst

the physical side of the theory of hearing has been already frequently

attacked, the results obtained for its physiological and psychological sections

are few, imperfect, and accidentaL Tet it is precisely the physiological part

in especial—the theory of the sensations of hearing—to which the theory

of music has to look for the foundation of its structure.

In the present work, then, I have endeavomed in the first place to collect

and arrange such materkls for a theory of the sensations of hearing as already

existed, or as I was able to add from my own personal investigations. Of
course such a first attempt must necessarily be somewhat imperfect, and be
limited to the elements and the most interesting dirisions of the subject

discussed. It is in this light that I wish .hese studies to be regarded.

If Although in the propositions thus collected there is little of entirely new
discoveries, and although even such a2)parently new facts and observations
as they contain are, for the most part, more properly speaking the imme-
diate consequences of my having more completely carried out known
theories and methods of investigation to their legitimate consequences, and
of my having more thoroughly exhausted their results than had heretofore
been attempted, yet I cannot but think that the facts frequently receive new
importance and new illumination, by being regarded from a fresh point of
view and in a fresh connection.

The First Part of the following investigation is essentially physical and
physiological. It contains a general investigation of the phenomenon of
harmonic tipper partial tones. The nature of this phenomenon is established,
and its relation to quality of tone is proved. A series of qualities of tone are
analysed m respect to their harmonic niiper partial tones, and it results
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that these tipper partial tones are not, as was hitherto thooght, isolated

phenomena ol small importance, but that, with very few exceptions, they
detcnnhie the qualities of tone of almost all instruments, and are of the

greatest importance for those qualities of tone which are best adapted for

musical purposes. The question of how the car is able to perceive these

harmonic upper partial tones then leads io an hypothesis respecting the

mode in which the auditory nencs are excited, which is well fitted to r^ace
all the facts and laws in this department to a relatively simple mechanical

conception.

The Second Part treats of the disturbances produced by the simultaneous

production of two tones, namely the comhinational tona and leati. The
physiologico'phy'sical investigation shews that two tones can be simubq
taneously heard by the car without mutual disturbance, when and only

when they stand to each other in the perfectly determinate and well*lnown

relations of intervals which form musical consonance. We are thus imme*

dmtcly introduced into the field of music proper, and are led to discover

the physiological reason fur that enigmatical numerical relation announced

by Pythagoras. The magnitude of the consonant intervals is independent

of the quality of tone, but the harmoniousness of the consonances, and the

distinctness of their separation from dissonances, depend on the quality of

tone. The conclusions of physiological theory hero agree precisely with the

musical rules for the formation of chorda; they even go more into par*

ticulars than it was possible for the latter to do, and have, aa 1 believe, the

autliority of the best composers in their favour. ?

In these first two Farts of the boo1(, no attention is paid to esthetic

considerations. Natural phenomena obeying a blind necessity, are alone

treated. The Third Part treats of the construction of miaieal icala and

vofi-s. Here we come at once upon esthetic ground, and the dificrenccs of

national and individual tastes begin to appear. Modern music has especially

developed the principle of (onnlutf, which connects all the tones in a piece

of music by their relationship to one chief tone, called the ionic. On

admitting this principle, the results of the preceding investigations famish

a method of conslructiug our modem musical scales and modes, from which

aVi arm'irary assumption *i& exemhed.

I was unwilling to separate the physiological investigation from its

musical consequences, because the correctness of these consequences must q

be to the physiologist a vcnfication of the correctness of the physical and

physiological views advanced, and the reader, who tabes up my boob for its

musical conclusions alone, cannot form a perfectly clear view of the meaning

and bearing of these consequences, unless he has endeavoured to get at

least some conception of their foundations in natural science. But in order

to facilitate the use of the book by readers who have no speciol knowledge

of physics and mathematics, I have transferred to appendices, at the end

of the book, all special instructions for performing the more compb'calcd

experiments, and also all matlieronticnl investigations. Tliese appendices

arc therefore especially intended for the phvsiciat, and contain the proofs

of my assertions.* In this way I hope to liave consulted the interests of

l<olh classes of readers.

* Aivp'ndiS XT b? the Trtntltlor it lnten<!eJ e«rfeltn7 for Ihe
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It is of course impossible for any one to understand the investigations

thoroughly, who does not tahe the trouble of becoming acquainted by per-

sonal observation with at least the fundamental phenomena mentione<l.

Fortunately with the assistance of common musical instruments it is easy

for any one to become acquainted with haimionic upper partial tones, com-

binational tones, beats, and the like.* Personal observation is better than

the exaetest description, especially when, as here, the subject of investiga-

tion is an analj’sis of sensations themselves, which are alwa3'S extremely

difficult to describe to those who have not experienced them.

In my somewhat unusual attempt to pass from natural philosophy into

the theory of the arts, I hope that I have kept the regions of idiysiology

f and esthetics sufficiently distinct. But I can scarcely disguise fr un myself,

that although my researches are confined to the lowest grade of musical

grammar, they may prohahly appear too mechanical and unworthy of the

dignity of art, to those theoreticians who ai-e acenstomed to sninmon the

enthusiastic feelings called forth hj' the highest works of art to the scientific

investigation of its basis. To these I would simjdy remark in conclusion,

that the following invostigaiion reall}' deals only with the analysis of

actually existing sensations—that the phj’sical methods of observation

employed are almost solely meant to facilitate and assure the work of this

analysis and check its completeness—and that this anal3'siB of the sensations

would suffice to furnish all the results required for musical theory, even
independently of my physiological h3'pothesi5 concerning the mechanism of

^ hearing, already mentioned (p. 5tt), but that I was unwilling to omit that

hypothesis because it is so well suited to furnish an extremely simple con-

nection between all the very various and very complicated phenomena
which present themselves in the course of this investigation.-f-

* [Bultheuse of the HarmoiifonZ, described
in App. XX. sect. F. No, i, and invented for

the purpose of illustrating the fhoorics of this
work, is recommended ns greatly superior for
students and teachers to any other instrument.—Translator.]

t Readers unaccustomed to mathematical
and physical considerations will find an
abridged account of the essential contents of
this book in Sedley Taylor, i’uiiiuf amf Music,

Ijondon. Macmillan, 1S73. Sneb readers will
also find a clear exposition of the pbysicail
relations of M«nd in J. Tyndall, On Sound,
a course of eight lectures, London, 1867, (the
last or fourth oilition 1S83) Longn.ans, Green,
dr Co. A German translation of this work,
entitled Ocr Scholl, edited by R. Rclaiholta
and G. Wievlemann, was published at Bruns*
wick in 187^

• •
*

„ cenf
^ the outer margin of each pasre, sepaxatc the into

4 B ctions, referre, to as o, h, c, d, plaecl after the mnni;r If the ? ZTy
,n clurn.,., U,e ...u. „r .1,,
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CHAPTER HI.

A^^AL^SI8 OF MU31CX1. TONES BT 8TMPATHETIC BESONXMCZ.

TVe proceed to shew tli&t the simple partial tones contained m a composite

of mnsital tones prodoce pecoliar mechanical effects in nature, alt-'gether mde
pendent of the human ear and its sensations, and also altogether independent of

H luerelj theoretical consideratiivDs These effects consequently give a pecuhar ohjee

tire significance to this pecnliar method of analysing vibrational forma.

Sjch an effec* occurs m the phenomenon of sympathttic resonance Thu
phenomenon is always fonrd m tWe bodies which when once set in motion by

any impulse continue to perform a long senes of vibrations before they come io

rest When these bodies are stmek gently, hut penodicslly, although each blow

may be separately quite insafficieut to produce a sensible notion in the vibratory

body, yet, pronded the peiiodie time of tlie gentle blows is precisely the same u
the penoic time of the body's cvm vibrations very large and powerful oscillv

tions may result But if the periodic tune of the regular blows » diffore&t from

the peno^c tune of the osciUations. the resulting motion will he weak or quits

insensible

Fenodie impnl^es of this kmd generally proceed from another body which if

already vibrating regularly, and m this case the swings of the latter in the conns

T of a little time call into action the swings of the former Under these circesi

stances we have the process caMei sympatfietieosallattcn or sympathcluresoTianet.

The essence of the mechanical effect is independent of the rate of motion, which

may be fast enough to excite tlie sensation ofsound, or slow enough not to produce

au^hing of the land Musicians are well acquainted with sympathetic ruonance

When, for example, the strings of two viohns are m exact amson, and one string ii

bowed the other will begin to vibrate But the nature of the process u best seeu

m instances where the vibration* are slow enough for the eye to follow the whole

of their euccesaive phases

That for example, it is known that the largest church hells may he ut m motion

by a man or even a boy, who polls the ropes attached to them at proper and rs^ulsr

intervals, even when their weight of met^ is so great that ths strongest man eould

Scarcely move them sensibly, if he did not apply his strength lo deterrmosls

periodical intenals \Vhec such a beU is once set in motion, it continues like a

f struck pendulum to oscillate for some time, until it gradually returns to rest, even

if It IS left quite by itself and no force is employed (o arrest its motion Tbs
motion diminishes gradually, as we know, because the fnction on tbs axis and tba

resistance of the air at every awing destroy a portion of the existing moving forts

As the hell ewinga backwards and fotwarda, the levex and rope fixed to lU axi»

nsa and fall If when the lever falls a boy clings to ths lower end of the bell rope,

his weight will act so as to increase the rapidity of the existing motion This

increase of velocity nay be very Bmall, and yet it will produce a conespondiog
increase in the extent of the hcU s swm^ which again will contmue for a while,

until destroyed by the fnction and resistance of the air But if the boy clung to the

bell rope at a wrong time while it was ascending, for instance, the weight of bit

body would act in opposition to the motion of the bell, and the extent of swing

would decrease Now, if the boy rontimied to cling to the rope at eachisnngso
long as it was falling and then let it ascend ficely, at eiery swing the motion of

the bell would be only increased in epeed, and its swings would gradually becoms
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gi-eater and greater, imta by tlieir increase tlie motion imparted on every oscillation

of the bell to the walls of the belfry, and the external air would become so great

as exactly to be covered by the power exerted by the boy at each swing.

The success of this process depends, therefore, essentially on the boy’s applying

his force only at those moments when it will increase the motion of the bell. That

is, he must employ his strength periodically, and the periodic time must be equal

to that of the bell’s swing, or he will not be'successful. He would just as easily

bring the swinging bell to rest, if he clung to the rope only during its ascent, and

tlius let his weight be raised by the bell.

A similar experiment which can be tried at any instant is the following. Con-

struct a pendulum by hanging a heavy body (such as a ring) to the lower end of a

thread, holding the upper end in the hand. On setting the ring into gentle pen-

dular vibration, it will be found that this motion can be gradually and considerably

increased by watclhng the moment when the pendulum has reached its greatest ^
departure from the vertical, and then giving the hand a very small motion in the

opposite direction. Thus; when the pendulum is furthest to the right, move the

liand very slightly to the left ; and when the pendulum is furthest to the left, move
the hand to the rignt. The pendulum may be also set in motion from a state of

rest by gi\ung the hand sunilar very slight motions having the same periodic time

as the pendulum's own swings. The displacements of the hand may be so small

under these circumstances, that they can scarcely be perceived with the closest

atiention, a circumstance to which is due the superstition application of this

little apparatus as a divining rod. If namely the observer, without thinldng of

his hand, follows the swings of the pendulum with his eye, the hand readily follows

the eye, and involuntarily moves a little backwards or forwards, precisely in the

same time as the pendulum, after this has accidentally begun to move. These
involuntary motions of the hand are usually overlooked, at least when the observer

is not accustomed to exact observations on such unobtrusive influences. By this H
means any existing vibration of the pendulum is increased and kept up, and any
accidental motion of the ring is readily converted into pendular vibrations,

which seem to arise spontaneously without any co-operation of the observer,

and are hence attributed to the influence of hidden metals, rinning streams, and
BO on.

If on the other hand the motion of the hand is intentionally made in the con-
trary direction, the pendulum soon comes to rest.

The explanation of the’ process is very simple. When the upper end of the
thread is fastened to an immovable support, the pendulum, once struck, continues
to swing for a long time, and the extent of its swings diminishes very slowly. We
can suppose the extent of the swings to be measured by the angle which the thread
makes with the vertical on its greatest deflection from it. If the attached body
at the point of greatest deflection lies to the right, and we move the hand to the
left, we manifestly increase the angle between the string and the vertical, and con- ^
sequenlly also augment the extent of the swing. By moving the upper end of the
string in the opposite direction we should decrease the extent of the swing.

In this case there is no necessity for moving the hand in the same periodic time
as the pendulum swings. We might move the hand backwards and forwards only
at every third or fifth or other swing of the pendulum, and we should still produce
large swings. Thus, when the pendulum is to the right, move the hand to the
left, and keep it still, till the pendulum has swung to the left, then again to the
right, and then once more to the left, and then return the hand to its first position,
afterwards wait till the pendulum has swung to the right, then to the left, and
again to the right, and then recommence the first motion of the hand. In this
Way three complete vibrations, or double excursions of the pendulum, will corre-
spond to one left and right motion of the band. In the same way one left and
nglit motion of the hand may be made to correspond with seven or more swings
0 the pendulum. The me.ining of this process is always that the motion of the
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band must m cacli case be made at SQcb a time and to sncb a dtrecUon M to be

oppooed to tbe deflection of the pcndulam and consequcntlr to increase it.

By a alight alteration of the process wc can ea«ily maJce two, four, eu, 4c

,

swings of tbe pendulum coirespond to one left and right motion of the hand , for

a sudden motion of the hand at the instant of the pendulum’s passage through th*

Tcrtical has no influence on the sire of tbe swings Hence when the pendolum
hes to the right more the band to the left, and so increase its velocity, let it mng
to the left, watch for the moment of its passing the rcrtical line and at (bat instant

return the hand to its ongma' position allow it to reach the nghl, and then again

the left and once more the nght eattcmity of its arc, and then recommence the

first motion of the hand.

'tSe are able then to commonicaU violent motion to the pendulum by very

small periodical vibrations of the hand, having their penodic time exactly as great,

^ or else two, three, four, ie , times as great as that of the pendular oscillation Ws
have here cons deted that the motion of (he hand is bactwardu This u not

necessary It mav tahe place continuouely m any other way we please ViTsen it

moves continuously there wiU be generally portions of lime during which it will

mcrease tbe pendedum a motion, and othem perhaps in which it will dimmish the

same In order to create strong vibrations in the pendulum, then, it wQl be

ncees'^ary that the increments of motion should be permanently predominant, and

sbould not be neutralised by the sum of (be decrements

Now if a determinate penodic motion were assigned to the hand, and we wished

lo discover whether it would produce considerable vibrations in tbe pendulum, we
could not always predict the result without calculation Theoretical mechanics

would, how ever, presenbe thefo]lowingpro''e6Stobe pursued. Analyse Ihepmodic

notion cf tTu hand! into a sum of stitipU pendular titrations of the /mni-~exactly

in tbe same way as was laid down m tbe la^t chapter for tbe periodic motions of

^ the particles of air,—tben, 1/ the periodic time of one of these ttiratiOM ti egaof

to (Aperiodic tine of the penduluiA** oton oscillations, tbe pendultm will be set

into violent motion, but not othervue Vto might compound small peu'^ulas

notions of the hand out of vibrations of other periodic times, as much as we Iihed,

but we should fail to produce any lasting strong swings of the peudolum Heuca

tbe analysis of the motion of tbe band into pendular swings has a real meaning in

nature, producing determinate mechanical effects, and for (he present purpose no

other exial)e,s cf the motioa of the band into any other partial motions can be

substituted for it

In the above ciamplee the pendulum could be set into sympathetic vibration,

when the band moved periodically at the same rale as tbe pendulum, in this ease

the longest partial nbration of tbe band, corresponding to the prune tone of a

resonant vibration, was, so to speak, 10 unison with (be peodulnm W'ben three

swings of tbe pendulum went to one backwards and forwards motion of the hand,

^ it was the third partial swing of tbe band, answering as it were to tbe Twelfth of

its prune tone which set the pendolom in motion And so on
Tbe Same process that we have thus become acquainted with for swings of long

penodic time, bolds precisely for swings of so short a penod as sonorous vibration*

Any elastic body which is eo fastened as (0 admit of contmuing its vibrations for

some length of time when once set in motion, can also be made to vibrate sym
patheticaUy, when it receives pcnodie agitations of comparatively tmall amounli,
having a periodic time corresponding U> that of its own lone

Gently touch one of the keys of a pianoforte wilhont striking the string so as

to raise the damper only, and then emg a note of the corresponding pitch forcibly

dirt-cting the voice against the stnnp of the instrument On ceasmg lo sing, the

note a lU he echoed back from tbe piano It is easy to discover that this echo is

caused by the string which is ui unison with the note, for directly the hand 11

removed from the key, and the damper is allowed to fall, the echo ceases The
sympathetic vibration of tlie sinng w atiU belter shown by putting bttla paper
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riders upon it, wliicli are jericed off as soon as the string vibrates. The more

exactly the singer hits the pitch of the string, the more strongly it vibrates. A
very little deviation from the exact pitch fails in exciting sympathetic vibration.

In this experiment the sounding board of the instrument is first struck by the

vibrations of the air excited by the human voice. The sounding board is well

known to consist of a broad flexible wooden plate, which, owing to its exten-

sive surface, is better adapted to convey the agitation of the strings to the air,

and of the air to the strings, tb.an the small surface over which string and air are

themselves directly in contact. The sounding board first communicates the agita-

tions which it receives from the air excited by the singer, to the points where the

string is fastened. The magnitude of any single such agitation is of course infini-

tesimally small. A very large number of such effects must v.ecessarily be aggre-

gated, before any sensible motion of the string can be caused. And such a con-

tinuous addition of effects really takes place, if, as in the preceding e: periments with

the bell and the pendulum, the periodic time of the small agitations which are com-

municated to the extremities of the string by the air, through the intervention of the

sounding board, exactly corresponds to the periodic time of the string’s own vibra-

tions. When this is the case, a long series of such vibrations will really set the

string into motion which is very violent in comparison with the exciting cause.

In place of the human voice we might of course use any other musical instru-

ment. Provided only that it can produce the tone of the pianoforte string accu-

rately and sustain it powerfully, it will bring the latter into sympathetic vibration.

In place of a pianoforte, again, we can employ any other stringed instrument

having a soun^ng board, as a violin, guitar, harp, &c., and also stretched mem-
branes, bells, elastic tongues or plates, &c., provided only that the latter are so

fastened as to admit of their giving a tone of sensible duration when once made
to sound.

When the pitch of the original sounding body is not exactly that of the sym- %
pathising body, or that which is meant to vibrate in sympathy with it, the latter

will nevertheless often make sensible sympathetic vibrations, which will diminish

in amplitude as the difference of pitch increases. But in this respect different

sounding bodies shew great differences, according to the length of time for which
they continue to sound after having been set in action before communicating their

whole motion to the air.

Bodies of small mass, which readily communicate their motion to the air, and
quickly cease to sound, as, for example, stretched membranes, or violin strings, are
readily set in sympathetic vibration, because the motion of the air is conversely
readily transferred to them, and they are also sensibly moved by sufficiently strong
agitations of the air, even when the latter have not precisely the same periodic
time as the natural tone of the sympathising bodies. The limits of pitch capable
of exciting sympathetic vibration are consequently a little wdder in this case. By
the comparatively greater influence of the motion of the air upon light elastic ^
bodies of this kind which offer but little resistance, their natural periodic time can
he slightly altered, and adapted to that of the exciting tone. Massive elastic
bodies, on the other hand, ,vhich are not readily movable, and are slow in com-
municating their sonorous vibrations to the air, such, ns belle and plates, and con-
tinue to sound for a long time, are also more difficult to move by the air. A much
longer addition of effects is required for this purpose, and consequently it is also
necessary to hit the pitch of their own tone with much greater nicety, in order to
make them vibrate sympathetically. Still it is well known that bell-sliaped glasses
can be put into violent motion by singing their proper tone into them ; indeed it is
related that singers with very powerful and pure voices, have sometimes been able
to crack them by the agitation thus caused. The principal difficulty in this experi-
ment is in hitting the pitch with sufficient precision, and retaining the tone at tliat
exact pitch for a sufficient length of time.

Tuning-forks are the most difficult bodies to set in synnpatlietic vibration. To

333



40 INFIiUENCE OF PAKTULS OK SYMPATHETIC RESONANCE putri.

effect this ibey xoxj be fastened on ftoondu^ boxes which have been exactly timed to

their tone, as eheim in fig If «e have two each futlu of exactly the aaioe

pitch, and exate one by a Tiolin bow,

the other will begm to vibrate in tym
pathy, even if placed at the farther

end of the same room, and it will coo

tinae to eotind, after the first haa been

damped. The astonishing natnre of

fneh a eaee ot eymp*thetta nbratioo

will appear, if we merely compare the

heavy and powerful maes of steel set

in motion, with the light yielding mass
of air which produces the effect by snch

U small mot ve powers that they coold

not stir the hgbtest spnng winch was

not in tone with the fork ^tih each

forks the Lme required to set them
in foU swing by sympathetio action,

u also of sensible duration, anu the

slightest disig*ttmtnt in pitch » sufficient to produce a sensible daninalion la

the sympathetic effect By sticking a piece of wax to one prong of the second

fork sufficient to make it nbrate ones in a second less than the firit>-t difference

of pitch scarcely sensible to the finest ear—the sympathetic nbration will be

wholly destroyed

Affer hanng thus described the phenomenon of sympathetic vibration in

general, we proceed to investigate the mfiaence exerted tn lympatbeiic resonance

by the different forms of wave of a musical tone

^ First, It must be observed that most elastic bodies which have been set bto

•uitained nbratioo by a gentle force acting periodically, are (with a few exeeptiooi

ri9 IV

to be considered hereafter) always made to swing in pendular vibrations But they

are in general capable of executing eeversl kinds of such vibration with different

periodic limes wid with a different diitnbation over the vanoui parts of lh<

vibrating body. Hence to the different lengths of the periodic tunes corresponi
different simple tones produoble on such an el^'ic body. These are its so called

It u. however, only exceptionally, as in strings and the mrrower
kinds of organ pipes, that these proper tones correspond m pitch with the hw
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monio upper partial tones of a musical tone already mentioned. They are for the

most part inharmonic in relation to the prime tone.

In many cases the vibrations and their mode of distribution over the vibrating

bodies can be rendered visible by strewing a little fine sand over the latter. Take, for

example, a membrane (as a bidder or piece of thin india-rubber) stretched over a

circular ring. In fig. 14 are shewn the various forms which a membrane can

assume when it vibrates. The diameters and circles on the surface of the mem-
brane, mark those points which remain at rest during the vibration, and .-'re known

as nodal lines. By these the surface is divided into a number of compartments

which bend alternately up and down, in such a way that while those marked ( -f

)

rise, those marked (— ) fall. Over the figures a, b, c, eve shewn the forms of a

section of the membrane during vibration. Only those forms of motion are drawn

which correspond with the deepest and most easily producible tones of the mem-
brane. The number of circles and diameters can be increased at pleasiure by If

taking a sufficiently thin membrane, and stretching it with sufficient regularity,

and in this case the tones would continually sharpen in pitch. By strewing sand

on the membrane the figures are easily rendered visible, for as soon as it begins

to vibrate the particles of. sand collect on the nodal lines.

In the same way it is possible to render visible the nodal lines and forms of

vibration of oval and square membranes, and of differently-shaped plane elastic

plates, bars, and so on. These form a series of very interesting phenomena dis-

covered by Chladni, but to pursue them would lead us too far from our proper

subject. It will suffice to give a few details respecting the simplest case, that of %

circular membrane.
In the time required by the membrane to execute 100 vibrations of the form a,

fig. 14 (p. 40c), ^e number of vibrations executed by the other forms is as

follows :

—

Form of Tibntlon Pitch Number OenU* Notea neurlf

a without nodal lines 100 0 C

b with one circle 339*6 1439 d'+
e with two circles 359-9 2217 6'bf
d with one diameter »S9 605 ob
e with one diameter and one circle 292 1858
f with two diameters 314 1317 c’i +

The prime tone has been here arbitrarily assumed as c, in order to note the inter-

vals of the higher tones. Those simple tones produced by the membrane which are

slightly higher than those of the note written, are marked {-b) ; those lower, by
(— ). In this case there is no commensurable ratio between the prime tone and
the other tones, that is, none expressible in whole numbers.

Strew a very thin membrane of this kind with sand, and sound its prime tone
strongly in its neighbourhood ; the sand will be driven by the vibrations towards ^
the edge, where it collects. Or. producing another of the tones of the membrane,
the sand collects in the corresponding nodal lines, and we are thus easily able to

determine to which of its tones the membrane has responded. A singer who
knows how to hit the tones of the membrane correctly, can thus easily make the

* [Cenfj are hundredths of an equal Semi-
tone, and are exceedingly valuable as measuroa

S’u
®^P®®'ally unusual, musical intervals.

^ ^r® fully explained, and tho method of
calculating them from the Interval Batios is
given in App. XX, sect. C. Here it need only
pe said that the number of hundreds of cents
la the nuinber of eqrial, that is, pianoforte
ocmitoncs in the interval, and these may be
ounted on the keys of any piano, while the
nits and tens shew the number of hundredths
a oenutone in excess. Wherever cents are

spoken of in the text, (as m this table), they
must be considered as additions by the transla-

tor. In the present case, they give the inter-

vals exactly, and not roughly as in tho column
of notes, IhuR, 1439 cents is sharper than 14
Semitones above c, that is, sharper than d' by

39 hundredths of a Semitone, or about
| of a

Semitone, and 1858 is flatter than 19 Semitonet
above c, that is, flatter than g' by 43 hun-
dredths of a Semitone, or nearly ^ a Semitone.
— Transiatvr,]
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Mud MTiinffft it»lf *i jiV-wiir- innn«. orfef or tJifi other, briinffinetbe cone* <ond

lag tonespovertaUytt It disUnce B&tmgenenl the Simpler Scores of

(ones &re more e&sUjr generated than the ccmpheated figures of the upper tonea

It u easiest of all to eet the membrane m general motion by soondiog ttg pnae
tone and hence such membranes been maeh need m aeonsttes to prove the

austence of some determinaio tone m some determinate spot of the funounding

air It IS most soitahle for this parposo to connect the membrane with an ncloeed

massofair A,fig i5,uagla8abotUe,

havmg an open month a, andm pWa
of its bottomb, a stretched membrane,

consisting of wet pigs bladder, al

lowed to dry after it has been stretcLed

and fastened At o le attached a

^ single fibre of a silk cocoon, beanng a
drop of sealing wax and hanging down
like apendolani against themembrane

As soon as the membrane vibrates (be little pendulum is violently stated. Buch

apendolain is very convenient as long as we have no reason to apprehend any con

fusion of the prune tone of tbe membranewith any other of its proper tones There

is no scattering tt sand, and the apparatusis therefore alwaysm order B it to decide

with certainly what tones are really agitating tbe membrane we must after ill

place the bottle with its month downwards and strew sand on tbe membrane

However, when the bottle is of tbe right size, and the membrane uniformly

stretched and fastened it is only the prime tone of the membrane (slightly altered

by that of the sympathetically vibrating 5:«j*s of air in tbe bottle) which is euily

excited This prime tone can be made deeper by increasing tbe siee of the mem
brane or the volume of the bottle or by di nmiihing Uic tension of the membrane

51 or size of tbe onfice of the bottle

A stretched membrane of l)«s kind, wheJher it is or is not attached to the bot

tom of a bottle, will not only be set tn vibration by musical tones of the laiue pitch

as Us own proper tone but also by such musical tones ss contain tbe proper tone

of the membrane among ite upper ^rtia) tonee Generally, given a number of

interlacing waves, to discover whether the membrane will vibrate sympaUietically

we must suppose the motion of the air at the given place to be roathemslicallj

analysed into a sum of pendular vibrations If there is one such nbraUon among

them of which the periodic time is the eame as that of any one of the proper tones

of the membrane, the correspouding vibrational form of the membrane will be super

induced But if there are none such, or none sufficiently powerful, the membrane

Will remain at rest

In tins case then we also find that the analysis of the motion of the air into

pendular vibrations and tbe existence of certain vibrations of tins kind atedeci

^ Bive for the sympathetic nbration of the membrane and for this purpose no other

iimilar analysis of (he motion of the air can be substituted for its anslyrs into

pendular vibrations The pendular nhntwns into winch the composite motion of

the air can be analysed h^re shew Uicmeelves capable of producing mcchamctl

effects in external natare independently of the ear, and independently of tnsthe

matical tlieory Hence the statement isconfirmed that the theoretical view which

first led n atfa-'milieians to this method of analysing compound vibrations is

founded in »Jie nature of the thing itself

Ae an example take the following descnplion of a single experiment —
A bottle of the ahapn shewn in fig 15 above was covered with a thin vulean

ised India rubber membrane, of which tlie vibrating surface was 49 tnillimetres

(r 9j mcheal* in diameter, the bottle being Momilhuielrcsls 51 mclics)Jugh. and

Fra tj.

• fai 10 iBfhMm MKiJy »j4 ntHiinetrei
ana lasmatm thatU tnoocamtlimctmarv
r inebet U li my la farm I tOt UM«a tor

the caleolslian ef ore *et 0! meaiorf*

the ether llo ichly vc may a*/ me if nu"

to bo I Inch Hot whenever dm«n»Jon» are
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FlO. i6 IV.

having an opening at the brass mouth of 13 millimetres (‘51 inches) in diameter.

When blown it gave /'J, and the sand heaped itself in a circle near the edge of the

membrane. The same circle resulted from my giving the same tone /'i on an

harmonium, or its deeper Octave /J, or the deeper Twelfth B. Both and D
gave the same circle, but more weakly. Now the / 'J of the membrane is the prime

tone of the harmonium tone /'Jjl, the second partial toneof/J, the third of B, the

fourth of J and fifth of I).* All these notes on being sounded set the membrane

in the motion due to its deepest tone. A second smaller circle, 19 millimetres

(•75 inches) in diameter was produced on the membrane by b' and the same more

faintly by o, and there was a trace of it for the d'-opor Twelfth e, that is, for simple

tones of which vibrational numbers were ^ and ^ that of b'.f

Stretched membranes of this kind are very convenient for these and similar

experiments on the partials of compound tones. They have the great advantage

of being independent of the ear, but they IT

are not very sensitive for the fainter simple

tones. Their sensitiveness is far inferior to

that of the res'ondtors which I have intro-

duced. These are hollow spheres of glass

or metal, or tubes, with two openings as

shewn in figs. 16 a and 16 b. One opening

(a) has sharp edges, the other (b) is funnel-

shaped, and adapted for insertion into the

ear. This smaller end I usually coat with

melted sealing wax, and when the wax has

cooled down enough not to hurt the finger

on being touched, but is still soft, I press the opening into the entrance of my
ear. The sealing wax thus moulds itself to the shape of the inner surface of this

opening, and when I subsequently use the resonator, it fits easily and is air-tight. ^
Such an instrument is very like the resonance bottle already described, fig. 15

„ , Ip. 42a), for which the observer’s

own tympanic membrane has

been made to replace the for-

mer artificial membrane.
The mass of air in a reso-

nator, together with that in the

aural passage, and with the

tympanic membrane or drumskin itself, forms an elastic system which is capable
of nbrating in a peculiar manner, and, in especial, the prime tone of the sphere,

which is much deeper than any other of its proper ton“s, can be set into ver--

I»werful sympathetic vibration, and then the ear, which is in immediate ' 'Second

tion with tha air inside the sphere, perceives this augmented tone V
If we stop one ear (which is best done by a plug of sealing wa'^"* 7i 7^ rem^
form of the entrance of the ear),J and apply a resonator to swinging

tones produced in the surrounding air will be considiy" she'sra by
proper tone of the resonator is sounded, it brave iV-viing parts and remain sitting

* .d by a node into two swinging

a"AttlSa'TinSMSHi -i.® ao.bl. that ot to pto,
an inch.—Tranatator.]

,
[^a the instrument was tempered, we

•noujd have, approximately, for /8 the partials
/» 1 /t , (to. ; for D the partials S, 6, /t , <to.

;

n 1"® Psrtisia ^S,fS,cS,fU, (to. ;
end

or D the partials D, d, a, d', fs , (to. To
pr^ent oonfusion I have rednoed the vppee"

ordinary partials, o'
angReiUd m p. 236', note.—Translalor.^ ft

T [here the partials of t are 6, b', (to., '
«'

® ® ( t', (to., BO that both 6 ar
contain l/.-Tranalalor.]

enou'
stor
jje 7th being rather flat. The partials are

Jin fact :

—

eT

a
f

c

6'b c”.- -Translator.]
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tc*if For three cecliona the pitch number xa tripled, for four BccUons qxiadnjpled,

end ao on.

To bring & apiral wire into the-w different forma of vibration, we bjotb it

pcrod-callj with tlie finger near one eitreimly, adopting the penod of its dowest

•wuigafcr'a twice (bat rate for b, three timea for c. and fourtimea ford. Oietxa

wojort gently touch one of the nodes nearest the extrom ty with Uio finger, and pluck

the strmg half way between this node and tlie nearest end Hence when m c,

or d| m d, 18 kept at rest by the finger, we plack the string at u The other nodes

then appear when the vibration commences.

Pm 17

For a eonoroas atrmg tbe vibrational forma of fig 17 above are most porely

prodneed by appljing to ite eontiduig board the handle of a tuning fork wliieb baa

been struck and gxies the simple tone corrcspondingto the form required li only

a determinate number of nodes are desired, and it la indifferent whetlter the indi

ndual Minta of the string do or do not execute aimple vibrations, it is sufficient to

touch tu« string very gently at one of tbe nodes and either pluck the strmg or rub

it with a viobn bow By touching the atnng with the finger all those simple vibra-

tions are damped which have no node at that pomt, and only those remain which

allow the string to be at rest m that place

Tbe number of nodes in long thin atnnga may be considerable They ceass to

bo formed when the sections which lie between the nodes are too abort and stiff to

^ bo capable of sonorous vibration ’Very fine stnnga consequently give a greater

number of higher tones than thicker ones On the violm and the lower pianoforte

etriflgs it IS not very difficult to produce tones with 10 sectiona, but with extremely

fine wires toneswilh 16 or sesections can he made tosound [Alsocomparep 78^]
The forms of vibration here apoken of are those m wluch each point of the

string performs pendular oscniations Hence these motions excite m the ear the

sensation of only a single simple tooe In all other vibrational forms of tbe

strings, the oscillations are not simply pendular, but take place according to a differ-

ent and more eompheated Jaw This » always the casa w hen the string is plucked

in the usual way with the finger (as for guitar, harp, zither) or is struck with a

hammer (as on the pianoforte), or is rubbed with a violin bow Tlie resulting motions

may then be regarded as compounded of many simple iibratiotis, which, when
U\cn e {aralely. correspond to those in fig 17 The multiplicity tf such com
poaile forms of motion is infinitely great, the atnng ma> indeed be considered
as capable of usuming any gi>eo forro (proiuled wo confine oursclvts in all cases
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to very small deviations from the position of rest), because, according to what was

said in Chapter II., any given form of wave can be corapomided out of a number

of simple waves such as those indicated in fig. 17, a, b, c, d. A plucked, struck,

or bowed string therefore allows a great number of harmonic upper partial tones to

be lieard at the same time as the prime tone, and generally the number increases

with the thinness of the string. The peculiar tinkling sound of very fine metallic

strings, is clearly due to these very high secondary tones. It is easy to distinguish

the upper simple tones up to the eixteenth by means of resonators. Beyond the

sixteenth they are too close to each other to be distinctly separable by this means.

Hence when a string is sympathetically excited by a musical tone in its neigh-

bourhood, answering to the pitch of the prime tone of the string, a whole series of

different simple vibrational forms -will generally be at the same time generated in

the string. For when the prime of the musicM tone corresponds to the prime of

the string all the harmonic upper partials of the first correspond to those of the

second, and are hence capable of exciting the corresponding vibrational forms in

the sti’ing. Generally the string will be brought into as many forms of sympa-

thetic vibration by the motion of the air, as the analysis of that motion shews that

it possesses simple rdbrational forms, having a periodic time equal to that of some

ribrational form, that the string is capable of assuming. But as a general rule

when there is one such simple vibrational form in the air, there are several such,

and i^ will often be difficult to determine by which one, out of the many possible

simple tones which would produce the effect, the string has been excited. Conse-

quently the usual unweighted strings are not so convenient for the determination

of the pitch of any simple tones which exist in a composite mass of air, as the

membranes or the inclosed air of resonators.

To make experiments with the pianoforte on the sympathetic vibrations of

strings, select a fiat instrument, raise its lid so as to expose the strings, then press

down the key of the string (for c' suppose) which you wish to put into sympathetic

vibration, but so slowly that the hammer does not strike, and place a little chip of

wood across this c' string. You will find the chip put in motion, or even thrown
off, when certain other strings are struck. The motion of the chip is greatest when
oue of the under tones of o' (p. 44d) is struck, as c, F, C, F„ D„ or C,. Some,
but much less, motion also occurs when one of the upper partial tones of c' is

struck, as c", g", or o'", but in this last case the chip "will not move if it has been
placed ovsr one of the corresponding nodes of the string. Thus if it is laid across

the middle of the string it wiU be still for c" and o'", but will move forp". Placed
at one third the length of the string from its extremity, it will not stir for g", but
will move for c" or c'". Finally the string c' will also be put in motion when an
under tone of one of its upper partial tones is struck ; for example, the note/, ofwhich
the third partial tone c" is identical with the second partial tone of c'. In this case
also the chip remains at rest when put on to the middle of the string c', which is

its node fojr c". In the same way the string o' will move, with the formation of
two nodes, for g', g, or all which notes have g" as an upper partial tone, which
is also the third partial of c',*

Observe that on the pianoforte, where one end of the strings is commonly
concealed, the position of the nodes is easily found by pressing the string gently
on both sides and striking the key. If the finger is at a node the corresponding
upper partial tone will be heard purely and distinctly, other^wise the tone of the
string is dull and bad.

As long as only one upper partial tone of the string c' is excited, the corre-
sponding nodes can be discovered, and hence lire particular form of its vibration
determined. But this is no longer possible by the above mechanical-method when

* [These experiments can of course not be
con'luclcd on the usual upright cottage p'ano.
but the experimenter c?n at least !tair the
tone of c', if c, F, C, *c., are struck and
immediately damped, or if cT, 7", c'" are

struck and damped. And this sounding of o',

although unstruck, is itself a very interesting
phenomenon. But of course, as it depends on
the car, it does not establish the results ot the
text.

—

Translator^
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to be established. The experimental proof there given for the ear, can also bo

carried out in precisely the same way for membranes and masses of air which

vibrate sympathetically, and the identity of the laws in both cases will result from

those investigations.*

CHAPTER IV.

ON THE ANALTBIS OP MOSICAIi TONES BY THE EAB.

It was frequently mentioned in the preceding chapter that musical tones could be

resolved by the ear alone, unassisted by any peculiar apparatus, into a series of

partial tones corresponding to the simple pendular vibrations in a mass of air, that ^
is, into the same constituents as those into which the motion of the air is resolved

by the sympathetic vibration of elastic bodies. We proceed to shew the correctness

of this assertion.

Any one who endeavours for the first time to distinguish the upper partial

tones of a musical tone, generally finds considerable difficulty in merely hearing

them.

The analysis of our sensations when it cannot be attached to corresponding

differences in external objects, meets nuth peculiar difficulties, the nature and

significance of which will have to be considered hereafter. The attention of the

observer has generally to be drawn to the phenomenon he has to observe, by

peculiar aids properly selected, until he knows precisely what to look for
;
after he

has once succeeded, he will be able to throw aside such crutches. Similar diffi-

culties meet us in the observation of the upper partials of a musical tone. I shall

first give a description of such processes as will most easily put an untrained ^
observer into a position to recognise upper partial tones, and I will remark in

passing that a musically trained ear will not necessarily hear upper partial tones

with greater ease and certainty than an untrained ear. Success depends rather

upon a peculiar power of mental abstraction or a peculiar mastery over attention,

than upon musical training. But a musically trained observer has an essential

advantage over one not so trained in his power of figuring to himself how the

simple tones sought for, ought to sound, whereas the untrained observer has con-

tinually to hear these tones sounded by other means in order to keep their effect

fresh iu liis mind.

First we must note, that the unevenly numbered partials, as the Fifths, Thirds,

Sevenths, &c., of the prime tones, are usually easier to hear than the even ones,

which are Octaves either of the prime tone or of some of the upper partials which
lie near it, just as in a chord wo more readily dl.^tinguish whether it contains

Fifths and Thirds than whether it has Octaves. The second, fourth, and eiglith ^
partials are higher Octaves of the prime, the sixth partial an Octave above the

third partial, that is, the Twelfth of Iho pi-ime ; and some practice is required for

distinguishing these. Among Uie uneven partials which are more easily dis-

tinguished, the first place must be assigned, from its usual loudness, to the third

partial, the Twelfth of the prime, or tlie Fifth of its first higher Octave. Then
follows the fifth partial as the major Third of the prime, and, generally very faint,

the seventh partial as the minor Seventh t of the second higher Octave of the
prime, as will be seen by their following expression in musical notation, for tbo
compound tone c.

* Optical means for rendering risible weak
sympathetio motions of sonorous masses of
air, are described in App. II. These means
are valuable for demonstrating the facts to
hearers unaccustomed to the ohsoiving and
distinguishing musical tones.

t [Or more correctly jrrb-miiier Seventh

;

ns the real minor Scvenlh, formed by taking
two I'iirhs down nnd then two Octaves up, is

sharper by 27 cents, or in the ratio of 63 : 64.—Tranilafor.]
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In romra'-ncing to observe upper partial tones, it is advisaUe jost before pro.

dncing tlie mnaical lone itself winch jou nish to analjrsc to sound the note poQ

w sh to distinguish in it, >ety gently, and if possible in the same quality of loin

as the compound itself The pianoforte and liarmonium are nell adapted for

these experiments, l<eeause Utey both have upper partial tones of cousideralU

power
First gently striko on a piano the note g\ as marked abc-e, ard after letting

the digit^f nse so as to damp the atnng sinks tbs note s of which y'ls the

third partial, with great force and keep jour attention directed to the pitch of the

7' which you bad just beard, and joo hear it again in tbs compound tons of

c Similarly, first stroke the fifth partial t ' gently, and then e strongly These

upper partial tones arc often mors distinct as ths sound dies away, becanss they

appear to lose force more slowly than the prime Tlie seienlh and ninth partiali

h and d ' are mostly weak, or qaite absent on modem pianos If the mme es

penraents are tried with an harmoninra in one of its louder stops, the seventh

partial mil generally be well heard, and sometimes even the ninth

To tho objection which is sometimes made that the observer only imagines he

bears the partial tone in the compound, because be had just heard it by itself I

need only remark at present that if s" is first heard as a partial tone of c on a

good piano, tuned m equal temperament, and then s" is struck on the mstramenl

H itself, it IS quite easy to perceive that the latter is a httle sharper This fol owi

from the method of tuning Bui if there is a difTcrcnco in pitch between the two

tones, 00c IS eertamly not a eonluiuation of the mental elTcct produced by the

other Other facts winch completely refute the above conception, will be eub«c

quentty adduced

A stiU more suitable process than that just described for the piano, can he

adopted on any stnngcd instrument, as Uie piano, monochord, or auohn It con

wsls m first producing the tone we msh to hear, as an harmonic, [p 35^, note] hj

touclimg the corresponding node of the alnng when it is struck or rubbed TI e

resemblance of the lone first heard to the corresponding partial of the compound
IS then much greater, and the ear discovers it moro readily It is wsual to place a

divided scale by the string of a monochord, to facilitate the discovery of the nodes,

niose for the third partial as shewn m C^p JJI (p 4^d) divide the string luto

three equal parts, those for the fifth into five and so on On the piano and violin

*: the position of lh''«e points is easily found experimentally, by touching the slnng

gently with the finger in the neighbourhood of the node, which has bwn approxi

matively determine by the eye, then atnkirg or bowing the string, and movw;
the finger about till tho required harmonic comes out strongly and purely Bj
then sounding the string, at one time with the finger on the node, and at another

Without, we obtain the required upper partial at one time as an harmonic, and st

another m tho compound tone of the whole stnng, and thus learn to recognise fi t

existence of the first as part of the second, with comparative case Using thin

Btnngt which have loud upper partials, I have thus been able to recognise thr

• fTh« «Bt» (w* p Bole) rrclonvd
from th# lo»e*t note art attlsiird on the
VDpposlioa that the harmonic* are perfect
•• on Ih* nanaonlcat not Icmptrcd at on
the planofoTta. Set alio diagram, p. ate,—
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CHAP. IV. METHODS OP OBSERVING PARTIAL TONES. S‘

partials separately, up to tlie sixteentli. Those which lie still higher are too near

to each other in pitch for the ear to separate them readily.

In such experiments I recommend the following process. Touch the node of

the string on the pianoforte or monochord with a camel’s-hair pencil, strike the

note, and immediately remove the pencil from the string. K the pencil has been

pressed tightly on the string, we either continue to hear the required partial as an

harmonic, or else in addition hear the prime tone gently sounding with it. On

repeating the excitement of the string, and continuing to press more and more

lightly with the oamel's-hair pencil, and at last removing the pencil entirely, the

prime tone of the string will be heard more and more distinctly with the harmonic

till we have finally the full natural musical tone of the string. By this means

Tve obtain a series of gradual transitional stages between the isolated partial and

(lie compound tone, in which the first is readily retained by the ear. By applying

tliis last process I have generally succeeded in making perfectly untrained ears f

recognise the existence of upper partial tones.

It is at first more difficult to hear the upper partials on most wind instruments

and in the human voice, than on stringed instruments, harmoniums, and the more

penetrating stops of an organ, because it is then not so easy first to produce the

upper partial softly in the same quality of tone. But still a little practice suffices

to lead the ear to the required partial tone, by previously touching it on the piano.

The partial tones of the human voice are comparatively most difficult to distinguish

for reasons which Avill be given subsequently. Nevertheless they were distin-

guished even by Rameau * without the assistance of any apparatus. The process

is as follows :

—

Get a powerful bass voice to sing to the vowel 0, in sore [more like aw
in saw than o in so], gently touch b'\) on the piano, which is the Twelfth, or

third partial tone of the note cj?, and let its sound die away while you are listening

to it attentively. The note i'b on the piano will appear really not to die away, 5]

but to keep on sounding, even when its string is damped by removing the finger

fiom the digital, because the ear unconsciously passes from the tone of the piano

to the partial tone of the same pitch produced by the singer, and takes the latter

for a continuation of the former. But when the finger is removed from the key,

and the damper has fallen, it is of course impossible that the tone of the string

should have continued sounding. To make the experiment for g" the fifth partial,

or major Third of the second Octave above c}?, the voice should sing to the vowel
A in father.

^

The resonators described in the last chapter furnish an excellent means for
fiiis purpose, and can be used for the tones of any musical instrument. On apply-
ing to the ear the resonator corresponding to any given upper partial of the com-
pound c, such as g', this g' is rendered much more powerful when c is sounded.
Now hearing and distinguishing g' in this case by no means proves that the ear
alone and without tlvis apparatus would hear g' as part of the compound c. But ^
the increase of the loudness of g' caused by the resonator may be used to direct
tlie attention of the ear to the tone it is required to distinguish. On gradually
removing the resonator firom the ear, the force of g' will decrease. But the
attention once directed to it by this means, remains more readily fixed upon
.t, and the observer continues to hear this tone in the natural and unchanged
compound tone of the ^ven note, even witli his unassisted ear. The sole office
0 the resonators in this case is to direct the attention of the ear to the required

y frequently instituting similar experiments for perceiving the upper partial
ones, the observer comes to discover them more and more easily, till he is finallySee dispense with any aids. But a certain amount of undisturbed concentration
a uajs necessary for analysing musical tones by the ear alone, and hence the

sp 0 resonators is quite indispensable for an accurate comparison of different

Nouveau Sysfhne de Musique Ihiorique. Paris : 1726. Preface,
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CHAP. IV. METHODS OP OBSERVING PARTIAL TONES. 51

partials separately, up to Hie sixteenth. Those which lie still higher are too near

to each other in pitch for the ear to separate them readily.
„ ^ , . .

In such experiments I recommend the following process,
_

Touch the node of

the string on the pianoforte or monochord with a camel’s-hair pencil, strike the

note, and immediately remove the pencil from the string. If the pencil has been

pressed tightly on the string, we either continue to hear the required partial as an

hamonic, or else in addition hear the prime tone gently sounding with it. On

repeating the excitement of the string, end continuing to press more and more

lightly with the camel’s-hair pencil, and at last removing the pencil entirely, the

prime tone of the string will be heard more and more distinctly with the harmonic

till we have finally the full natural musical tone of the string. By this means

we obtain a series of gradual transitional stages between the isolated partial and

I’ne compound tone, in which the first is readily retained by the ear. By applying

this last process I have generally succeeded in making perfectly untrained ears 5|

recognise the existence of upper partial tones.

It is at first more difficult to hear the upper partials on most wind instruments

and in the human voice, than on stringed instruments, harmoniums, and the more

penetrating stops of an organ, because it is then not so easy first to produce the

upper partial softly in the same quality of tone. But still a little practice suffices

to lead the ear to the required partial tone, by previously touching it on the piano.

The partial tones of the human voice are comparatively most difficult to distinguish

for leasous which -will be given subsequently. Nevertheless they were distin-

guished even by Rameau * without the assistance of any apparatus. The process

is as follows :

—

Get a powerful bass voice to sing ^ to the vowel 0 , in sore [more like aw
in saw than 0 in so], gently touch i'{) on the piano, which is the Twelfth, or

third partial tone of the note 4), and let its sound die away while you are listening

to it attentively. The note on the piano will appear really not to die away, ^
but to keep on sounding, even when its string is damped by removing the finger

from the digital, because the ear imconsciously passes from the tone of the piano
to the partial tone of the same pitch produced by the singer, and takes the latter

for a continuation of the former. But when the finger is removed from the key,
aud the damper has fallen, it is of course impossible that the tone of the string
should have continued sounding. To make the experiment for g" the fifth partial,

or major Third of the second Octave above c}?, the voice should sing to the vowel
A in father.

^

The resonators deseribed in the last chapter furnish an excellent means for
tin's purpose, and can be used for the tones of any musical instrument. On apply-
ing to the ear the resonator corresponding to any given upper partial of the com-
pound c, such as g', this g’ is rendered much more powerful when c is sounded.
Now hearing and distinguishing g' in this case by no means proves that the ear
alone and •without tliis apparatus would hear g' as part of the compound c. But ^
the increase of the loudness of g' caused by the resonator may be used to direct
the attention of the ear to the tone it is required to distinguish. On gradually
removing the resonator from the ear, the force of g' -will decrease. But the
attention once directed to it by this means, remains more readily fixed upon
•t, and the observer continues to hear this tone in the natural and unchanged
compound tone of the given note, even witli his unassisted ear. The sole office
0 the resonators in this case is to direct the attention of the ear to the required

y freqimntly instituting similar experiments for perceiving the upper partial

f’

°oserver comes to discover them more and more easily, till he is finally

k
° ^sp^nse with any aids. But a certain amount of undisturbed concentration

nse^

necessary for analysing musical tones by the ear alone, and hence the
0 resonators is quite indispensable for an accurate comparison of different

Nouveau Spsth/ie de ^Tus!q^le thfori^ue. Paris ; 1726. PrSface,
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PROOF OP OHM'S LAW. S3CHAP. IV.

twelfth, A'C., of the partial tones were present, giving corresponding harmonics,

the string wll be reduced to absolute silence by this contact of the finger.

Press down one of the digitals of a piano, in order to free a string from its

damper. Pluck the string at its middle point, and immediately touch it there.

The string will be completely silenced, shewing that plucking it in its middle

excited none of the evenly numbered partials of its compound tone. Pluck it at J or J

its length, and immediately touch it in the same place ;
the string will be silent,

proving the absence of the third partial tone. Pluck the string anywhere else

than in the points named, and the second partial will be heard when the middle is

touched, the third when the string is touched at ^ or J of its length.

The agreement of this kind of proof with the results from sympathetic reso-

nance, is well adapted for the experimental establishment of the proposition based

in the last chapter solely upon the results of mathematical theory, namely, that

sympathetic vibration occurs or not, according as the corresponding simple f

vibrations are or are not contained in the compound motion. In the last described

method of analysing the tone of a string, we are quite independent of the theory

of sympathetic vibration, and the simple vibrations of strings are exactly charac-

terised and recognisable by their nodes. If the compound tones admitted of being

analysed by sympathetic resonance according to any other vibrational forms except

those of simple vibration, this agreement could not exist.

If, after having thus experimentally proved the correctness of Thomas Young’s

law, we try to analyse the tones of strings by the unassisted ear, we shall continue

to find complete agreement.* If we pluck or strike a string in one of its nodes,

all those upper partial tones of the compound tone of the string to which the node

belongs, disappear for the ear also, but they are heard if the string is plucked at

any other place. Thus, if the string c be plucked at ^ its length, the partial tone

g' cannot be heard, but if the string be plucked at only a little distance from this

point the partial tone g' is distinctly audible. Hence the ear analyses the sound If

of a string into precisely the same constituents as are found by sympathetic reso-

nance, that is, into simple tones, according to Ohm’s definition of this conception.

These experiments are also well adapted to shew that it is no mere play of imagina-
tion when we hear upper partial tones, as some people believe on hearing them for

the first time, for those tones are not heard when they do not exist

The folloxving modification of this process is also very well adapted to make
the upper partial tones of strings audible. First, strike alternately in rhythmical
sequence, the third and fourth partial tone of the string alone, by damping it in the
corresponding nodes, and request the listener to observe the simple melody thus
produced. Then strike the undamped string alternately and in the same rhythmical
sequence, in these nodes, and thus reproduce the same melody in the upper partials,

which the listener will then easily recognise. Of course, in order to hear the
third partial, we must strike the string in the node of the fourth, and conversely.

The compound tone of a plucked string is also a remarkably striking example ^
of the power of the ear to analyse into a long series of partial tones, a motion
which the eve and the imagination are able to conceive in a much simpler manner.
A string, which is pulled aside by a sharp point, or the finger nail, assumes the
form fig. t8, A (p. 54a), before it is released. It then passes through the series of
forms, fig. 18, B, C, D, E, F, till it reaches G, which is the inversion of A, and
then retvnns, through the same, to A again. Hence it alternates between the fonns
A and G. All these forms, as is clear, are composed of three straight lines, and
on expressing the velocity of the individual points of the strings by vibrational
curves, these would have the same form. Now the string scarcely imparts any
prceptible portion of its own motion directly to the air. Scarcely any audible
ne j'^sults when both ends of a string are fastened to immovable supports, as

metal bndges, which are again fastened to the walls of a room. The sound of

provei*^^
Brandt m roggondorff’g AnnaUn der Pkysik, vol. cxii. p. 324, wliere this fact is
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the alnag reaches the air lliroagli that one of iis cxlrcniilics vjliich rests npoa

a bridge standing oa an elastic eoandiog board. Ilcnce the eoand of the slnoj

essential]/ depends on the tnoUoa of this

extremity, through the pressure which it

exerts on the aoun^og board. The magni-

tude of this pressure, as it alterspenodicaUy

with the time, 5s she^n in £g. 19. where

the beigbt of the line h fa corresponds to

tlie amount of pressure exerted ou the bridge

fay Oiat extremity of the stniig wfaen the

fctni’g is at rest. Along h fa suppose

length: fj be set off corresponding to con-

secutue intervals of time, the vertical

^ heights of the broben line aboie or below

h fa represent the corresponding augmenta-

lions or diminutions of pressure at those

times. The pressure of the etnog on the

bounding board consequently alternates, aa

the &gure efaews, faetwceo a higher and a

lower value. For some time the greater

pressure remains unaltered; then thelower

suddenly ensues, and hleuise remsins for a

time unaltered. The letters a to g to fig. 19

correspond to the times at which the etnog
assumes the forms A to G In fig. tfi. It is this alteration between a greater and

a smaller pressure which produces the sound in the air. We cannot but feel

astonished thst a motion pr^uecd by means so simple and so easy to comprehend,

5[ should be analysed by the car into socb a complicated sum of simple tones For

Uie e}e and the understanding tlie action of the string on the sounding bovd tan

bo figured With extreme simplicity. Wfaat has the simple broben line of fig 19

to do with naiocunea. wfaicfa, la the course of one of tfaeir periods, shew

m la

rctvsr v»

3> 4> 5, up to 16, and more, crests and troughs ? This is one of the most stribiog

examples of the different ways in wfaicfa eye and car coinpiehend a pcnodie

motion.

There is no sonorous body whose motions under varied conditions can be so

^ loraplctely calculated tfaeoretically and contrasted with obsenation aa a string

Tlie followng are examples in which theory can be compared i«th analjsia by

car.—
I have discoi cred a means of exciting simple pendular vibrations in the air. A

tuning fork when struck gives no Kanoonic upper partial tones, or, at most, traces

of them when it is brought into such excesaiiely strong vibration dial it no longer

exactly follows tlie law of the penduium.* On the other band, tuning forks havi

tome ^cry high infaarmoiuc secondary tones, wfaicfa produce that pocnliaf sharp

• rOn aU OTdiriArr tatun; forli b«l«»co o pilch soabeia. But tb» prune tea al»»y* t*
end In pitch, J bere been able to hter (ha oeSTd >*h*n the toik i» held to the 'if of ofW
MOond pertiel cr OeUTt of ihe pnnie In a proptt)/ laned reinntace }»r, a* deecribed le

tome lo* (orki thi* Oeleie {• w powerful (iiet (hie peresreph. I lone eoeU jite Ly pounef
on prfMJBg Ih* handle of the fork agalsct the wem in or oat onlij the rceonenee 2i »troB{Ml.
^ic, the prime quite duepiiean and the and ihen 1 rrgUlw the height of the »»Uf
Octa»e eolp !• heird. and ilm hae often and pilch of the fork for faturo u*e oa a il'p

H'*', t
embarrauinjeut Jn tonini' e! paper gummed lo the eldo el the jef 1

Ihe forkt, or to evuntmg heel* lu dcUnuIiit have found that U U itol at all oe«*«rylo
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tinkling of the fork at the moment of being struck, and generally become rapidly

inaudiWe. If the tuning-fork is held in the^ fingers, it imparts very little of its

tone to the air, and cannot he heard unless it is held close to the ear. Instead of

holding it in the fingers, we may screw it into a thick board, on the under side of

which some pieces of india-rubber tubing have been fastened. When this is laid

upon a table, the india-rubber tubes on which it is supported convey no sound to

tlm table, and the tone of the tuning-fork is so weak that it may be considered in-

audible.
* Now if the prongs of the fork be brought near a resonance chamber* of

a bottle-form of such a size and shape that, when we blow over its mouth, the air

it contains gives a tone of the same pitch as the fork’s, the air within this chamber

vibrates sympathetically, and the tone of the fork is thus conducted with great

strength to the outer air. Now the higher secondary tones of such resonance

chambers are also inharmonic to the prime tone, and in general the secondary

tones of the chambers correspond neither with the harmonic nor the inharmonic H

secondary tones of the forks ;
this can be determined in each particular case by

producing the secondary tones of the bottle by stronger blowing, and discovering

those of the forks with the help of strings set into sympathetic vibration, as will

be presently described. If, then, only one of the tones of the fork, namely the

prime tone, corresponds with one of the tones of the chamber, this alone will be

reinforced by sympathetic vibration, and this alone will be communicated to the

external air, and thus conducted to the observer’s ear. The examination of the

motion of the air by resonators shews that in this case, provided the tuning-fork be

not set into too violent motion, no tone but the prime is present, and in such case

t)ie unassisted ear hears only a single simple tone, namely the common prime of

the tuning-fork and of the chamber, without any accompanying upper partial tones.

The tone of a tuning-fork can also be purified from secondary tones by placing

its handle upon a string and moving it so near to the bridge that one of the proper

tones of the section of string lying between the fork and the bridge is the same as ^
that of the tuning-fork. The string then begins to vibrate strongly, and conducts

the tone of the tuning-fork with great power to the sounding board and surround-

ing air, whereas the tone is scarcely, if at all, heard as long as the above-named

section is not in unison with the tone of the fork. In this way it is easy to find

the lengths of string which correspond to the prime and upper partial tones of the

fork, and accurately determine the pitch of the latter. If this experiment is con-

ducted with ordinary strings which are uniform throughout their length, we shield

the ear from the inharmonic secondary tones of the fork, but not from the harmonic
upper partials, which "are sometimes faintly present when the fork is made to

vibrate strongly. Hence to conduct this experiment in such a way as to create

purely pendular vibrations of the air, it is best to weight one point of the string, if

only so much as by letting a drop of melting sealing-wax fall upon it. This causes
the upper proper tones of the string itseK to bo inharmonic to the prime tone, and
hence there is a distinct interval between the points where the fork must be placed f
to bring out the prime tone and its audible Octave, if it exists.

In most other cases the mathematical analysis of the motions of sound is not
nearly far enough advanced to determine with certainty what upper partials will
be present and what intensity they will possess. In circular plates and stretched
membranes which are struck, it is theoretically possible to do so, hut their inhar-

put the fork into excessively strong vibration
•u order to make the Octave sensible. Thus,
taking a fork of 232 and another of 468 vibra-
tions, after striking them both, and letting the
deeper fork spend most of its energy until I
could not see the r-ibrations with the eye stall,
the beats were heard distinctly, when I pressed
both on to a table, and continued to be heard
c\ on after the forks themselves were separately
inaudible. See also Prof. Helmholtz's experi-
ments on a fork of 64 vibrations at the closo

of Chap. VII., and Prof. Preyer’a in App. XX.
sect. L. art. 4, c. The conditions according
to Koenig that tuning-forks shonld have no
upper partials are given in App. XX. sect. Lu
art. 2, a.—Tmiu-Jofor.]

* Either a bottle of a pa.-per size, which
can readily be more nocuralely tuned by pour-
ing oil or water into it, or a tube of pasteboai'd
quite olosed at one end, and having a small
round opening at tho other. See tho proper
sizes of suuh resonance ohambeta in App. IV.
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Tnonic eccoodatj tones are eo nomerons ao3 so ne-irlj of tte same tint 1204

otserrers would probably till to separate tlieia satisfaetonly. On clastic rods, } or

erer, the secondary tones are tcry distant from each otber, and arc inbannonic.M

that they can be readSj diatlngviialicd from each other by the car. The follovr^

are the proper tones of a rod wbkh is free at both ends ;
the Tibroiional mnaUf

of the prime tone taVen to he e. is reeVooed as 1
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j
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Third proper tone .....
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The Dotation is adapted to the e<{ua1 temperament, and the appended fraetioai

^ are parts of the interral of a complete tone.

Where we are unable to execute the tlieorclical anal^-sis of the motion, wc can,

at any rate, by means of resonalore and other syropalhelically vibrating boditj,

analyse any tndindual musical tone that is pr^uced, and then compare tbii

analyais, which is detennined by the laws of sympathetic ribration, iiitli thst

effected by the unassisted ear. The latter is naturally much less eensitire this

one armed with a resonator ; so that it is frequently impossible for the nnarmel

ear to recogni*e amongst a number of other stronger simple tones those ahich the

resonator itself can only faintly indicate. On the other hand, so far as my ri

perience goes, there is complete agreement to this extent ; the ear recognises aitli

out resonators the simple tones which the resonators greatly reinforce, and perecivn

no upper partial lone which the resonator does not indicate. To verify this coo

elusion, 1 performed numerous eipenmcnts, both with the human Totce and tbs

harmonioffl, and they all coofirraed lt.t

f Cy the abore ezperusente the proposition enunciated and defended byO S

Ohm must he regarded as proved, via. that ffie Atimnn eorperceuespenifiifarti&ro

luffu alcne at Jtmple toner, o»d utalrat a!l aihzr ^vric/ita motions 0/ tbe oir tnfe
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Singing and Sensitive Flames

JOHN TYNDALL

John Tyndall (1820-1893) was not only a distinguished experimental physicist,

known for his investigations in radiation, magnetism, acoustics, and geophysics, but

also one of the most brilliant lecturers on science the world has ever known. For

most of his active career he was professor of natural philosophy at the Royal Institution

of Great Britain, where his lectures and lecture demonstrations gained him world

wide recognition.

The following extracts are taken from Tyndall’s book Sound. This book was

based on lectures which Tyndall gave at the Royal Institution. The passages reproduced
concern the nature of singing flames and the use of the sensitive flame as a detector

of sound waves, particularly those inaudible to the human ear (ultrasonics). It must
be recalled that Tyndall worked before the days of electroacoustics and the modern
microphone.
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Reprinted from “Sound, J T)ndaU (Appleton) 217-237 (1867)
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FEOntEtCTS ox TAIi rWlfES—lATIUOROtXAJir Dl LtCACT OF FtAVES XS

XCOCSTJC JlEACENTS— TJIB TDWEt, FtXME—XCTJOX OF COSTESSATJOVAI,

ToxES crox rwMES—xenox or Mcstcxx. socsdj ox cstaMrEO icra

OP OXS—CONSTITCTJOX OP VATEtt JETS—ACTJOX OF JIVSJCAE SOt-NDS OX
WATER JETS—A ZJQVTD TEIX WAT COWrCTE IX rOlNT OF SEttCACT WITU

THE lun.

I
^RrCTION" is ahvaja rbjtbmic, Wien we p^S'^ a refined

l)0 \F across a string, tbc tension of tbc string secures

tbe perfect rb)tbni of tbc friction. When we pass tbc

wetted finger round tbc edge of a glass, tbe bicaking up

of tbe friction into rb)tbmic pul«cs eTprc«ses itself in

music. Savart’a c’fpcrimcnts prove the friction of a liquid

against tbe sides of an orifice tbrougb which it passes to

be competent to produce musical sounds. We bare bero

tbc meaua of repeating his experiment. The tube A b, fig,

110, is filled with water, its extremity, b, being closed by

a plate ot brass, « );icb is picrceH hy a circular orlBco ofa

diameter equal to tbc tbicknciS of tbo plate, Remoring

a little peg which stops tbe orifice, the waW issues from

it, and as it sinks in tbc tube a musical note of great sweet-

ness issues from tbc liquid column. This note is due to tbo

intermittentfiow of tbe liquid tbrougb tbe orifice, by wlucb

tbe whole column above it is thrown into vibration. Tbo
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tendency to this effect shows itself when tea is poured

from a teapot, in the circular ripples that cover the falling

liquid. The same intermittence is observed in the black

dense smoke ^Yhich rolls in rhythmic rings from the funnel

of a steamer. The unpleasant noise of unoiled machinery

is also a declaration of the fact that the friction is not

uniform, but is due to the alternate

^bite’ and release of the rubbing

surfaces.

Where gases are concerned friction

is of the same intermittent character.

A rifle bullet sings in its passage

through the air; while to the rubbing

of the wind against the boles and

branches of the trees are to be as-

cribed the * waterfall tones ’ of an

agitated pine-wood. Pass a steadily

burning candle rapidly through the

air ; ah indented band of light, de-

claring intermittence, is the conse-

quence, while the almost musical

sound which accompanies the ap-

pearance of this band is the audible

expression of the rhythm. On the

other hand, if you blow gently

against a candle flame, the fluttering

’noise announces a rhythmic action. We have already

learned what can be done when a pipe is associated with
such a flutter

; we have learned that the pipe selects a
special pidse from the flutter, and raises it by resonance
to a musical sound. In a similar manner the noise of
a flame may he turned to account. The blowpipe flame
of our lahoratoiy, for example, when enclosed within
an appropriate tube, has its flutter raised to a musical
roar. The special pulse first selected soon reacts upon the

Fig. no.
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flame so as to abolish in a great degree the other pulses,

compelling the flame to vibrate in peciods aasw’cring to

the selected one. And this reaction can become so power-

ful—the timed shock of the reflected pulses may ac-

cumulate to such an extent—as to beat the flame, even

when very large, into extinction.

Nor is it necessary to produce this flutter by any extra-

neous me.ans. When a gas flame is simply enclosed within

a tube, the passage of the air over it is usually sufHcient

to produce the necessary rhythmic action, so as to cause the

flame to hurst spontaneously into song. Not all, however,

are aware of the intensity to which this flame-music may
rise. I have here a ring burner ^Yith twenty-eight orifices,

from which issues a gas flame. I place over the flame

this tin lube, 5 feet long, and 2^ inches in diameterr

The flame flutters at first, but it soon chastens its impulses

into perfect periodicity, and a deep and clear musical

note is the rcstilt. Tiic quickness of its pulses depends

in some mcastirc on the size of the flame, and by lowering

the gas I finally stop the note which is now sounded.

After a momentary intcn’al of silence, another note, which

is the octave of the last, is yielded by the flame. The first

note was the fundamental note of the tube which sur-

rounds the flame: tliis is the first harmonic. In fact,

here, exactly as in the ease of open organ-pipes, we have

the aerial column dividing itself into vibrating segments,

separated from each other by nodes.

Permit me now to try the effect of this larger tube, a h,

fig. Ill, 15 feet long, and 4 inches wide, which was fonned

for a totally diflercot t»sc. It is siipporte*! by a steady

stand s s', and into it is lifted the t.all burner, showu en-

larged atn. You licar the incipient flutter; you now bear

the more powerful sound. As the flame is liflcd higher tho

action becomes more violent, until finally a storm of music

issues from the tube. And now all bas suddenly ceased

;
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the reaction of its own pulses upon the

flame has beaten it into extinction. I new

relight the flame and make it very small.

When raised within the tube, the flame

again sings, but it is one of the harmonics

of the tube that 3mu now hear. On
turning the gas fully on, the note ceases

—all is silent for a moment; but the

storm is brewing, and soon it bursts forth,

as at first, in a kind of hurricane of

sound. Ey lowering the flame the funda-

mental note is abolished, and now 3mu bear
the first harmonic of the tube. jMaking the

flame still smaller, the first harmonic dis-

appears, and the second is heard. Your ears

being disciplined to the apprehension of

these sounds,! turn the gas once more fully

on. Mingling with the deepest note you

notice the harmonics, as if struggling to be

heard amid the general uproar of the flame.

With a large Bunsen’s

f'f'' 1 U burner, the sound of

^j if
tube becomes power-

I

ful enough to shake the

I floor and seats, and the

I
large audience that oc-

il cupics the seats of this

II

room, while the extinc-

II flame, by the

II reaction of the sonorous

I pulses, announces itself

II
I

b3’ an explosion almost

II I as loud as a pistol shot.

n
^ must occur to 3mu that

a chimney is a tube of
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tilts Kind upon a large scale, and that the roar of a flame

in a cliunncy is simply a rough attempt at music.

I now pass on to shorter tuhes and smaller flames. Here

is a scries of eight of them. Placing the tuhes over the

flames, each of them starts into song, and 3'on notice that aa

the tubes lengthen the tores deepen. The lengths of these

tubes are so chosen that they \icld in succession the eight

notes of the gamut.

Pound some of them

3'ou observe a paper

slider,^, fig. 112, by

uhicb the resounding

tube can be length-

ened or shortened.

\Vbile the flame is

sounding I raise the

slider; the pitch iu-

staiitiy falls. I now
lo-acr the slider; the

pilch inst.nnlly rises.

Thes'e e\pcriment8

prove the flame to be

governed by the tube,

P3' lbs reaction of the

piilsei, reflected back

upon the flame, its

flutter is rendered per-

fectly periodic, the

length of the period

being determined, us

Tio. 112.

in the ease of organ-pipc«, hy the length of the tube.



SENSITIVE NAKED FLAMES.

We have liitherto dealt with flames surrounded hy re-

sonont tubes ; and none of these flames, if naked, would

respond in any way to such noise or music as could be

here applied. Still it is possible to make naked flames

thus sympathetic. In a former lecture (p. 101), I referred

to the oscillations of water in a bottle, as revealing the

existence of vibrations of a definite period in the general

jar of a railway train. The fish-tail flames in some of our

metropolitan railway carriages are far more sensitive

acoustic reagents. If you pay the requisite attention, you

will find single flames here and there jumping in sjm-

chronism.with certain tremors of the train. A flame, for

example, having a horizontal edge, when the train is

still, will, during the motion, periodically thrust forth a

central tongue, and continue to jump as long as a special

set of vibrations is present. It will subside when those

vibrations disappear, and jump again when they are re-

stored. 'NMien the train is at rest, the tapping of the

glass shade which surrounds the flame rarely fails, when it

is sensitive, to cause it to jump.

This action of sound upon a naked fish-tail flame
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Here moreover is a fish-tail flame, \shicb burns brigiitly

and steadil}’, refusing to respond to any sound, nuisic.il or

unmusical. I urge against the broad face of the flame

a stream of air from a blow-pipe. Tbe flame is cut in

two by the air, and now', when the whistle is sounded, it

instantly starts. A knock yu the table causes the two half-

flames to unite, and form, for an iiistaut, a single flame of

the ordinary shape. By a slight varialionof the experiment,

the tw'o side-flames disappear when the whistle is sounded,

a central luminous tongue being thrust forth in their

stead.

Before you now is another thin sheet of flame, also is-

suing from a common fish-tail burner, fig. 117. You might

Tio 118.

sing to it, varjing the pitch of your voice, no shiver of the

flame would bo visible. You might employ pitch-pipes,

tuning-fork'!, bells, and trumpets, with a likcab'scncc of all

ctfccc. A bare!}’ perceptible motion of the interior of the

flame maybe noticed when this shrill whistle is blown
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close to it. By turning the cock more fully on I bring the

flame to the verge of flaring. And now, when the whistle

is hlo'A’n, you see an extraordinary appearance. The flame

thrusts out seven quivering tnngucs, fig. 118. As long as

the sound continues the tongues jut forth, being violently

agitated ; the moment the sound ceases, the tongues dis-

appear, and the flame becomes quiescent.

Passing from a fish-tail to a bat's-wing burner, we obtain

this broad, steady flame, fig. 110. It is quite insensible to

the loudest sound which w’ould be tolerable here. The flame

is fed from this small gas-holder,^ which places a greater

pressure at my disposal than that existing in the pipes

of the Institution. I enlarge the flame and now a slight

flutter of its edge answers to the sound of the whistle.

Fio. 120.

Finally I turn on gas until the flame is on the point of
roaring, as flames do when the pressure is too "reat. I
now sound the whistle; the flame roars, and suddenly
assumes the form shown in fig. 120.

» A gas-tag properly 'ivcightcd also answers for theso experiments.
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I ftlrikc a tJ/alii/f arnH iwth a hitamer, the flame

instantly rc‘.2)oinl>> by tlirusting forth ih tongues.

An essential condition to entire success in tlicso cxp'‘ri-

incnts disclosed itself in the following manner. I ^Yasitl

a room illuminated hy two fish-tail fiames. One of them
jumped to a whistle, the other did not. The gas of

the non-seDsiti\e llame was turned off, additional pressure

being thereby thrown upon the other flame; it flared,

and its cock was luincd so as to lower the flame. It now
proved non-sensithe, however close it might bo brought

to the point of flaring. The n.urow orifice of the half-

turned cock appeared to jnterfere with the action of the

sound. 'When the gas A\.as turned fully on, the flame

boiDg lowered by opening the cock of the second burner,

it became agoin sensitive. Up to this time a great num-
ber of burners had been tried, including some with single

orifices, hut, w ith many of them, the action was ntL Act-

ing, how ever, upon the hint couvojod hy this observation,

the pipes which fed the flames were widely opened; the

consofiucnce was, that our most refractory bmuers were

tliiis rendered sensitive.

The observation of 0r. l/ccoiitc is thus easily and

strikingly illustrated ; in our subsequent, and far more

delicate expeiiments, the precaution just referred to is

still more essential.

.'Mr. Barrett, late laboratory assistant in tills place,

first observed the shortening of a tall flame i'^uing from

the single orifice of this old burner, when the higher

notes of a circular plate were sounded ; and, by the se-

lection of more suitable bui ners, he afterwards succeeded

in rendering the flame extremely sensitive,* Observing

the precaution above adverted to, we c.an readily obtain,

in an exalted degree, the shot toning of the flame. It is

• For Xr JJjmlt's esro nccownt of rapenmenfs I n fer t?«c rca<l<p

Oto rUilo5oj Uical Magjsiuc for Marcti, 1867.
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now before 3*011, being 18 inches long and smoking co-

piously. W’hen I sound the whistle the flame falls to a

height of 9 inches, the smoke disappearing, and the flame

increasing in brightness.

A long flame may be shortened and a short one length-

ened, according to circumstances, by these sonorous vibra-

tions. Here, for example, are two flames, issuing from rough

burners formed from pewter tubing. The one flame,

flg, 121 j
is long, straight, and smoky; the other, fig. 122,

Fig. 124.

is short, forked, and brilliant. On sounding the whistle,
the long flame becomes short, forked, and brilliant, as
in fig. 12.3 ; the forked flame becomes long and smoky, as
in fig. 124. As regards, therefore, their response to the
sound of the whistle, one of these flames is the complement
of the other.
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In fig. 125 is represented anotlier smoky flame whicii,

when the whistle sounds, breaks up into the form shown

iu fig. 12G.

The foregoing experiments illiistnitc the lengthening

nnd shortening of flames by sonorous vibrations. They

are .also able to produce ‘>'otalton» \\c have here several

home-made burners, from which issue flat flames, each

about ten inches high, and three inches across at their

widest part. The burners arc purposely so formed that

the flames are dumpy and forked, \\licn the whistle

sounds, the plane of each flame turns ninety degrees

round, and continues in its new position as long as the

sound continues.



A Method of Recording Articulate

Vibrations by Means of Photography

ELI WHITNEY BLAKE, JR.

Eli Whitney Blake, Jr. (1836-1895), American physicist, was the first Hazard
Professor of Physics at Brown University, having held this chair from 1870 until

his death. He was the grand nephew of Eli Whitney, the American inventor. Blake

was much interested in telephoning and made contributions to the early development
of the telephone. He also devoted much attention to the problem of rendering sound
waves visible. We reproduce here an extract from his 1878 paper on this subject.

It was of course the forerunner of much modern equipment like the phonodeik
of D. C. Miller and the cathode-ray oscillograph.
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iug the vibrations of tuning forks, strings, &c., by attaching to

tb6m plates of blackened mica punctured with small holes.^
^

A
beam of sunlight passing through the hole strikes a sensitive

plate moving with uniform velocity, and leaves a permanent

record of the combined motions. Dr. Stein considers his

method applicable to vocal sounds, but I cannot learn that he

has ever attempted this application. My _own_ experiments in

that direction by Stein’s method resulted in failure.

The object of this paper is to describe a method of*’obtain-

ing photographs of minute vibrations on a magnified scala

A plane mirror of steel, A, is supported by its axis in the

metal frame B. The ends of the axis are conical, and carefully

fitted into sockets in the ends of the screws C, C. On the back

of the mirror is a slight projection D pierced by a small hola

The vibrating disc, as hitherto employed, is a circular plate

of ferrotype iron, inches in diameter, screwed to the back of

a telephone mouth-piece of the form
invented by Professor John Peirce,

and now universally used. From
the center of the back of this disc a m
stiff steel wire projects, the end of

which IS bent at a right angle. This ^ ^
wire serves to connect the vibrating

]|

disc with the mirror by hooking into

the hole in D, as represented in the
figure. The mirror frame and the gack view of Mirror, eetoal sire,
vibrating disc are kept in a fixed re-

lation to each other by a block of hard wood, to which both are
firmly screwed. The mirror is set with its axis parallel, and its

reflecting surface perpendicular, to the vibrating disc.

A heliostat sends a beam of sunlight horizontally through a
small circular opening. This beam passes into a dark closet
and at a distance of several feet from the circular opening falls

upon the mirror above described placed with ita axis inclined
45° to the horizon. The rays, reflected vertically downward,
pass through a lens at whffse focus they form an intensely lumin-
ous image of the circular opening.
A carriage moving smoothly on four wheels travels beneath

the lens at such a distance that the sensitized plate laid upon it
comes at the focus for actinic rays. A uniform velocity is given
to the carriage by a string fastened to it and passing over a
pulley. To this string a lead weight, just sufficient to balance
motion, is permanently attached, while a supplemental weight
acts at the beginning of motion and is removed just before the
se^itized plate reaches the spot of light above described.

The velocity attained by the carriage is determined by plac-mg a sheet of smoked glass upon it and letting it run under a

367



66

econd. lor the vowni
l!ie tmtfiem »

'

2/4

to by thr"!
*
‘^'“ussion of n,

’

per

“tsoissaj

•ttjoco,.^ nboii# caifjarre ^^ni/re,
y^‘«^*f(Je) «Wcfnin/ ^^CibuWK® ^ SviJniS®

%;ligs?ltt^5|g:S;E^3»

S‘&L^2?t;E^||rHs-a^
'*"' «" ox;, *”*7 b®

368



,8 ROWN

Nl V E R‘

369



Tile qut'jf
Mirror. --O'^CyVo^

FaES!f:v“S^^^^^

n “'V-SfI'-V-'
pejwred as v° speech ,

ans\ve?„ *'';''"neni Jp^''"' '"'a quesiu*'' f°e>P)eto?'"'r'''

at'Sr^ ^annof;r' "•''C '°h ‘''’"''"'vtlhe;'^' W-

s;.;?r^?xsfr'"«p.„,,. ?' the mirror.
It ^V‘ '’“'T

iir?:?.i. .
t "Quid tU,,,./^

370



59
0. iV. Rood—Telephonic ReVxy.

• Mfo f.- hp vrcorded by this method. It is to be

^0^0̂ tut^he" of the line traced where the

vibrations are extremely small, is so great as to rnask the cu v

an tint the experiment iust cited is not entirely fau.

^ The clearness and beauty of the curves obtained can

'innreciated without inspection of the originals.^ Their

comXxHy and variety open a large field for investigation and

they soen/to offer the means of analysis of articulate speech.
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Crystal Physics—^Development by Pressure

of Polar Electricity in Hemihedral
Crystals with Inclined Faces

PAUL-JACQUES CURIE and
PIERRE CURIE

Pnul Jacques Cune (185&-1941) and Pierre Curie (1859-1906), brothers and

physicists, Vbhose names will e^er be associated with the discovery of piezoelectricity,

both became professors of ph)sics m Rins Pierre Cune gained greater fame through

his worl sMih his tvife, ^(a^e, on radioactivity In the early part of their careers

they ucre both interested in the physical properties of crystals and it was as a result

of this that in 1880 they discovered piezoelectnciiy

Tlic followng IS a translation of their original paper This was followed b) a

later paper in the same >ear, also in Comptes Rendus, containing further details but

nothing of fundamental character In neither paper does the term piezoelectncil)

appear Tins nomenclature was suggested immediatel) after the publication of the

Curie pipers by the German ph)siast\V G Hankc!(1814-1898) Further information

on the subject will be found m Piezoelfctmxly b) W G Cady (1946, revised ed , 1964)

TTic use of piczoclcctnc crystals as electroacoustic transducers revolutionized the

production and reception of high frequency sound The discover) of piezoelectncil)

was thus a benchmark m the development of acoustics
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Translated by R. Bruce Lindsay from

Comptes Rendus Hebdomadaires des Seances

de VAcademie des Sciences, Paris, 91
, 294 (1880).

1. Crystals possessing one or more faces with dissimilar extremities, that is to

say, hemihedral crystals with inclined faces, possess a special physical property, that

of giving birth to two electric charges of opposite sign at the extremities of the axes

in question when they are subjected to a change in temperature. This is the phenome-

non known zs pyroelectricity

.

We have found a new way to develop polar electricity in the same crystals. This

consists in subjecting them to variations of pressure along their hemihedral axes.^

The effects produced are entirely analogous to those produced by heat. The
extremities of the axis along which the pressure is exerted receive electric charges

of opposite sign. Once the crystal has returned to its normal state, ifone decompresses

it, tlxe phenomenon is repeated, but with an inversion of sign: the end which was

charged positively on compression becomes negative on decompression and conver-

sely.^

In order to make an experiment two parallel faces are cut perpendicular to

a hemihedral axis in the substance one wishes to study. The faces are covered with

sheets of tin foil which are insulated from the surroundings by two plates of hard
rubber. By putting the whole between the jaws of a vise, for example, one can exert

pressure on the two faces that are cut, that is to say, along the hemihedral axis

^Bulletin de la Societe mineralogique, 1880.

^Hemihedral crystals with inclined faces are the only pyroelectric crystals. They are also the
only ones capable of acquiring polar electricity by the influence of pressure. Certain holohedral
crystals, like calcspar, for example, are also charged by the application of pressure, but with
electricity of one sign only. This is a surface phenomenon and entirely different. The effect
of It was not perceptible under the conditions of our experiments.
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Fundamental Papers on Acoustics

LORD RAYLEIGH

John William Strutt, Third Baron Rayleigh (1842-1919), was perhaps the most

versatile of the British physical scientists of the second half of the 19th century and

the first quarter of the 20th. Active both as an experimentalist and a theoretician,

he turned his attention during a long and active professional career to practically

every branch of physics and many phases of chemistry. Though perhaps best known
as the co-discoverer (with William Ramsay) of the rare gas argon, he devoted much
attention to acoustics. His book, The Theory of Sound (1877-1878) was a landmark
in the development of the subject, and has remained a standard treatise ever since

its publication. Of the 130 articles which he published in acoustics we present here
five as typical of his important contributions. In each one he broke new ground
in some field of sound phenomena. We have restricted ourselves to papers that

appeared before 1900. Later papers belong more appropriately in the volume on
physical acoustics, to appear later in this series.
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vibrations communicated to an infinite mass of air from the surface of

a sphere or circular cylinder. The solution for the sphere is very instructive,

because the vibrations outside any imaginary sphere enclosing vibrating

bodies of any kind may be supposed to take their rise in the surface of

the sphere itselC

More important in its relation to the subject of the present paper

is an investigation by Helmholtz of the air-vibrations in cavernous spaces

(Hohlraume), whose three dimensions are very small compared to the wave-

length, and which communicate with the external atmosphere by small

holes in their surfaces. If the opening be circular of area <r, and if S denote

the volume, n the number of vibrations per second in the fundamental note,

and a the velocity of sound,

_ atA

Helmholtz’s theory is also applicable when there are more openings than

one in the side of the vessel.

In the present paper I have attempted to give the theory of vibrations

of this sort in a more general form. The extension to the case where the

communication with the external air is no longer by a mere hole in the

side, but by a neck of greater or less length, is important, not only because

resonators with necks are frequently used in practice, but also by reason of

the fact that the theory itself is applicable within wider limits. The

mathematical reasoning is very different from that of Helmholtz, at least in

form, and will I hope be found easier. In order to assist those who may
wish only for clear general ideas on the subject, I have broken up the

investigation as much as possible into distinct problejns, the results of which

may in many cases be taken for gmnted without the rest becoming un-

intelligible. In Part I. my object has been to put what may be called

the dynamical part of the subject in a clear light, deferring as much as

possible special mathematical calculations. In the first place, I have con-

sidered the general theory of resonance for air-spaces confined nearly all

round by rigid walls, and communicating with the external air by any
number of passages which may be of the nature of necks or merely holes,

under the limitation that both the length of the necks and the dimensions
of the vessel are very small compared to the wave-length. To prevent

misapprehension, I ought to say that the theory applies only to the funda-
mental note of the resonators, for the vibrations corresponding to the
overtones are of an altogether different character. There are, however, cases
of multiple resonance to which our theory is applicable. These occur when
two or more vessels communicate with each other and with the external
air by necks or otherwise; and are easily treated by Lagrange’s general
dynamical method, subject to a restriction as to the relative magnitudes
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36 ON THE THEORY OF RESONANCE. [5

tube, but are especially valuable -when it is so nearly cylindrical that dyjdx

is everywhere small. The two limits are then very near each other, and

either of them gives very approximately the true value. The resistance

of tubes, which are either not of revolution or are not nearly straight, is

afterwards approximately determined. The only experimental results bearing

on the subject of this paper, and available for comparison with theory, that

I have met with are some arrived at by Sondhauss* and Wertheiraf.

Besides those quoted by Helmholtz, I have only to mention a series of

observations by SondhaussJ on the pitch of flasks with long necks which

led him to the empirical formula

n = 467^0.5
XiSl’

<T, L being the area and length of the neck, and S the volume of the flask.

The corresponding equation derived from the theory of the present paper is

n = .54470

which is only applicable, however, when the necks are so long that the

corrections at the ends may be neglected—a condition not likely to be

fulfilled. This consideration sufficiently explains the discordance. Being

anxious to give the formula of Parts I. and II. a fair trial, I investigated

experimentally the resonance of a considerable number of vessels which

were of such a form that the theoretical pitch could be calculated with

tolerable accuracy. The result of the comparison is detailed in Part III.,

and appears on the whole very satisfactory
;
but it is not necessary that I

should describe it more minutely here. I will only mention, as perhaps a

novelty, that the experimental determination of the pitch was not made
by causing the resonators to speak by a stream of air blown over their

mouths. The grounds of my dissatisfaction with this method are explained

in the proper place.

[Since this paper was written there has appeared another memoir by
Dr Sondhauss§ on the subject of resonance. An empirical formula is

obtained bearing resemblance to the results of Parts I. and II., and agreeing
fairly well with observation. No attempt is made to connect it with the
fundamental principles of mechanics. In the Philosophical Magazine for

September 1870 [Art. iv. above], I have discussed the differences between
Dr Sondhauss s formula and my own from the experimental side, and shall
not therefore go any further into the matter on the present occasion.]

* Fogg. Ann. vol. i.xxzi.

t Annalet de Chimie, vol. xxxi.

t Fogg. Ann. vol, ixxix.

§ Fogg. Ann. 1870.
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38 ON THE THEORY OF RESONANCE. L®

Let Ao be the density, and 0 the velocity-potential of the fluid motion

through an opening. The kinetic energy or vis viva

•‘///[ffl'*©'*®)]'"*''
the integration extending over the volume of the fluid considered

= [j V Green’s theorem.

Over the rigid boundary of the opening or passage, dj)jdn — 0,
so that if

the portion of fluid considered be bounded by two equipotential surfaces,

and 03, one on each side of the opening,

vis viva - (0, — 02)
~

if denote the rate of total flow through the opening.

At a sufficient distance on either side 0 becomes constant, and the rate

of total flow is proportional to the difference of its values on the two sides.

We may therefore put

where c is a linear quantity depending on the size and shape of the opening,

and representing in the electrical interpretation the reciprocal of the resistance

to the passage of electricity through the space in question, the specific

resistance of the conducting matter being taken for unity. The same thing

may be otherwise expressed by saying that c is the side of a cube, whose

resistance between opposite faces is the same as that of the opening.

The expression for the vis viva in terms of the rate of total flow is

accordingly

• * ^0 / ^ \
VIS viva = ~ — (1)

2 c '

If 8 be the capacity of the reservoir, the condensation at any time
inside it is given by X(S, of which the mechanical value is

X*
(2)

a denoting, as throughout the paper, the velocity of sound.

The whole energy at any time, both actual and potential, is therefore

2 c ^ 2 S' W
and is constant. Differentiating with respect to time, we arrive at

a*c ^ -A +-^X= 0
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40 ON THE THEOUy OF RESONANCE. [5

through the two

corresponding to

given by

necks, Ci, c.j constants depending on the form of the necks

the constant c in fonnula (6) ;
then T, the vis viva, is

the necks being supposed to be sufficiently far removed from one another not

to interfere (in a sense that will be obvious). Further,

V = Potential Energy = ^h„a? ^ ,

Applying Lagiangc’s general dynamical equation,

T\_dT^_dy_
yirJ dyjr ’

we obtain

dt
'

- df~

f’ + 1 1 ® .(7 )

as the equations to the motion.

By subtraction,

or, on integration.

Xifci — A j/cj — 0,

Cl Cj
(8)

Equation (8) shows that the motions of the air in the two necks have the

same period and are at any moment in the same phase of vibration. Indeed

there is no essential distinction between the case of one neck and that of

several, as the passage from one to the other may be made continuously

without the failure of the investigation. When, however, the separate

passages are sufficiently far apart, the constant c for the system, considered
as a single communication between the interior of the resonator and the

external air, is the simple sum of the values belonging to them when taken
separately, which would not otherwise be the case. This is a point to which
we shall return later, but in the mean time, by addition of equations (7),
we find

A, + As + (c, + Cs) (A, + As) = 0,

so that

(9)

If there be any number of necks for which the values of c are Cj, Cj, c, ....
and no two of which are near enough to interfere, the same method is

applicable, and gives

a /c, +C2 + c,+ ...

27rV a (9)
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4,2 ON THE THEORY OF RESONANCE. [5

Assuming = = we obtain, on substitution and elimination

oi A : B,

+ +^, |cc + c(c, + c.)l =0 .(11)

as the equation to determine the resonant notes. If n be the number of

vibrations per second, n^ = —p^l^Tr^ the values of p- given by (11) being of

course both real and negative. The formula simplifies considerably if

C3 =Ci, S' = S; but it will be more instructive to work this case from

the beginning. Let Ci = c,= TnCj = wmj.

The differential equations take the form

X, + '^[(l + m)X, + X,]=0/

Z3 + ^®{(H-«OZ3 + Z,}=0,

while Xi = —

Hence

(X, + x,y-+ {m + 2) (X, + X,)= 0,

(X,-X3)-+f'm(X3-X.) = 0.

X, + X,

m

\

Fig. 2.

The whole motion may be regarded as made up of twopai'ts, for the first

of which X, + X, = 0 ;
which requires

X, = 0. This motion is therefore the same

as might take place were the communi-

cation between S and S' cut off, and has

its period given by

a*(^ a^nc

4)71^8 47r*iS>

"

For the other component part, X, — X, = 0, so that

a* (m + 2) cY _ 2X3
n'-‘ =

4:71^8
.(12)

Thus
n’‘

?u + 2

m
. 3 ,

notes.

,
which shows that the second note is the higher. It

consists of vibrations in the two reservoirs

opposed in phase and modified by the con-

necting passage, which acts in part as a
second opening to both, and so raises the
pitch. If the passage is small, so also is

the difference of pitch between the two
A particular case worth notice is obtained by putting in the general
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5] ON THE TUEORy OF RESONANti- 41

When there are two similar necks CasCi, and

The note w accordingly higher than if there ttcrc onl> one neck m the

ratio of 1, a fact observed b^ Sondhauss and pro^cd theoretically by

Helmholtz for the case of openings which are mere holes in the sides of

the reservoir

Douhle Resonance

Suppose that there arc two reservoirs, S, S

,

communicating with each

other and with the external an by narrow

passages or necks. If we were to consider

SS^ as a single reservoir and to apply equa-

tion (9), wc should be led to an etroncous

result , for the reasoning on which (9) is

founded proceeds on the assumption that,

within the reservoir, the inertia of the

air may be left out of account wherew it is evident that the vw viva of the

motion through the connecting passage ma^ be os great as through the two

others. However, an investigation on the same gcncinl plan as before meets

the case pcrfcctl) Denoting by X,. X^, Xt the total Dows through the

three necks, wc have for the vis viva the expression

and for the putcntial energy

= }A.a’
*

s
-- +

An application of Lagrange s method gives ns the differential cqu itions to

the motion,

-X.
s s

By addition and integration A,/C|+X,A:,+ A',/e,

nation of X,,

00}

» 0 Hence, on cJimi

>“.+1’ |(<H+ c.)A'. + ^;Y.} = 0,
]
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42 ox THE THEORY OF RESOXANCB. [5

Assuming Xi = X3 = we obtain, on substitution and elimination

of A : B,

+yw Icp. + c. (c. + c,)l = 0 (11)

as the equation to determine the resonant notes. If n be the number of

vibrations per second, the values of p- given by (11) being of

course both real and negative. The formula simplifies considerably if

Cj= Ci, 8 ' = S; but it will be more instructive to work this case from

the beginning. Let Ci = c,= mCj = vw.

The differential equations take the form

while =

Hence

(X. + jr,)"+ (m+ 2) (X, + X,) = 0.

(X,-X,)-+‘^m(X,-X,)==0.

The whole motion may be regarded as made up of two parts, for the first

of which X, + X, = 0 ;
which requires

X2 = 0. This motion is therefore the same

as might take place were the communi-

cation between S and S’ cut off, and has

its period given by

,_ a\ _ ahne

For the other component part, Xj— X, = 0, so that

Fig, 2,

Y — _
® m

a’ (vi + 2) c
.(12)

Thus — =
,
which shows that the second note is the higher. It

nr m °

Fig. 3. consists of vibrations in the two reservoirs

opposed in phase and modified by the con-

necting passage, which acts in part as a
second opening to both, and so raises the

pitch. If the passage is small, so also is

the difference of pitch between the two
notes. A particular case worth notice is obtained by putting in the general
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44 ON THE THEORY OF RESONANCE. [5

produced by a deficient rigidity in the envelope which contains the alternately

compressed and rarefied air. Taking for simplicity the case of a sphere, let

us suppose that the radius, instead of remaining constant at its normal

value B, assumes the variable magnitude R + p. We have

kinetic energy = ^ p*,

potential energy = {Z + 47ri?’p}* +

where ni and )3 are constants expressing the inertia and rigidity of the

spherical shell. Hence, by Lagrange’s method,

ir + ^(X + 47riPp) = 0,

nip + 4!irR‘ (X + 47ri2*p) + /9p = 0,

equations determining the periods of the two vibrations of which the system

is capable. It might be imagined at first sight that a yielding of the sides

of the vessel would necessarily lower the pitch of the resonant note; but

this depends on a tacit assumption that the capacity of the vessel is largest

when the air inside is most compressed. But it may just as well happen

that the opposite is true. Everything depends on the relative magnitudes

of the periods of the two vibrations supposed for the moment independent of

one another. If the note of the shell be very high compared to that of the

air, the inertia of the shell may be neglected, and this part- of the question

treated statically. Putting in the equations ni = 0, we see that the phases

of X and p are opposed, and then X goes through its changes more slowly

than before. On the other hand, if it be the note of the air-vibration, which

is much the higher, we must put /8 = 0, which leads to

4!7rR‘kgX — emp = 0,

showing that the phases of X and p agree. Here the period of X is

diminished by the yielding of the sides of the vessel, which indeed acts

just in the same way as a second aperture would do. A determination

of the actual note in any case of a spherical shell of given dimensions and
material would probably be best obtained deductively.

But in order to see what probability there might be that the results of

Part III. on glass flasks were sensibly modified by a want of rigidity, I
thought it best to make a direct experiment. To the neck of a flask was
fitted a glass tube of rather small bore, and the whole filled with water
so as make a kind of water-thermometer. On removing by means of an
air-pump the pressure of the atmosphere on the outside of the bulb, the
liquid fell in the tube, but only to an extent which indicated an increase in
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46 ON THE THEORY OF RESONANCE. [5

Substituting the values of and d-^p'/dx, we obtain

cos ^.4^ + 5^ + ^ sin 2imt = 0,

which requires

A^+B^O, 0=0.
c

If there is a node at x=^ — I, A cos kl + Bk sin kl = 0\ so that

fctanA:Z =-4=-^ (1»)
B y

This equation gives the fundamental note of the tube closed at a; = — ? ;
but

it must be observed that I is not the length of the tube, because the origin

a: = 0 is not in the mouth. There is, however, nothing indeterminate in

the equation, although the origin is to a certain extent arbitrary; for the

values of c and I will change together so as to make the result for k

approximately constant. This will appear more clearly when we come,

in Part II., to calculate the actual value of c for different kinds of mouths.

In the formation of (14) the pressure of the air on the positive side at

a distance from the origin small against X has been taken absolutely con-

stant. Across such a loop surface no energy could be transmitted. In

reality, of course, the pressure is variable on account of the spherical waves,

and energy continually escapes from the tube and its vicinity. Although

the pitch of the resonant note is not affected, it may be worth while to

see what correction this involves.

We must, as before, consider the space in which the transition from

plane to sphei’ical waves is effected as small compared with X. The potential

in free space may be taken

= cos (fo' + — 27m<) (16)

expressing spherical waves diverging from the mouth of the pipe, which
IS the origin of r. The origin of x is still supposed to lie in the region

of plane waves.

47rr-^= rate of total flow across the surface of the .sphere whose

I'adius is r

^ttA' [cos 27rnt {cos {kr + g) + kr sin (hr -f ^r)}

-f sin 27mt (sin (kr + g)—kr cos (hr+ g)}].

Throughout Helmholtz’s paper the mouth of the pipe is supposed to lie in an infinite plane,
so that the diverging waves are hemispherical. The calculation of the value of c is thereby
simplified. Except for this reason it seems better to consider the diverging waves completely
sp en'cal as a nearer approximation to the actual circumstances of organ-pipes, although the
sphere could never be quite complete.
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48 ON THE THEORY OF RESONANCE. [5

The value of c will be investigated in Part II.

The original theory of open pipes makes the pressure absolutely constant

at the mouth, which amounts to neglecting the inertia of the air outside.

Thus, if the tube itself were full of air, and the external space of hydrogen,

the correction to the length of the pipe might be neglected. The first

investigation, in which no escape of energy is admitted, would apply if the

pipe and a space round its mouth, large compared to the diameter, but

small compared to the wave-length, were occupied by air in an atmosphere

otherwise composed of incomparably lighter gas. These remarks are made

by way of explanation, but for a complete discussion of the motion as deter-

mined by (13) and 17, 1 must refer to the paper of Helmholtz.

Long Tithe in connexion with a Reservoir.

It may sometimes happen that the length of a neck is too large compared

to the quarter wave-length to allow the neglect of the compressibility of the

air inside. A cylindrical neck may then be treated in the same way as the

organ-pipe. The potential of plane waves inside the neck may, by what has

been proved, be put into the form

-(/r = A' sin (a — a) cos 2Tmt,

if we neglect the escape of energy, which will not affect the pitch of the

resonant note.

d^jdt = — 2TrnA' sin k{x — a) sin 2Trnt,

d-^jdx = kA' cos k(x — a) cos 27m(,

where a is the correction for the outside end.

The rate of flow out of S= Q d-^jdx.

Total flow = Q dt = kA'Q cos kL —

.

the reduced length of the tube, including the corrections for both ends,

being denoted by L. Thus rarefaction in 8

, A'Q cos kL sin 27rnt 1 d-^ 27mA' sin kL . _= /c = - ^ = sin 27rnt.S 27m a* dt a'

This is the condition to be satisfied at the inner end. It gives

tan kL

When kL is small.

_ a? kQ Q
47r*n» 8 ~kS'

tan kL = kL + ^ (hiLy =

(18)



5] OK THE THEORT OP SESOKANCE. ^9

80 tbat

L(S+iLQ)

In comparing this with (5), it is necessaiy to introduce the value of c,

which is QfL. (5) will accordingly give the same result as (19) if onc-tAird

of the contents of the neck be included in S. The first overtone, which

is often produced by blowing in preference to the fundamental note, corre-

sponds approximately to the length £ of a tube open at both ends, modified

to an extent which may be inferred from (18) by the finitencss of S.

The number of vibrations is given by

"=i(r+^)
[The application of (20) is rather limited, because, in order that the

condensation within S may be uniform as has been supposed, the linear

dimension of S must be considerably less than the quarter wave-length;

while, on the other hand, the method of approximation by which (20) is

obtained from (18) requires that S should be large in comparison with QL.

A alight modification of (18) ia useful in finding the pitch of pipes which

are cylindrical through most of their length, but at the closed end expand

into a bulb S of no great capacity. The only change required is to under-

stand by L the length of the pipe down to the place where the enlargement

begins, with a correction for the outer end. Or if L denote the length

of the tube simply, we have

tan fc(£ + a)= j^,,
«...(20o)

and approximately.

If S be very small we may derive from (20 a)

..(20 6)
4(Z''fa +SIQ)

In this form the interpretation is very simple, namely, that at the closed

end the shape is of no consequence, and only the volume need be attended

to. The air in this part of the pipe nets merely as a spring, its inertia not

a _r *U!_ 1.: I ...Ml U,. ?ncoming into play.

Part IIL

A few measurements of this kind will be given in

The overtones of resonators which have not long necks arc usually very

high. Within the body of the reservoir a nodal surface must bo formed, nnd

the air on the further side vibrates as if it was contained in o completely
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60 ON THE THEORY OF RESONANCE. [5

closed vessel. We may form an idea of the character of these vibrations from

the case of a sphere, which may be easily worked out from the equations

given by Professor Stokes in his paper “ On the Communication of Motion

from a vibrating Sphere to a Gas”*. The most important vibration within a

sphere is that which is expressed by the term of the first order in Laplace's

series, and consists of a swaying of the air from side to side like that which

takes place in a doubly closed pipe. I find that for this vibration

radius : wave-length = '3313,

so that the note is higher than that belonging to a doubly closed (or open)

pipe of the length of the diameter of the sphere by about a musical fourth.

We might realize this vibration experimentally by attaching to the sphere a

neck of such length that it would by itself, when closed at one end, have the

same resonant note as the sphere.

Lateral Openings.

In most wind instruments the gradations of pitch are attained by means

of lateral openings, which may be closed at pleasure by the fingers or

otherwise. The common crude theory supposes that a hole in the side of,

say, a flute establishes so complete a communication between the interior

and the surrounding atmosphere that a loop or point of no condensation is

produced immediately under it. It has long been known that this theory is

inadequate, for it stands on the same level as the first approximation to the

motion in an open pipe in which the inertia of the air outside the mouth is

virtually neglected. Without going at length into this question, I will

merely indicate how an improvement in the treatment of it may be made.

Let yjri, ^frJ denote the velocity-potentials of the systemc of plane waves
on the two sides of the aperture, which we may suppose to be situated
at the point a: = 0. Then with our previous notation the conditions evidently
are that when a;= 0,

the escape of energy from the tube being neglected. These equations deter-
mine the connexion between the two systems of waves in any case that
may arise, and the working out is simple. The results are of no particular
interest, unless it be for a comparison with experimental measurements,
which, so far as I am aware, have not hitherto been mada]

Eov/"°n

®

request of the Astronomeryai. [1899. See Tfieory of Sound, §§ 830, 831.]
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Simple Apertures.

The next in order of simplicity is probably the case treated by Helmholtz,

where the opening consists of a simple hole in the side of the reservoir,

considered as indefinitely tliin and approximately plane in the neighbour-

hood of the opening. The motion of the fluid in the plane of the opening is

by the symmetry normal, and therefore the velocity-potential is constant

over the opening itself. Over the remainder of the plane in which the

opening lies the normal velocity is of course zero, so that may be regarded

as the potential of matter distributed over the opening only. If the there

constant value of the potential be called the electrical resistance for

one side only is

the integration going over the area of the opening.

Now

der = 2‘7r X the whole quantity of matter

;

so that if we call M the quantity necessary to produce the unit potential,

the resistance for one side =

Accordingly

c = ttM.

In electrical language M is the capacity of a conducting lamina of the

shape of the hole when situated in an open space.

For a circular hole M=2Rj7r, and therefore

c = 2R. (24)

When the hole is an ellipse of eccentricity e and semimajor axis R,

F{ey

where F is the symbol of the complete elliptic function of the first order.

Results equivalent to (23), (24), and (2-5) are given by Helmholtz.

When the eccentricity is but small, the value of c depends sensibly
on the area (a) of the orifice only. As far as the square of e,

^(«) = f(l+K),
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that

(2C)

the fourth power of e being neglected—a fonnula which may be applied

without sensible error to any orifice of an approximately circular fbrm.

In fact for a given area the circle is the figuia which gives a minimum
value to c, and in the neighbourhood of the minimum the variation is slow.

Next, consider the case of two circular orifices. If sufficiently far apart

they act independently of each other, and the value of c for the pair is

the simple sum of the separate values, as may he seen either from the law of

multiple arcs by considering c as the electric ecnductivity between the

outside and inside of the reservoir, or from the interpretation of Jf in (23).

The first method applies to any kind of openings with or without necks.

As the two circles (which for precision of statement we tnay suppose equal)

approach one another, the value of c diminishes steadily until they touch.

The change in the character of the motion may be best followed by con-

sidering the plane of symmetry which bisects at right angles the line joining

the two centres, and which may be regarded as a rigid plane precluding

normal motion Fixing our attention on half the motion only, we recognize

the piano as an obstacle continually advancing, and at each step more

and more obstructing the passage of fluid through the circular opening.

After the circles come into contact this process cannot be carried further;

but wo may infer that, as they amalgamate and shape themselves into a

single circle (the total area remaining all the while constant), the value of c

still continues to dltniolsh till it approaches its minimum value, which is less

than at the commencement in the ratio of ^/2 : 2 or I : ^/2. There are

very few forms of opening indeed for which the exact calculation of Jl/ or c

can be efTecled. "Wc must for the present be content with the formula (2b)

as applying to nearly circular openings, and with the knowledge that the

more elongated or broken up the opening, the greater is c compared to <r.

In the case of similar orifices or systems of orifices c varies as the linear

dimension.

Cyfindrical ATecks.

Most resonators used in practice have necks of greater or less length, and

even where there is nothing that would be called a neck, the thickness

of the side of the reservoir could not always be neglected. For simplicity

we shall take the case of circular cylinders whose inner ends lie on an

approximately plane part of the side of the vessel, and whose outer ends

are also supposed to lie in an infioito plane, or at least a plane whose

dimensions are considerable compared to the diameter of the cylinder. Even

under this form the problem does not seem capible of exact solution; but
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54 ON THE THEORY OP RESONANCE. [5

Fig. 4.

we shall be able to fix two slightly differing quantities between which the

true value of c must lie, and which

determine it with an accuracy more than

sufficient for acoustical purposea The

object is to find the vis viva in terms of

the rate of flow. Now, according to the

principle stated at the beginning of Part

n., we shall obtain too small a vis viva

if at the ends A and B of the tube we

imagine infinitely thin laminae of fluid

of infinitely small density. We may be

led still more distinctly perhaps to the

same result by supposing, in the electrical analogiie, thin disks of perfectly

conducting matter at the ends of the tube, whereby the effective resistance

must plainly be lessened. The action of the disks is to produce uniform

potential over the ends, and the solution of the modified problem is obvious.

Outside the tube the question is the same as for a simple circular hole in

an infinite plane, and inside the tube the same as if the tube were indefinitely

long.

Accordingly

resistance = + 2̂ = iS- (^ + 1 *)

The correction to the length is therefore ^ttR, that is, \vR for each end,

and _ 7ri2*

^~L + ^TrR'
(28)

Helmholtz, in considering the case of an organ-pipe, arrives at a similar

conclusion,—that the correction to the length (a) is approximately ^ttR
His method is very different from the' above, and much less simple. He
begins by investigating certain forms of mouths for which the exact solution

IS possible, and then, by assigning suitable values to arbitrary constants,

identifies one of them with a true cylinder, the agreement being showm to be
everywhere very close. Since the curve substituted for the generating
line of the cylinder lies entirely outside it, Helmholtz infers that the
correction to the length thus obtained is too small

If, at the ends of the tube, instead of layers of matter of no density, we
imagine rigid pistons of no sensible thickness, we shall obtain a motion
whose vis viva is necessarily greater than that of the real motion

;
for the

motion with the pistons might take place without them consistently with
wntinuity. Inside the tube the character of the motion is the same as
efore, but for the outside we require the solution of a fresh problem :

—

0 eterraine the motion of an infinite fluid bounded by an infinite plane.
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40.

OUR PERCEPTION OF THE DIRECTION OF A SOURCE
OF SOUND.

\^Nature, XIV. pp. 32—33, 1876,]

The practical facility with which we recognize the situation of a sounding

body has always been rather a theoretical difficulty. In the case of sight a

special optical apparatus is provided whose function it is to modify the

uniform excitation of the retina, which a luminous point, wherever situated,

would otherwise produce. The mode of action of the crystalline lens of the

eye is well understood, and the use of a lens is precisely the device that

would at once occur to the mind of an optician ignorant of physiology. The
bundle of rays, which would otherwise distribute themselves over the entire

retina, and so give no indication of their origin, are made to converge upon a

single point, whose excitation is to us the sign of an external object in a

certain definite direction. If the luminous object is moved, the fact is at

once recognized by the change in the point of excitation.

There is nothing in the ear corresponding to the crystalline lens of the

eye, and this not accidentally, so to speak, but by the very nature of the

case. The efficient action of a lens depends upon its diameter being at least

many times greater than the wave-length of light, and for the purposes of

sight there is no difficulty in satisfying this requirement. The wave-length

of the rays by which we sec is not much more than a ten-thousandth part of

the diameter of the pupil of the eye. But when we pass to the case of

sound and of the ear, the relative magnitudes of the corresponding quantities

are altogether different. The waves of sound issuing from a man’s mouth
are about eight feet long, whereas the diameter of the passage of the ear is

quite small, and could not well have been made a large multiple of eight

feet. It is evident therefore that it is useless to look for anything corre-

sponding to the crystalline lens of the eye, and that our power of telling the

origin of a sound must be explained in some different way.
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44.

ON THE APPLICATION Of THE PRINCIPLE OF RECIPROCITY
TO ACOUSTICS.

[Proceedings of the Jtogal Society, XXV pp 118—122, 1870]
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of “acoustic clouds” in relation to the audibility of fog-signals. These

observations were not, indeed, made w'ith the sim
2
)le sonorous sources of

theory ;
but there is no reason to supiiose that the result would have been

different if simple sources could have been used.

In experiments having for their object the comparison of sounds heard

under different circumstances there is one necessary precaution to which

it may not be superfluous to allude, depending on the fact that the audibility

of a particular sound depends not only upon the strength of that sound,

but also upon the strength of other sounds which may be heard along

with it. For example, a lady seated in a closed carriage and carrying on a

convoi’sation through an open window in a crowded thoroughfare will hear

what is said to her far more easily than she can make herself heard in

return
;
but this is no failure in the law of reciprocity.

The explanation of his observations given by Henry depends upon the

peculiar action of wind, first explained by Prof. Stokes. According to

this view a sound is ordinaril}' heard better with the wind than against

it, in consequence of a curvature of the rays. With the wind a ray w'ill

generally be bent downwards, since the velocity of the air is generally

greater overhead than at the surface, and therefore the upper part of

the wave-front tends to gain on the lower. The ray which ultimately

reaches the observer is one which started in some degree upwards from

the source, and has the advantage of being out of the way of obstacles

for the greater part of its course. Against the wind, on the other hand, the

curvature of the rays is upwards, so that a would-be observer at a con-

siderable distance is in danger of being left in a sound-shadow.

It is very important to remark that this effect depends, not upon the

mere existence of a wind, but upon the velocity of the wind being greater

overhead than below. A uniform ti'anslation of the entire atmosphere
would be almost without effect. In particular cases it may happen that

the velocity of the wind diminishes with height, and then sound is best

transmitted against the wind. Prof. Henry shows that several anomalous
phenomena relating to the audibility of signals may be explained by various

suppositions as to the velocity of the wind at different heights. When the
distances concerned are great, comparatively small curvatures of the ray may
produce considerable results.

There is a further possible consequence of the action of wind (or varLable
temperature), which, so far as I know, has not hitherto been remarked.
By making the velocity a suitable function of height it would be possible to
secure an actual convergence of lays in a vertical plane upon a particular
station. The atmosphere would then act like the lens of a lighthouse,
and the intensity of sound might be altogether abnormal. This may perhaps
e t »e explanation of the extraordinary distances at which guns have some-

times been heard.
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308 APPLICATION OF THE PIIINCTPLE OF RECIPROCITY TO ACOUSTICS. [44

of the heated column was protected from the direct action of the source

by additional screens interposed. I was more than ever puzzled until

Mr Cottrell showed me another experiment in which, I believe, the key

of the difficulty is to be found.

When the axis of the tube containing the reed is directed towards the

flame, situated at a moderate distance, there is a distinct and immediate

response; but when the axis is turned away from the flame through a

comparatively small angle, the effect ceases, although the distance is the

same as before, and there are no obstacles interposed. If now a cardboard

screen is held in the prolongation of the axis of the reed, and at such an

angle as to reflect the vibrations in the direction of the flame, the effect is

again produced with the same apparent force as at first.

These results prove conclusively that the reed does not behave as the

simple source of theory, even approximately. When the screen is close

(about 2 inches distant) the more powerful vibrations issuing along the

axis of the instrument impinge directly upon the screen, ax-e reflected back,

and take no further part in the experiment. The only vibrations which

have a chance of reaching the flame, after diffraction round the screen,

are the comparatively feeble ones which issue nearly at right angles with

the axis. On the other hand, when the screen is close to the flame, the

efficient vibrations are those which issue at a small angle with the axis,

and are therefore much more powerful. Under these circumstances it

is not surprising that the flame is affected in the latter case and not in

the former.

The concentration of sound in the direction of the axis is greater than

would have been anticipated, and is to be explained by the very short

wave-length corresponding to the pitch of the reed. If, as is not improbable,

the overtones of the note given by the reed are the most efficient part of

the sound, the wave-length will be still shorter and the concentration more
easy to understand*.

The reciprocal theorem in its generalized form is not restricted to simple

sources, from which (in the absence of obstacles) sound would issue alike in

all directions
;
and the statement for double sources will throw light on the

subject of this note, A double source may be thus defined :—Conceive two
equal and opposite simple sources, situated at a short distance apart, to be
acting simultaneously. By calling the two sources opposite, it is meant that

they are to be at any moment in opposite phases. At a moderate distance
the effects of the two sources are antagonistic and may be made to neutralize
one another to any extent by diminishing the distance between the sources.
If, however, at the same time that we diminish the interval, we augment the

^ lately observed that the flame in question is extremely sensitive to one of
r . Gallon’s whistles, which Rives notes near the limits of ordinary hearing.
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191 .

ON THE PHYSICS OF MEDIA THAT ARE COMPOSED OF FREE

AND PERFECTLY ELASTIC MOLECULES IN A STATE OF

MOTION*.

[Phil. Trans. 183 a, pp. 1—5, 1892.]

The publication of this paper after nearly half a century demands a word

of explanation; and the opportunity may be taken to point out in what

respects the received theory of gases had been anticipated by Waterston, and

to offer some suggestions as to the origin of certain errors and deficiencies in

his views.

So far as I am aware, the paper, though always accessible in the Archives

of the Royal Society, has remained absolutely unnoticed. Most unfortunately

the abstract printed at the time {Roy. Soc. Proc. 1846, Vol. v. p. 604; here

reprinted as Appendix I.) gave no adequate idea of the scope of the memoir,

and still less of the nature of the results arrived at. The deficiency was

in some degree supplied by a short account in the Report of the British

Association for 1851 (here reprinted as Appendix II.), where is distinctly

stated the law', which Avas afterwards to become so famous, of the equality of

the kinetic energies of different molecules at the same temperature.

My own attention Avas attracted in the first instance to Waterston’s

Avork upon the connection between molecular forces and the latent heat

of evaporation, and thence to a paper in the Philosophical Magazine for

1858, “ On the Theory of Sound.” He there alludes to the theory of gases

under consideration as having been started by Herapath in 1821, and he
proceeds :

—

“ Mr Herapath unfortunately assumed heat or temperature to be repre-
sented by the simple ratio of the velocity instead of the square of the
velocity—being in this apparently led astray by the definition of motion

* [From an Introduction to a Memoir, entitled as above, by J. J. Waterston, received Deo. 11,
1845, read March 5, 1846.]
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generally received—and thus was baffled m his attempts to reconcile his
theory with observation If we make this change in Mr Hcrapath's defini-

tion of heat or temperature, viz, that it is proportional to the mu,
or square velocity of the moving par*icle, not to the momentum, or simple
ratio of the velocity, we can without much difficulty deduce, not only the

pnmary laws of elastic fluids, but also the other physical properties of gases

enunerated abo^e in the third objection to Newton’s hypothesis. In the

Archives of the Royal Society for 1845—1846, there is paper 'On the

Physics of Media that consists of perfectly Elastic Molecules m a State of

Motion,’ which contains the synthetical reasoning upon which the demon-
stration of these matters rests The velocity of sound is therein deduced to

be equal to the velocity acquired in falling through three fourths of a uniform

atmosphere This theory does not take account of the size of the molecules

It assumes that no time is lost at the impact and that if the impacts produce

rotatory motion, the tis vita thus invested bears a constant ratio to the

rectilineal vis lawa, so as not to require separate consideration It also does

not take account of the probable internal motion of composite molecules
,
yet

the results so closely accord with observation in every part of the subject as to

leave no doubt that Mr Herapath s idea of the physical constitution of gases

approximates closely to the truth M Kronig appears to have entered upon

the subject in an independent manner, and arrives at the same result,

Jf Clausius, too as we learn from his paper 'On the Nature of the Motion

we call Heat' {Phtl Mag Vol XIV 1857, p 108)'

Improved with the above po-ssage and with the general ingenuity and

soundness of Waterstons views I took the first opportunity of consulting the

Archives and saw at once that the memoir justified the large claims made

for it, and that it marks an immense advance m the direction of the now

generally received theory The omission to publish it at the time was a

misfortune, which probably retarded the development of the subject by ten

or fifteen years It is singular that Waterston appears to have advanced no

claim for subsequent publication, whether in the Transactions of the Society,

or through some other channel At any time since 18G0 reference would

naturally have been made to Maxwell, and it cannot be doubted that he

would have at once recommended that everything possible should be done to

atone for the original failure of upprcc ation

It IS difficult to put oneself in imagination into the position of the reader

of 1845, and one can understand that the substance of the memoir should

have ap|>cared sjieculative and that its mathematical style should have failed

to attract But it is startling to find a referee expressing the opinion

that "the paper is mJlhing but nonsense, unfit even for reading before the

Society ' Another remarks that the whole investigation is confessed!)

founded on a principle entirely hypothetical, from which it is the object to

deduce a mathematical representation of the phenomena of elastic media.
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It exhibits much skill and many remarkable accordances with the general

facts, as well as numerical values furnished by observation The original

principle itself involves an assumption which seems to me very difficult to

admit, and by no means a satisfactory basis for a mathematical theory, viz.,

that the elasticity of a medium is to be measured by supposing its molecules

in vertical motion, and making a succession of impacts against an elastic

gravitating plane.” These remarks are not here quoted with the idea of

reflecting upon the judgment of the referee, who was one of the best qualified

authorities of the day, and evidently devoted to a most difficult task his

careful attention; but rather with the view of throwing light upon the

attitude then assumed by men of science in regard to this question, and in

order to point a moral. The history of this paper suggests that highly

speculative investigations, especially by an unknown author, are best brought

before the world through some other channel than a scientific society, which

naturally hesitates to admit into its printed records matter of uncertain

value. Perhaps one may go further and say that a young author who

believes himself capable of great things would usually do well to secure the

favourable recognition of the scientific world by work whose scope is limited,

and whose value is easily judged, before embarking upon higher flights.

One circumstance which may have told unfavourably upon the reception

of Waterston’s paper is that he mentions no predecessors. Had he put

forward his investigation as a development of the theory of D. Bernoulli,

a referee might have hesitated to call it nonsense. It is probable, however,

that Waterston was unacquainted with Bernoulli’s work, and doubtful whether

at that time he knew that Herapath had to some extent foreshadowed

similar views.

At the present time the interest of Waterston’s paper can, of course, be

little more than historical. What strikes one most is the marvellous courage

with which he attacked questions, some of which even now present serious

difficulties. To say that he was not always successful is only to deny his

claim to rank among the very foremost theorists of all ages. The character
of the advance to be dated from this paper will be at once understood when
it is realised that Waterston was the first to introduce into the theory the
conception that heat and temperature are to be measured by vis viva. This
enabled him at a stroke to complete Bernoulli’s explanation of pressure
by showing the accordance of the hypothetical medium with the law of
Dalton and Gay-Lussac. In the second section the great feature is the
statement (VII.), that " in mixed media the mean square molecular velocity
is inversely proportional to the specific weight of the molecules.” The proof
which Waterston gave is doubtless not satisfactory

; but the same may be
^id of that advanced by Maxwell fifteen years later. The law of Avogadro
0 ows at once, as well as that of Graham relative to diffusion. Since the
aw of equal energies was actually published in 1851, there can be no
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hesitation, I think, in attaching Walcraton's name to it The attainment of

correct results in the third section, dealing ^\lth adiahatic expansion, was
only prc\cnted by a slip of calculation

In a few important respects Waterston stopped short There is no

indication, so fir as I can sec, that he recognised any other form of motion,

or energy, than the translatoiy motion, though this is sometimes spoken of

as vibratorj In this matter the pnont^ in a wider new rests with Clausius

According to Waterston the ratio of specific heats should bo (ns for mercuiy

vapour) 1 G7 m all cases Again, although he was well aware that the

molecular velocity cannot he constant, there is no anticipation of the law of

distribution of velocities established by Maxwell

A large part of the paper deals with chemistry, and shows that his

views upon that subject also were much in advance of those generally held

at the time , ,

With the exception of some corrections relating merely to stops and

spelling the paper is hero reproduced exactly as it stands in the author’s

manusenpt—Dec. 1891

[1901 It maj be added that Waterston’s memoir contains the hrat

calculation of the molecular velocity, and further that it points out the

relation of this v-'locity to the velocity of sound The earliest actual

puhlication of such a adculation is that of Joule, who gives for the velocity

of hydrogen molecules at 0“ C C055 feet per second [Manchester Memotre,

Vol IX p 107, Oct 1848, Mag Ser 4, Vol XIV p 211, Joule’s

Scxerdxfjc Papers, Vol i p 295), thus anticipating by eight or nine years

the first paper of Clausius [Pogg Atm 1857), to whom pnonty is often

erroneously ascribed)
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244.

ON THE COOLING OF AIR.BY RADIATION AND CONDUCTION,

AND ON THE PROPAGATION OF SOUND.

[Philosophical Magazine, XLVii. pp. 308—314, 1899.]

Accordixg to Laplace s theory of the propagation of Sound the expansions

(and contractions) of the air are supposed to take place without transfer of

heat. Many years .ago Sir G. Stokes* discussed the question of the influence

of radiation from the heated air upon the propagation of sound. He showed

that such smtill radiating power as is admissible would tell rather upon the

intensity than upon the velocity. If x be measured in the direction of

propagation, the factor expressing the diminution of amplitude is e"'”®, where

m — 7-1
7

1.

2a* (1 )

In (1) 7 represents the ratio of specific heats (1’41), a is the velocity of sound,

and q is such that e~9‘ represents the law of cooling by radiation of a small

mass of air maintained at constant volume. If t denote the time required to

traverse the distance «, t = xja, and (1) may be taken to assert that the

amplitude falls to any fraction, e.g. one-half, of its original value in 7 times

the interval of time required by a mass of air to cool to the same fraction

of its original excess of temperature. “ There appear to be no data by which

the latter interval can be fixed mth any approach to precision
;
but if we

take it at one minute, the conclusion is that sound would be propagated for

(seven) minutes, or travel over about (80) miles, without very serious loss from

this causef.” We shall presently return to the consideration of the probable

value of q.

Besides radiation there is also to be considered the influence of conductivity
in causing transfer of heat, and further there are the effects of viscosity.

* Phil. itag. [4] i. p. 305, 1851 ; Theorg of Sound, § 247.

t Proc. Bog. Inst. April 9, 1897. [Vol. iv. p. 2.'8.j
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The problems thus suggested have been solved by Stokes and Kirchhoff*.

If the law of propagation be

u*»«r"**cos(nf — x/o), (2)

‘hen ^
in which the frequency of vibration is »/2ir, fi is the kinematic viscosity, and

V the thcrmoroetric conductivity. In C.OA measure wc may take ;i*= T4,

V s» *26, 60 that

or

To take a particular case, let the frequency be 256 ; then since a « 33200,

wc find for the time of propigation during which the amplitude diminishes

in the ratio of e : 1,

(to fl)"‘ *e 3560 seconds.

Accordingly it is only very high sounds whose propagation can be ap-

prcciably influenced by visewity and conductivity.

If w’c combine the effects of r.idiation with those of viscosity and conduction,

wo have as the factor of attenuation

where tn + m'« *14 (^/a)+ *12 (nVo*) (4)

In actual observations of sound we must expect the intensity to fall off

in accordance wuh the law of inverse squares of distances. A very little

experience of moderately distant sounds shows that in fact the intensity is in

a high degree uncertain. There discrci»nncie.H arc attributable to atmospheric

refraction and reflexion, and they are sometimes very surprising. But the

question remains whether in a uni’fbrm condition of the atmosphere the

attenuation is sensibly more rapid than can be acco\mtcd for by the law of

inverse squares. Some interesting experiments towards the elucidation of

this matter have been published by Mr Wilmcr DufTf, who compared the

distances of audibility of sounds proceeding respectively from two and from

eight similar whistles. On an average the eight whistles were audible only

about one*fourth further than a pair of whistles ; whereas, if the sphericity of

the waves had been the only cause of attenuation, the distances would have

been ns 2 to 1. Mr Duff considers that in the circumstances of his expori*

menu there was little opportunity for atmospheric irregularities, and he

attributes the greater jjarl of the falling off to radiation. Calculating from

(1) he dctiuces a radiating power such that a ma-ss of air at any given excess

of temperature above its surroundings will (if its volume remain constant)

fall by radiation to onc*half of that excess in about onc*twe!flh of a second.

• Pofj.An*.\ot. eissJT. p. 177. IBtS; TSeery p/ SoiiHii,^n3 ti.

t PSyt. P/rhv, V©1. p. 120, 1»8,
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In this paper I propose to discuss further the question of the radiating

power of air, and I shall contend that on various grounds it is nccessjiry to

restrict it to a value hundreds of times smaller than that above mentioned.

On this view Mr Duff's results remain unexplained. For myself I should

still be disposed to attribute them to atmospheric refraction. If further

experiment should establish a rate of attenuation of the order in question

as applicable in uniform air, it will I think be necessary to look for a cause

not hitherto taken into account. We might imagine a delay in the equaliza-

tion of the different sorts of energy in a gas undergoing compression, not

wholly insensible in comparison with the time of vibration of the sound. If

in the dynamical theory we assimilate the molecules of a gas to hard smooth

bodies which are nearly but not absolutely spherical, and trace the effect of a

rapid compression, we see that at the first moment the increment of energy is

wholly translational and thus produces a maximum effect in opposing the

compression. A little later a due proportion of the exce.ss of energy will

have passed into rotational forms which do not influence the pressure, and

this will accordingly fiill off. Any effect of the kind must give rise to

dissipation, and the amount of it will increase with the time required for the

transformations, i.e. in the above mentioned illustration with the degree of

approximation to the spherical form. In the case of absolute spheres no

transformation of translator}' into rotatory energy, or vice versa, would

occur in a finite time. There appears to be nothing in the behaviour of

gases, as revealed to u.s by experiment, which forbids the supposition of

a delay capable of influencing the propagation of sound.

Returning now to the question of the radiating power of air, we may
establish a sort of superior limit by an argument based upon the theory of

exchanges, itself firmly established by the researches of B. Stewart. Consider

a spherical mass of radius r, slightly and uniformly heated. Whatever may
be the radiation proceeding from a unit of surface, it must be less than the

radiation from an ideal black surfixee under the same conditions. Let us,

however, suppose that the radiation is the same in both cases and inquire

what would then be the rate of cooling. According to Bottomley* the

emissivity of a blackened surface moderately heated is 'OOOl. This is the

amount of heat reckoned in water-gram-degree units emitted in one second

finm a square centimetre of surface heated 1° C. If the excess of temperature
be 6, the whole emission is

6 X 47rr’ X 0001

On the other hand, the capacity for heat is

X 0013 X *24,

the first factor being the volume, the second the density, and the third the

* ETerett, C.G.S. Units, 1891, p. 134.
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follows *, we see that the time of half recoveiy t is given by the formula

t -
wV * .(6)

in which a is the radius of the sphere, y the ratio of specific heats (1'41), and

V is the therniometric conductinty, found by di>idmg the ordinary or calori-

metric conductivity by the thermal capacity of unit volume. This thermal

capacity is to be taken with volume constant, and it will bo less than the

thermal capacity with pressure constant in the ratio of y ; 1. Accordingly v(y

in (6) represents the latter thermal capacity, of which the experimental value

is ‘00128 X '239, the first factor representing the density of air referred to

water. Thus, if we take the calorimetric conductivity at 000056, ha\e in

ao.s. measure
v = *258. v/y«‘183;

and thence

<*‘102a*.

In the present apparatus a, determined by the contents, is 164centim.,

whence
( *= 27*4 seconds.

The agreement of the ubsetv^d and calculated values is quite os close

as could have been expected, and confirms the view that the transfer of heat

is due to conduction, and that the part played by radiation is insensible.

From a comparison of the experimental and calculated curves, however,

it aeems probable that the effect of gravity was not wholly eliminated, and

that the later stages of the phenomenon, at any rate, may still have been

a little influenced by a downward movement of the control parts.

' Qes< psp«r.
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Reverberation

WALLACE CLEMENT SABINE

Wallace Clement Sabine (1868-1919), American physicist, was a member of the

Physics Department of Harvard University from 1889 until his death. In the early

part of his tenure his interests were confined largely to teaching, the responsibilities

of which he took very seriously. He wrote and published a small laboratory manual
for the use of college students. His early research was confined to collaboration with

older professors at Harvard, mainly on electrical oscillation phenomena. The spark

which excited his celebrated career in acoustics came when he was requested by

the Harvard Corporation to propose changes to remedy the unsatisfactory acoustical

properties of the Fogg Art Museum at Harvard. He at once became interested in

the physical problems connected with architectural acoustics. The rest of his career

was devoted largely to this field and in the early stages he gained a precise understand-
ing of the influence of reverberation on the reception of sound in a closed space,

and developed his famous law connecting the reverberation time with the room volume
and the amount of absorbing material. The unit of sound absorption is named after

him.

The following extract is taken from the first part of his paper called “Rever-
beration,” published in The American Architect and the Engineering Record in 1900. It

constitutes the beginning of modern room acoustics.
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1

REVERBERATION'

INTRODUCTION

"TirE following inTcsligation was not undertaken at first by choice,

but devolved on the writer In 1895 through Instructions from the

Corporation of Han*ard University to propose changes for remedy-

ing the acoustical difficulties in the lecture-room of the Fogg Art

hfuscum, a budding that had just been completed. About two years

were spent in experimenting on this room, and permanent changes

were then made. Almost immediately afterward it became certain

that a new Boston hfusic Ifnll w'ould be erected, and the questions

arising in the consideration of its plans forced a not unwelcome con-

tinuance of the general investigation.

No one can appreciate the condition of arcbiteclural acoustics—
the science of sound as applied to buildings— who has not with a

pressmg case in hand sought through the scattered literature for

some safe guidance. Bcspoasibility in a large and irretrievable ex-

penditure of money compels a careful consideration, and emphasises

the meagemess and inconsistency of the current suggestions. Hius

the most definite and often repealed statements ore such as the

following, that the dimensions of a room should be in the ratio

S : S : 5, or according to some wTitcrs, 1 : 1 : S, and others, 2 : 3 : 4;

it is probable that the basis of these suggestions is the ratios of the

harmonic intervals in music, but the connection is unlraced and re-

mote. Moreover, such advice is rather dillicuU to apply; should one

measure the length to the back or to the front of the galleries, to the

hack or the front of the stage recess? Few rooms hove a flat roof,

where should the height be measured? One WTitcr, who had seen the

Mormon Temple, recommended that all auditoriums be dlipUcal.

Sanders Theatre is by far the best auditorium in Cambridge and is

semicircular in general shape, but with a recess that makes it almost

an^'lhing; and, on the other hand, the lecture-room in the Fogg Art

* Aaeriaui AKhitect *011 He Co^eenOf Recorl, 7000
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4 REM2RBERATI0N

Muscuih is also semicircular, indeed was modeled after Sanders

Theatre, and it was the worst. But Sanders Theatre is in wood and

the Fogg lecture-room is plaster on tile; one seizes on this only to be

immediately reminded that Sayles Hall in Providence is largely

lined with wood and is bad. Curiously enough, each suggestion is

advanced as if it alone were sufficient. As examples of remedies,

may be cited the placing of vases about the room for the sake of

resonance, WTongly supposed to have been the object of the vases in

Greek theatres, and the stretching of wires, even now a frequent

though useless device.

The problem is necessarily complex, and each room presents many

conditions, each of which contributes to the result in a greater or less

degree according to circumstances. To take justly into account these

varied conditions, the solution of the problem should be quantitative,

not merely qualitative; and to reach its liighest usefulness it should

be such that its application can precede, not follow, the construction

of the building.

In order that hearing may be good in any auditorium, it is neces-

sary that tlie sound should be sufficiently loud; that the simultane-

ous components of a complex sound should maintain their proper

relative intensifies; and that the successive sounds in rapidly mov-

ing articulation, either of speech or music, should be clear and dis-

tinct, free from each other and from extraneous noises. These three

are the necessary, as they are the entirely sufficient, conditions for

gootl liearing. The architectural problem is, correspondingly, three-

fold, and in this introductory paper an attempt will be made to

sketch and define briefly the subject on this basis of classification.

itlu'n the three fields thus defined is comprised without excepticm

the wliole of architectural acoustics.

1. Loudness.— Starting with the simplest conceivable auditorium
a level and open plain, with the ground bare and hard, a single

p>erson for an audience— it is clear that the sound spreads in a hemi-
spherical wave diminishing in intensity as it increases in size, pro-

portionally. If, instead of being bare, the ground is occupied by a

large audience, the sound diminishes in intensity even more rapidly,
being now absorbed. The upper part of the sound-wave escapes un-
affected, but the lower edge— the only part that is of service to an
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audience on a plain— is rapidly lost. The first and most obvious

iniprovemcnt is to raise the speaker above the le\’el of the audience;

the second is to raise the seals at the rear; and the third is to place a

tt-al! beliind the speaker. Tlie result is most attractively illustrated

in the Greek theatre. Tlicsc changes being made, still all the sound

rising at any considerable angle is lost through the opening above,

and only part of the speaker’s cllorls serve the audience. ^Yllen to

this auditorium a roof is added the average intensity of sound

throughout the room is greatly increased, especially that of sustained

tones; and the intensity of sound at the front and the rear is more

nwrly equalized. If, in addition, galleries be constructed in order to

elevate the distant part of the audience and bring it nearer to the

froni, we have the general form of the modem auditorium. The

problem of calculating the loudness at different parts of such an audi-

torium is, obviously, complex, but it is perfectly determinate, and as

soon as the reflecting and absorbing power of the audience and of the

various wall-surfaces are known it can be solved approximately,

t'nder this head will he considered the effect of sounding-boards, the

relative merits of different materials used as reflectors, the refrac-

tion of sound, and tlic infiMcncc of the variable temperature of

the air through the heating and vcnltlaVing of the room, and similar

•lUbiects.

9. Dhforiion of Complex Sounds: Interference and Hesonance.—
In discussing the subject of loudness the direct and rofleclcd sounds

have been spoken of as If always reenforcing each other when they

eorre together. A moment’s consideration of the nature of sound

nil! show (hat, as a matter of fact, it is entirely possible for them to

oppose each other. The sounding body in its forward motion sends

ofl a wa\'e of condensation, wliich is immediately followed through

the air by a wave of rarefaction proiluccd by the vibrating body as

it moves h.ack. Tliesc two w'aves of opposite character taken to-

gether constitute a sound-wave. The source continuing to vibrate,

these naves follow each other in a train. Bearing in mind this allcr-

iialing character of sound, it is evident that should the sound travel-

ing hy different paths— by reflection from different walls— come
logfther again, the paths being equal in length, condensation will

arrive at the same time as condensation, and refc'nforcc it, and rare-
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faction will, similarly, reenforce rarefaction. But should one path

be a little shorter than the other, rarefaction by one and condensa-

tion by the other may arrive at the same time, and at this point

there will be comparative silence. The whole room may be mapped

out into regions in which the sound is loud and regions in which it

is feeble. When there are many reflecting surfaces the interference

is much more complex. WTien the note changes in pitch the inter-

ference system is entirely altered in character. A single incident

will serve to illustrate this point. There is a room in the Jefferson

Physical Laboratory, known as the constant-temperature room,

that has been of the utmost service throughout these experiments.

It is in the center of one wing of the building, is entirely under

ground, even below the level of the basement of the building, has

sei)arate foundations and double walls, each wall being very thick

and of brick in cement. It was originally designed for investiga-

tions in heat requiring constant temperature, and its peculiar loca-

tion and construction were for this purpose. As it was not so in

use, however, it was turned over to these experiments in sound, and

a room more suitable could not be designed. From its location and

construction it is extremely quiet. AVithout windows, its walls,

floor, and ceiling— all of solid masonry— are smooth and un-

broken. The single door to the room is plain and flush with the

wall. The dimensions of the room are, on the floor, 4.27 X 6.10

meters; its height at the walls is 2.54 meters, but the ceiling is

slightly arched, giving a height at the center of 3.17 meters. This

room is here described at length because it will be frequently re-

ferred to, particularly in this matter of interference of sound. While

working in this room with a treble c gemshom organ pipe blown by
a steady wind-pressure, it was observed that the pitch of the pipe

apparently changed an octave when the observer straightened up
in his chair from a position in which he was leaning forward. The
explanation is this: The organ pipe did not give a single pure note,

hut gave a fundamental treble c accompanied by several overtones,
of which the strongest was in this case the octave above. Each note
ui the whole complex sound had its own interference system, which,
•vs long as the sound remained constant, remained fixed in position.
It so happt'ned that at these two points the region of silence for one
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note coincided with the region of reenforccmcnl in the other, and

ricr ffT^a. Thus the ohscr^’er in one position heard the fundamental

note, and in the other, the first overtone. The change was exceed*

ingly striking, and as the notes remained constant, the experiment

could be tried again and again. 'With a little search it was possible

to find other points in the room at which the same phenomenon

appeared, hut generally in less perfection. The distortion of the

relative intensities of the components of a chord that may thus be

produced is evident. Practically almost every sound of the voice

in spc^jch and song, and of instrumental music, even single-part

music so-called, is more or less complex, and, therefore, subject to

this distortion. It will be necessary, later, to show under what cir-

cumstances this phenomenon is a formidable danger, and how it

may be guarded against, and under what circumstances it is negli-

gible. It is evident from the above occurrence that it may be a roost

serious matter, for in this room two persons side by side can talk

together with but little comfort, most of the difficulty being caused

by the interference of sound.

There is another phenomenon, m iU occurrence allied to inter-

ference, but in nature dislincl— Ihc phenomenon of resonance.

Both, however, occasion the same evil— the distortion of that nice

adjustment of the relative intensities of the components of the

complex sounds that constitute speech and music. The phenome-

non of interference just discussed merely alters the distribution of

sound in the room, causing the intensity of any one pure sustained

note to be above or below the average intensity at near points.

Resoffance, on (fie o(f;cr hand, af(ers (fie (o(af amount of soemd ia

the whole room and always increases it. This phenomenon is

noticeable at times in using the voice in a small room, or even in

particular locations in a large room. Perhaps its occurrence is most

easily observed in selling up a large church organ, where the pipes

must be readjusted for the particular space in Tvhich the organ is to

stand, no matter with how much care the organ may have been

assembled and adjusted before leaving the factory. The general

phenomenon of resonance is of very wide occurrence, not merely in

arcustics but in more gross mechanics as well, as the vibration of a

bridge to a properly timed tread, or the excessive rolling of a boat
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jn certuin sojis. Tlie principle is the same in all cases. The follow-

ing conception is an easy one to grasp, and is elosely analogous to

acoustical resonance: If the palm of the hand be placed on the

center of the surface of water in a large basin or tank and quickly

depressed and raised once it will cause a wave to spread, which,

reflected at the edge of the water, will return, in part at least, to

the hand. If, just as the wave reaches the hand, the hand repeats

its motion with the same force, it will reenforce the wave traveling

over the water. Thus reenforced, the wave goes out stronger than

before and returns again. By continued repetition of the motion

of the hand so timed as to reenforce the wave as it returns, the wave

gets to be very strong. Instead of restraining the hand each time

until the wave traveling to and fro returns to it, one may so time

the motion of the hand as to have several equal waves following

each other over the water, and the hand each time reenforcing the

wave that is i)assing. This, obviously, can be done by dividing the

interval of time between the successive motions of the hand by any

whole number whatever, and moving the hand with the frequency

thus defined. The result will be a strong reenforcement of the waves.

If, however, the motions of the hand be not so timed, it is obvious

that the reenforcement will not be perfect, and, in fact, it is possible

to so time it as exactly to oppose the returning waves. The appli-

cation of this reasoning to the phenomenon of sound, where the air

takes the place of the water and the sounding body that of the hand,

needs little additional explanation. Some notes of a complex sound
are reenforced, some are not, and thus the quality is altered. This

phenomenon enters in two forms in the architectural problem: there

may be either resonance of the air in the room or resonance of the

Walls, and t.he two cases must receive separate discussion; their

effects are totally different.

I he word “resonance” lias been used loosely as synonymous
^^ith revorbi'ration,” and even with “echo,” and is so given in

.''Oine of the more voluminous but less exact popular dictionaries.
In seientifie literature the term has received a very definite and
precise ujijjUeation to the phenomenon, w’herever it may occur, of

the growth of a vibratory motion of an elastic body under periodic
orees timed to its natural rates of vibration. A word having this
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significance is necessary; and it is very desirable that the terra

should not, even popularly, by meaning many things, cease to mean
anything exactly,

S. Coiifuston: lUverberatiortt Echo and Eriraucous Sounds .

—

Sound, being energy, once produced in a confined space, will con-

tinue until it is either transmitted by the boundary walls, or is

Iransfonned into some other kind of energ>% generally heat. This

process of decay is called absorption. Thus, in the lecture-room of

Harvard University, in which, and in behalf of which, this investi-

gation was begun, the rate of absorption was so small that a word

spoken in an ordinary tone of voice was audible for five and a half

seconds aftera^ards. During Ihk time even a very deliberate

speaker would have uttered the twelve or fifteen succeeding sylla-

bles. Tlius the successive enunciations blended into a loud sound,

through which and above which it was necessary to hear and dis-

tinguish the orderly progression of the speech. Across the room

Ibis could not be done; even near the speaker it could be done only

with an effort wearisome in the extreme if long maintained. With

an audience filling the room the conditions were not so bad, but

still not tolerable. This may be regarded, if one so chooses, as a

process of multiple reflection from walk, from ceiling and from floor,

first from one and then another, losing a little at each reflection

until ultimately inaudible. This phenomenon will be called re-

verberation, including as a spcdal case the echo. It must be ob-

ser^'ed, however, that, in genera), rcx'crberalion results in a mass of

sound filling the whole room and incapable of analysis into iU dis-

tinct reflections. It is thus more difficult to recognize ami impossible

to locale. The term echo will be reserved for that particular case

in a Inch a short, sharp sound is distinctly repealed by reflection,

either once from a single surface, or several times from two or more

surfaces. In the general c.ase of reverberation we arc only concerned

n Itli the rale of decay of the scund. In the special case of the echo

nc are concerned not merely with its intensity, but with the interval

of lime elapsing between the initial sound and the moment it

Ft'aches the obser\’er. In the room mentioned as the occasion of

flits jnvwli/jation, no discrete echo was distinctly perceptible, and
fli'* c.asc will serve excellently as an fllustralion of the more general
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tj^pe of reverberation. After preliminary gropings,^ first in the

literature and then with sev'cral optical devices for measuring the

intensity of sound, both were abandoned, the latter for reasons that

will be explained later. Instead, the rate of decay was measured by

measuring what was inversely proportional to it— the duration of

audibility of the reverberation, or, as it will be called here, the dura-

tion of amlibility of the residual sound. These experiments may be

explained to advantage even in this introductory paper, for they

will give more clearly than would abstract discussion an idea of the

nature of reverberation. Broadly considered, there are two, and

only two, Viu-iables in a room— shape including size, and materials

including furnishings. In designing an auditorium an architect can

give consideration to both; in repair work for bad acoustical con-

ditions it is generally impracticable to change the shape, and only

variations in materials and furnishings are allowable. This was,

therefore, the line of work in this case. It was evident that, other

things being equal, the rate at which the reverberation would dis-

appear was proportional to the rate at w’hich the sound was ab-

sorbed. The first work, therefore, was to determine the relative

absorbing power of various substances. With an organ pipe as a

constant source of sound, and a suitable chronograph for recording,

the duration of audibility of a sound after the source had ceased in

tin's room when empty was found to be 5.62 seconds. All the cush-

ions from the seals in Sanders Theatre were then brought over and

stored in the lobby. On bringing into the lecture-room a number
of cushions having a total lengtii of 8.2 meters, the duration of

audibility fell to 5.33 secondsw On bringing in 17 meters the sound

in the room after the organ pipe ceased was audible for but 4.94

‘ Tile Grsl inclhml for tleterniining the rale of tlccay of the sound, and therefore the amount
of absorption, was by means of a sensitive maiiomelric gas flame measured by a micrometer
telesi-ope. Later, photographing the flame was tried; but both methods were abandoned, for

they lioth showcil, what the unuidetl ear could perceive, that the sound as observed at any
p'.nni in the nmm died away in a fluctuating manner, passing through maxima and minima.
Moreover, they showcil what the unaidc<l ear had not delected, but immediately afterward
did rix-ogiiize, that the sound was often more intense imme<liately after the source ceased than
before. .Ml this was interesting, but it rendereil impossible any accurate interpretation of the

results obtained by these or similar methods. It was then found that the ear itself aided by
a suitable electrical chronograph for recording the duration or audibility of the residual sound
gave surprisingly sensitive and accurate method of measurement. Proc. American Institute
ft Atvliitcets, p. 35, 1898.

425



INTRODUCTION 11

seconds. Evidently, the cushions were strong absorbents and

rapidly improving the room, at least to the extent of diminishing the

reverberation. The result was intetcsling and the process was con-

tinued. Little by little the cushions were brought into the room,

and each lime the duration of audibility w as measured. \\’hen oil

the scats (43G in number) nore covered, tbe sound was audible for

2.03 seconds. Then the aisles were covered, and then the platform.

Still there were more cushions— almost half as many more. These

^ere brought into the room, a few at a lime, as before, and draped

on a scaffolding that had been erected around the room, the dura-

tion of the sound being recorded each time. Finally, when all the

enshions from a theatre seating nearly fifteen hundred persons were

placed in the room— covering the seats, the aisles, the platform,

the rear wall to the ceiling— the duration of audibility of the resid-

ual sound was 1.14 seconds. This experiment, requiring, of ccrursc,

several nights* work, having been completed, all the cushions were

removed and the room was in readiness for the lest of other absorb-

ents. It W'os evident that a standard of comparison had been

established. Curtains of cheniUe, l.l mclets wide and 17 meters in

total length, were draped in the room. The duration of audibility

was then 4.51 seconds. Turning to the data that bad just been

collected it appeared that this amount of chenille was equivalent to

30 meters of Sanders Theatre cushions. Oriental rugs. Here*,

Demirjik, and Hindoostanee, W'crc tested in a similar manner; as

were also cretonne cloth, canvas^ and hair felt. Similar experi-

ments, but in a smaller room, determined the absorbing power of

a man and of a woman, always by determining the number of run-

ning meters of Sanders Theatre cushions that would produce the

-anic effect. This process of comparing two absorbents by actually

substituting one for the other is laborious, and it is given lierc only

to «ihow the first steps in the development of a method that will be

'Npanded in the following papers.

In this lecture-room fell was finally phiccd pennunenlly on par-

scular walls, and the room w’as rendered not c.xcellcnl, but entirely

•en'iceable, and it has been used for the past three years without

erious complaint. It is not intended to discuss this particular case

n the introductory paper, because such discussion would be prema-
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12 REVERBERATION

ture and logically incomplete. It is mentioned here merely to illus-

trate concretely the subject of reverberation, and its dependence on

absorption. It ^Yould be a mistake to suppose that an absorbent is

always desirable, or even when desirable that its position is a matter

of no consequence.^

\Yhile tlie logical order of considering the conditions contributing

to or interfering with distinct hearing would be that employed above,

it so happens that exactly the reverse order is preferable from an

experimental standpoint. By taking up the subject of reverberation

first it is possible to determine the coefficients of absorption and

reflection of various kinds of wall surface, of furniture and draperies,

and of an audience. The investigation of reverberation is now, after

five years of experimental work, completed, and an account will be

rendered in the following papers. Some data have also been secured

on the other topics and will be published as soon as roxmded into

definite form.

This paper may be regarded as introductory to the general sub-

ject of architectural acoustics, and immediately introductory to a

series of articles dealing with the subject of reverberation, in which

the general line of procedure will be, briefly, as follows: The absorb-

ing power of wall-surfaces will be determined, and the law according

to which the reverberation of a room depends on its volume will be

demonstrated. The absolute rate of decay of the residual sound in

a number of rooms, and in the ssime room under different conditions,

will then be determined. In the fifth paper a more exact analysis

’ riicre is no simple treatment that can cure all cases. There may be inadequate absorption

and prulungal residual sound; in this case absorbing material should be added in the proper

platx's. On the otlicr hand, there may be excessive absorption by the nearer parts of the hall

and by the nearer audience ami the sound may not penetrate to the greater distances. Ob-

viously the treatment should not be the same. There is such a room belonging to the Uni-

versity, known locally as Sever So. It is low and long. .Veross its ceiling are now stretched

hundreds of wires and many yards of cloth. The former has the merit of being harmless, the

latter is like hlcc<ling a ]iatieut sulfcring fnim a chill. In general, should the sound seem

sniuthcred or ti>o faint, it is because the sound is cither imperfectly distributed to the audience,

or is lost in waste places. The first may occur in a very low and long room, the second in one

with a very high ceiling. The first can be remedied only slightly at best, the latter can be ini-

proxetl by the use of reflectors behind and aimvc the speaker. On the other hand, should the

sound be loud but cemfu.sed, «luc to a perceptible prolongation, the difficulty arises from th ‘rr

iH'ing rcHecting surfaces either ttio far distant or improiierly inclined. Proe. American Insti-

tute of Architect-s p. 39, 189a.
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ABSORBING POTOR OF WALI/-SURFACES 13

will be given, nnd it will be shown that, by very different lines of

nltnck, starling from different data, the same numerical results are

secured. Tables will be given of the absorbing power of various

wall'surfaces, of furniture, of an audience, nnd of all the nialermls

ordinarily found in any quantity in an auditorium. Finally, in

illustration of the calculation of reverberation in advance of con«

stniclion, will be cited the new Boston Music Hall, the most interest-

ing case that has arisen.

ABSORBING POWER OF WALL-SURFACES

Is the introductory article the problem was divided into considera-

tions of loudness, of distortion, nnd of confusion of sounds. Con-

fusion may arise from extraneous disturbing sounds— street noises

and the noise of ventilating fans— or from the prolongation of the

otherwise discrete sounds of music or the voice into the succeeding

sounds. The latter phenomenon, known as reverberation, results

in what may be called, with accuracj' and suggesliveness, residual

sound. The duration of this residual sound was shown to depend

on the amount of absorbing material inside the room, and also, of

course, on the absorbing and transmitting power of the walls; and

u method was outlined for determining the absorbing power of the

foniuT in terms of the absorbing power of some material chosen as

a standard and used in a preliminary calibration. A moment’s con-

sideration demonstrates that this method, which is of the general

type known as a “substitution method,” while effective in the de-

lenninalion of the absorbing power of furniture and corrective

nuilerial, and, in general, of anything that can be brought into or

n-moved from a room, is insufficient for determinating the absorb-

ing power of wall-surfaces. This, the absorbing power of wall-

'urfaces, is the subject of the present paper; and as the method of

di-terminalion is an extension of the above work, and finds its jusU-

fic.ilion in the striking consistency of the results of the observations,

•1 more elaborate description of the experimental method is desirable,

A proof of the accuracy* of cvciy step taken is especially necessary

in a subject concerning which theory lias been so largely uncon-

trolled speculation.
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14 REVERBERATION

Early in the investigation it was found that measurements of

the length of time during which a sound was audible after the source

had ceased gave promising results whose larger inconsistencies could

be traced directly to the distraction of outside noises. On repeating

the work during the most quiet part of the night, between half-past

twelve and five, and using refined recording apparatus, the minor

irregularities, due to relaxed attention or other personal variations,

were surprisingly small. To secure accuracy, however, it was neces-

sary to suspend work on the approach of a street car within two

blocks, or on the passing of a train a mile distant. In Cambridge

these interruptions were not serious; in Boston and in New York

it was necessary to snatch observations in very brief intervals of

quiet. In every case a single determination of the duration of the

residual sound was based on the average of a large number d
observations.

An organ pipe, of the gemshom stop, an octave above middle e

(512 vibration frequency) w’as used as the source of sound in some

preliminary experiments, and has been retained in subsequent work

in the absence of any good reason for changing. The wind supply

from a double tank, water-sealed and noiseless, was turned on and

off the organ pipe by an electro-pneumatic valve, designed by IVIr.

George S. Hutchings, and similar to that used in his large church

organs. The electric current controlling the valve also controlled

the chronograph, and was made and broken by a key in the hands

of the observer from any part of the room. The chronograph em-

ployed in the later ex|>eriments, after the more usual patterns had

been tried and discarded, was of special design, and answered well

the requirements of the work— perfect noiselessness, portability,

and capacity to mejisure intervals of time from a lialf second to ten

seconds with considerable accuracy. It is shown in the adjacent

diagram. The current whose cessation stopped the sounding of the

organ pipe also gave the initial record on the chronograph, and the

only duty of the observer was to make the record when the sound

ceased to be audible.

WTiile the supreme test of the investigation lies in the consistency

and simplicity of the whole solution as outlined later, three pre-

liminary criteria are found in (1) the agreement of the observations
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ation was .05. The reason for this accuracy will be discussed in a

subsequent paper. The probable error of the mean, thus calculated

from the deviations of the single observations, covers only those

variable errors as likely to increase as to decrease the final result.

Fixed instrumental errors, and the constant errors commonly re-

ferred to by the term “personal factors” are not in this way exposed.

They were, how'cver, repeatedly tested for by comparison with a

clock beating seconds, and w'cre very satisfactorily shown not to

amount to more than .02 seconds in their cumulative effect. Three

types of chronogra]jhs, and three kinds of valves between the organ

pipe and the wind chest were used in the gradual development of

the experiment, and all gave for the same room very nearly the same

final results. The later instruments were, of course, better and more

accurate.

'J'he second criterion mentioned above is abundantly satisfied by

the experiments. Observations taken every second or third night

for two months in the lecture-room of the Fogg Art Museum gave

practically the same results, vjurying from 5.45 to 5.62 with a mean

value of 5,57 seconds, a result, moreover, that was again obtained

after the lai)se of one and then of three years. Equally satisfactorj’

agreement was obtained at the beginning and at the end of three

years in Sanders Theatre, and in the constant-temperature room

of the Physical Laboratory'.

Two gentlemen, who were already somewhat skilled in physical

observation, INIr. Gifford LeClear and Mr. E. D. Densmore, gave

the ncce.ssary time to test the third point. After several nights’

j)ractice their results differed but slightly, being .08 seconds and

.10 seconds longer than those obtained by the writer, the total

duration of the sound being 4 seconds. This agreement, showing

that the results are probably very nearly those that would be ob-

tained by any auditor of normal hearing, gives to them additional

interest. It should be stated, however, that the final development

of the subject will adapt it with jjerfect generality to either norma!

or abnormal acuteness of hearing.

Almost the first step in the investigation was to establish th

following three fundamentally important facts. Later work
proved these fundamental facts far more accurately, but the origina
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ABSOKBING PO^\’EIl OF WxVLL-^URFACES 17

experiments are here given as being those upon Tvhich the conclu-

sions ncre based.

The duration of audibility of the residual sound is nearly the same

frt all parts of an auditorium.— Early in the investigation an ex-

periment to lest this point v^as made in Sleinerl Hall, in Boston.

The source of sound remaining on the platform at the point marked

Fca { SleicKrtltan Dostoa positiooorunTservov

tM orpo pipe »t O, poarttons of 1 B.

0 in the diagram, obstrs ations ncre made in succession at the points

marked 1 to 8, nith the results shown in the table:

StitM Ovtfwa SiitM

1 SIS s . 223
2 .... 2.17 « . 2 27
S.. . 2«3 T 2 20
* .. . tJto 8 . .. . 2 26

fin first iaspcclion these results seem to indicate tlmt the duration

'f tiidibnity is scry slightly greater at a distance from the source,

arul It nould be easy to explain this on the theory that at a distance

'hf t-ar is less exhausted by the rather loud noise while the pipe is

'^junding; but, as a matter of fact, this is not the case, and the
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18 REVERBERATION

variations there shown are within the limits of accuracy of the

apparatus employed and the skill attained thus, early in the in-

vestigation. Numerous later experiments, more accurate, but not

especially directed to this point, have verified the above general

statement quite conclusively.

The duration of audibility is nearly indepaident of the position of

the source.— The observer remaining at the point marked 0 in the

diagram of the large lecture-room

of the Jefferson Physical Labora-

tory, the organ pipe and wind chest

were moved from station to sta-

tion, as indicated by the numbers

1 to 6, with the results shown in

the table:

SUtion

1 .

2 .

S ,

4 .

5 .

6 ,

Durslion

. 3.90

. 4.00

. 3.90

. 3.98

. 3.95

. 3.96

tic. 3. Lcclurc-rooin, Jefferson Physical
The efficiency of an absorbent in

Uboratory: position of observer at O; reducing the duration of the residual
portions of air reservoir and organ pipe

is, under Ordinary CirCUjn-

stances, nearly independent of its

position. — Fifty meters of cretonne cloth draped on a scaffolding

under the rather low ceiling at the back of the lecture-room of

the Fogg Museum, as shov.'n in the next diagram, reduced the

audible duration of the residual sound by verj’^ nearly the same
amount, regardless of the section in which it hung, as shown in the

following table, the initial duration being 5.57 seconds:

Duration

t 4.88

2

4.83

3

*

In some later experiments five and a half times as much cretonne

draped on the scaffolding reduced the audible duration of the
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residual sound to 3.25 seconds; and when hung .

Ihe high dome-like ceiling, gave 3.29 seconds, confi

statement.

These facts, simple when proved, were by no me

so long as the problem was one of reverberation, tl

sive refieclion of sound from wall lo

wall. They indicated that, at least with

reference to auditoriums of not too

great dimensions, another point of view

would be more suggestive, that of re-

garding the whole as an energy problem

in which the source is at the organ

pipe and the decay at the walls and

at the contained absorbing material.

Tlie above results, then, all point to

the evident, but perhaps not appreci-

ated, fact that the dispersion of sound

between all parts of a hall is very rapid

in comparison with the total time re-

quired for its complete absorption, and

that in a very short time after the

source has ceased the intensity of the

residual sound, except for the phenom-

tnon of interference to be considered

later, is very nearly the same cvery-

i»here in the room.

nils mued dcihg dei'cnmhcd’, (lie

investigation was continued in the fol-

lo'tving manner; Cushions from Sao-
drrs Theatre were transferred to the

lobby of the lecture-room of the Fogg
Museum; a very few were brought into the room and sp

front row of seats; the duration of audibility of U
'•ound, diminished by the introduction of this additional

''•«5 determined, and the total length of cushion was measi
ritl row of seals was then covered in the same manner ai

‘'lf*«rvalions made— length of cushion and duration c

Fio. 4. Ledure-tw
Mus«ura: positio

O', petitions of Kt

ottd ID the dotae.
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20 REVERBERATION

sound. This was repeated till cushions covered all the seats. This

work was at first undertaken solely with the intention of determin-

ing the relative merits of different absorbing materials that might

be placed in the room as a corrective for excessive residual sound,

and the account of this application is given in the introductory

paper. A subsequent study of these and similar results obtained in

many other rooms has shown their applicability to the accurate

determination of the absorbing power of wall-surfaces. This appli-

cation may be shown in a purely analytical manner, but the expo-

sition is greatly helped by a graphical representation. The manner

in wliich the duration of the residual sound in the Fogg lecture-

room is dependent on the amount of absorbing material present is

shown in the following table:

of Ciubion
in Meten

Duration ol
Residual Sound

in Seconds

0

8

17

28

44

63

83

104

128

145

162

189

213

242

5.61

5.33

4.94

4.56

4.21

3.94

3.49

3.38

8.00

2.85

2.64

2.36

2.33

2.22

This table, represented graphically in the conventional manner—
length of cushion plotted horizontally and duration of sound verti-

cally gives points through which the curve may be drawn in the

accompanying diagram. To discover the law from this curve we
represent the lengths of cushion by r, and the corresponding dura-

tions of sound, the vertical distances to the curve, by t. If we now
seek the formula connecting x and t that most nearly expresses the

relationship represented by the above curve, we find it to be

(fl -f x)t = A*, which is the familiar formula of a rectangular hyjMjr-

bolu with its origin displaced along the axis of x, one of its asymp-
totes, by jui amount a. To make this formula most closely fit our
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cun’e vrc must, in tliis case, give to the constant, a, the numerical

value, 146, and to 1: the value, 813. The accuracy with which the

formula represents the cur^'e maj* be seen by comparing the dura-

tions calculated by the fonnula with those determined from the

cur\'e; they nowhere differ by more than .04 of a second, and have,

on an average, a difference of only ,02 of a second. This is entirely

satisfactory, for the calculated points fall off from the curve by

scarcely the breadth of the pen point with which it was drawn.

The determination of the absorbing power of the wall-surface

depends on the interpretation of the constant, a. In the formula,

F]9. S. Cum ahoKUif tie eelilMa ef ite dimtJoa of l^e re^ua)
souod to the added absortnog uatetiaL

the position of a, indicating that a; is to be added to ft, suggests

that X and a are of a like nature, and that a is a measure of the

absorbing power of the bare room; in order to determine the curve

(his was increased by the introduction of the cushions. This is

even belter shown by the diagram in which the portion of the curve

rrpcriraentally determined is fitted into the curve as a whole, and

a and x are indicated. Thus, the absorbing power of the room—
(be walls, partly plaster on stone, partly plaster on wire lath, the

windows, the skylight, the floor— was equivalent to 146 running

njclcrs of Sanders Theatre cushions.

The last statement shows the necessity for two subsidiary in-

vestigations. The first, to express the results in some more perraa-

Kent, more universally available, and, if possible, more absolute
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22 REVERBERATION

unit than the cushions; the other, to apportion the total absorbing

power among the various components of the structure.

The transformation of results from one system of units to an-

other necessitates a careful study of both systems. Some early

experiments in which the cushions were placed with one edge pushed

against the backs of the settees gave results whose anomalous

character suggested that, perhaps, their absorbing power depended

not merely on the amount present but also on the area of the sur-

face exposed. It was then recalled that about two years before,

at the beginning of an evening's work, the first lot of cushions

•3
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Flo. (1. Curve 5 plotted as part of its corresponding rectangular
hyperbola. The solid part was determined experimentally;
the displacement of this to the right measures the absorbing
power of the walls of the room.

brought into the room were placed on the floor, side by side, with

edges touching, but that after a few observations had been taken

the cushions were scattered about the room, and the work was

repeated. This was done not at all to uncover the edges, but in

the primitive uncertainty as to whether near cushions would draw
from each other’s supply of sound, as it were, and thus diminish
each other’s efficiency. No further thought w'as then given to these

discarded observations until recalled by the above-mentioned dis-

crepancy. They were sought out from the notes of that period,

and it was found that, as suspected, the absorbing power of the

cushions when touching edges was less than when separated. Eight
cushions had been used, and, therefore, fourteen edges had been
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ABSORBING POWER OF WAU/-SUIIFACES 23

louclting. A record was found of the length and the breadth of

the cushions used, and, assuming that the absorbing power was

proportional to the area cjqwsed, it was possible to calculate their

thickness by comparing the audible duration of the residual sound

m the two sets of observations; it was thus calculated to be 7.4

cenlinielers. On stacking up the same cushions and measuring

ihcir total thickness, the a\erage thickness was found to be 7.2

antimeters, in very close agreement with the thickness estimated

from their absorption of sound. Tlicrefore, the measurements of

the cushions should he, not in running meters of cushion, but in

square meters of exposed surface.

For the purposes of the present Investigation, it is wholly un-

nccessarj' to distinguish between the transformation of the energy

of the sound into heat and its transmission into outside space.

Both shall be called absorption. The former is the special accom-

plishment of cushions, the latter of open windows. It is obvious,

honever, that if both cushions and windows are to be dossed as

absorbents, the open window, because the more universally acces-

sible and the more permanent, is the better unit. The cushions, on

the other hand, are by far the more convenient in practice, for it

u possible only on \cTy rare occasions to work accurately with the

nindows open, not at all in summer on account of night noises—
the noise of crickets and other insects— and in the winter only

when there is but the slightest wind; and further, but few rooms

ha\e sufficient window surface to produce the desired absorption.

It is necessary, therefore, to work with cushions, but to express the

results in open-window units.

Turning now to the unit into which the results arc to be trans-

formed, an especially quiet winter night was taken to determine

whether the absorbing power of open window's is proportional to

the area. A test of the absorbing power of seven windows, each

1 10 meters wide, when opened .20, .40, and .80 meter, gave results

that arc plotted in the diagram. The points, by falling in a slraighl

line, show that, ot least for moderate hreadtlis, the absorbing

powtr of open windows, os of cushions, is accurately proportional

to the area. Experiments in scacral rooms especially convenient

for tile purpose determined the absorbing power of the cushions to
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be .80 of that of an equal area of open windows. These cushions

were of hair, covered with canvas and light damask. "Elastic

Felt” cushions having been used during an investigation in a New

York church, it was necessary on returning to Cambridge to deter-

mine their absorbing power. This was accomplished through the

courtesy of the manufacturers, Messrs. Sperry & Beale, of New

York, and the absorbing power was found to be .73 of open-window

Open window

Fio. 7. The absorbing power of open windows plotted against the

areas of the openings, showing them to be proportional.

units— an interesting figure, since these cushions are of frequent

use and of standard character.

Hereafter all results, though ordinarily obtained by means of

cushions, will be expressed in terms of the absorbing power of open

windows— a unit tis permanent, universally accessible, and as

nearly absolute as [tossible. In these units the total absorbing

power of the walls, ceiling, floor, windows and chairs in the lecture-

room of the Fogg IMuseum is 75 .5.

Next in order is the apportionment of the total absorbing power

among the various components of the structure. Let Si be the area

of the plaster on tile, and Uj its absorbing power per square meter;

Si and 02 the corresponding values for the plaster on wire lath;

anti 03 for window’ surface, etc. Then

Oi -f- Oi {- oj sj -f- 04 ^4, etc. = 75 .5,

Si, St, S3 , etc., are known, and Oi, 02, 03, etc.— the coeflScients of

absorption— are unknown, and are being sought. Similar equa-
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APPROXI^IATE SOLUTION 25

Hons may be obtained for other rooms in which the proportions

of wall*surface of the various Unds are greatly difTerenl, until there

are as many equations ns there are unknown quantities. It is then

possible by elimination to determine the absorbing power of the

various materials used in construction.

Through the kindness of Professor Goodale, an excellent oppor-

tunity for securing some fundamentally interesting data was

afforded by the new Botanical Laboratory and Greenhouse recently

given to the University. These rooms— the office, the laboratory

and the greenhouse— were exclusively finished in hard-pine sheath-

ing, glass, and cement; the three rooms, fortunately, combined the

three materials in very different proportions. They and the con-

stanl-lempcralure room in the Phj’sical Laboratory— the latter

being almost wholly of brick and cement— gave the following

data:

Am<f

SScatSnf
Atcftcf Cl«a

An> tt Bnrk
ftsd Ctnrttt

CenlxM^
Ateabaf

Office 1270 7 0 8J7
Ubor&lory MX 6 SO 514
Grefotiouse 12.7 80 85 404
ConsUml Umpersture room . 2.1 0 124 808

This table gives for the three components the following coefficients

of absorption: hard pine sheathing .058, glass 024, brick set in

cement .023.

APPROXlhUTE SOLUTION

In the preceding paper it was shown that the duration of the

residual sound in a particular room was proportional inversely to

the absorbing power of the bounding walls and the contained

material, the law being expressed closely by the formula (c -f x)t

*1. the formula of a displaced rectangular hjpcrbola. In the

presinl paper it is proposed to show that ihb formula is general,

and applicable to any room; that in adapting it to different rooms
It is only necessary to change the value of the constant of inverse

proportionality k; that k is in turn proportional to the volume of
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26 KEVERBERATION

the rooiti, being equal to about .171V in the present experiments,

but dependent on the initial intensity of the sound; and finally,

that by substituting the value of k thus determined, and also the

Fig, 8. Curves showing the relation of the duration of the residual

sound to the added absorbing material,— rooms 1 to 7.

Fio. 9. Curves showing the relation of the duration of the residual

sound to the added absorbing material,— rooms 8 to 12.

value of a, the absorbing power of the walls, and of x, the absorbing

power of the furniture and audience, it is possible to calculate in

advance of construction the duration of audibility of the residual

sound.
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APPKOXI^rATE SOLUTION 27

The truth of the first proposition— Ojc general applicability

of the hyperbolic law of inverse proportionality— can be satis-

faclorily showTi by a condensed statement of the results obtained

from data collected early in the investigation. These observations

ircrc made in rooms varying extremely in size and shape, from a

small commillec-room to a theatre having a seating capacity for

nearly fifteen hundred. Figures 8 and 9 give the curves experi-

mentally determined, the duration of audibility of the residual

ToIaI absorbrnir

Flo 10. Tbe etirm of fijs. 8 and 9 4U parts of Cb«tfccm-
spoftdiog rfrtaogular hyperbolas. Thrr« Kales air employed for

the Totumes, by groups 1-7. S-ll. and 12.

sound being plotted against running meters of cushions. Two
diagrams are pven in order to employ a smaller scale for the larger

fooins, this scale being one-tentb the other; and even in this way
Iherc is shoitn but one-quarter of the curve actually obtained in

rooms numbered 11 and 12, the Fogg Art Museum leclurc-room

and Sanders Theatre. In Fig. 10 each curv’eis catered as a part
rd its corresponding hyperbola referred to its asymptotes ns axes.

In this case three scales are employed in order to show the details

more clearly, tlic results obtained in rooms 1 to 7 on one scale, 8 to

11 on another, and 12 on a third, the three scales being proportional
fo one, three and nine. The continuous portions of the curves

‘W the parts determined experimentally. Even with the scale
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llius changed only a very small portion of the experimentally de-

termined parts of curves 11 and 12 are shown. Figures 11 to 16,

inclusive, all drawn to the same scale, show the great variation in

size and shape of the rooms tested; and the accompanying notes

give for each the maximum departure and average departure of the

curve, experimentally determined, from the nearest true hyperbola.

1.

Committee-room, University Hall; plaster on wood lath,

wood dado; volume, 05 cubic meters; original duration of residual

sound before the introduction of any cushions, 2.82 seconds; maxi-

5 6 7
Fig. 11. 1. Comiuiltee-room. 2. Laboratory, Botanic Gardens. 8. Office,

Botanic Gardens. 4. Recorder’s Office. 5. Greenbouse. 6. Dean’s

Room. 7. Clerk’s Room.

mum departure of experimentally determined curve from the nearest

hyperbola, .09 second; average departure, .03 second.

2. Laboratory, Botanic Gardens of Harvard University; hard

pine walls and ceiling, cement floor; volume, 82 cubic meters;

original duration of the residual sound, 2.39 seconds; maximum
departure from hyperbola, .09 second; average departure, .02

second.

3. Office, Botanic Gardens; hard pine walls, ceiling and floor;

volume, 99 cubic meters; original duration of residual sound, 1.91

seconds; maximum departure from hyperbola, .01 second; average

departure, .00 second.

4. Recorder’s Office, University Hall; plaster on wood lath,

wood dado; volume, 102 cubic meters; original duration of residual

sound, 3. (58 .seconds; maximum departure from hyperbola, .10

second; average departure, .04 second.
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APPROXIMATE SOLUTION 20
5.

Greenhouse, Botanic Gardens; gloss roof and sides, cement

fioor; volume, 134 cubic mclers; original duration of residual

Fjo. )2. Fandtjr-rooia.

sound, 4.40 seconds; maximum departure from hyperbola, .08

second; average departure, .03 second.

6.

Dean’s Room, University Hall; plaster on wood lath, wood

dado; volume, ICG cubic meters; original duration of residual

F(Q. is Ixctuw-room.

sound, 3.38 seconds; maximum departure from hyperbola, .00

second; average departure, .01 second.

7.

Clerk’s Room, University Hall; plaster on w’ood lath, wood

dado, volume, 221 cubic meters; original duration of residua!

Fio. 1 1. IjbonUtfj.

'^J'lnd, 4.10 seconds; maximum departure from hyperbola, .10

*«ond; average departure, .02 second.
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30 REVERBERATION

8. Faculty-room, University Hall; plaster on wood lath, wood

dado; volume, 1,480 cubic meters; original duration of residual

sound, 7.04 seconds; maximum departure from hyperbola, .18

second; average departure, .08 second.

9. Lecture-room, Room 1, Jefferson Physical Laboratory;

brick walls, plaster on wood lath ceiling; furnished; volume,

1,630 cubic meters; original duration of residual sound, 3.91

seconds; maximum departure from hyperbola, .10 second; average

departure, .04 second.

10. Large Laboratory, Room 41, Jefferson Physical Laboratory;

brick walls, plaster on wood lath ceiling; furnished; volume,

1.960 cubic meters; original duration of residual sound, 3.40 seconds;

maximum departure from hyperbola, .03 second; average depar-

ture, .01 second.

11. Ix'cture-room, Fogg Art Museum; plaster on tile walls,

plaster on wire-lath ceiling; volume, 2,740 cubic meters; original

duration of residual sound, 5,61 seconds; maximum departure from

hypi'rbola, .04 seeond; average departure, .02 second. The ex-

periments in this room were carried so far that the original duration

of residual sound of 5.61 seconds was reduced to .75 second.

12. banders Theatre; plaster on wood lath, but with a great

deal of hard-wood sheathing used in the interior finish; volume,

9,300 cubic meters; original duration of residual sound, 3.42
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32 REVERBERATION

Having shown that the hyperbolic law is a general one, interest

centers in the parameter, k, the constant for any one room, but vary-

ing from room to room, as the following table shows:

Room Volume Absorbius Power ot
Welle, ett, = a

Parameter h

1. Committee-room, University Hall..

.

65 4.76 13.6

2. Lalxiratory, Botanic Gardens 82 4.65 11.1

3. Office, Botanic Gardens 99 8.08 15.4

4. Rcconler’s Office 102 5.91 21.8

5. Greenhouse, Botanic Gardens 134 5.87 25.8

6. Dean’s Room
1

166 7.50 25.4

7. Clerk’s Room 221 10.6 43.5

8. Facultv-room

9. lA^cturc-room, Jefferson Physical Lab-
1.480 34.5 243.0

oratory, 1

10. I.aboratorj', Jefferson Physical Lab-
1,630 69.0 270.0

oratory, 41 1,960 101.0 345.0

11. Fogg Ixx'ture-room 2,740 75.0 425.0

12. Sanders Theatre 9,300 465.0 1,590.0

The values of the absorbing power, a, and the parameter, k, are

here expressed, not in terms of the cushions actually used in the

experiments, but in terms of the open-window units, shown to be

preferable in the preceding article.

In the diagram, Figure 17, the values of k are plotted against the

corresj)onding volumes of the rooms; here again three different

scales are employed in order to magnify the results obtained in the

smaller rooms. The resulting straight line shows that the value of

k is proportional to the volume of the room, and it is to be observed

tliat the largest room was nearly one hundred and fifty times larger

than the smallest. By measurements of the coordinates of the line,

it appears that k = .171 F. The physical significance of this nu-

merical magnitude .171 will be explained later.

This siinple relationship between the value of k and the volume

of the room— the rooms tested varying so greatly in size and

shape— affords additional proof, by a rather delicate test, of the

accuracy of the method of experimenting, for it shows that the ex-
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APPROXIMATE SOLUTION 33

ptnmenlally determined curves approximate not merely to hyper-

bolas but to a systematic family of hyperbolas. It also furnishes a

more pleasing prospect, for the laborious handling of cushions will

be unnccessarj'. A single experiment in a room and a knowledge of

the \olume of the room will furnish sufficient data for the calcula-

tion of the absorbing power of its components. Conversely, a

kno^\ledgc of the volume of a room and of the coefficients of absorp-

tion of its various components, including the audience for whidi it

h designed, will enable one to calculate in advance of construction

the duration of audibility of the residual sound, which measures

ts

Flo 17. The pwneler. t, ptetted agswl the roluma of the

logms, thowiog the two prc^[>orljODil.

Ihit acoustical property of a room commonly called reverberation.

T’Aerefore, (his phase of (he problem is solved (o a iTrsC appraxi-

mation.

Tlie explanation of the fact that L is proportional to P is found

in the following reasoning. Consider two rooms, constructed of

rxiclU the same materials, similar in relative proportions, but one

than the other. The rooms bcitig empty, x, the absorbing

po^tr of the contained material, is zero, and wc have a* V ^
and a' (' » I*. Since the rooms arc conslniclcd of the same
Hull nals the coefficients of absorption ifrc the same, so that a* and
'I an proportional to the surfaces of the rooms, that is, to the squares
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34 RE^^ERBERATION

of the linear dimensions. Also, the residual sound is diminished a

certain percentage at each reflection, and the more frequent these

reflections are the shorter is the duration of its audibility; whence

t' and i” are inversely proportional to the frequency of the reflec-

tions, and hence directly proportional to -the linear dimensions.

Therefore, h' and k", which are equal to a' i' and a" i", are propor-

tional to the cubes of the linear dimensions, and hence to the

volumes of the rooms.

Further, when the shape of the room varies, the volume remain-

ing the same, the number of reflections per second will vary. There-

fore, k is a function not merely of the volume, but also of the shape

of the room. Bui that it is only a slightly varying function, com-

paratively, of the shape of the room for practical cases, is shown by

the fact that the points fall so near the straight line that averages

k
the values of the ratio — •

The value of k is also a function of the initial intensity of the

sound; but the consideration of this element will be taken up in a

following paper.

RATE OF DECAY OF RESIDUAL SOUND

In a subsequent discussion of the interference of sound it will be

shown by photographs that the residual sound at any one point

m the room as it dies away passes through maxima and minima,

in many cases beginning to rise in intensity immediately after the

source has ceased; and that these maxima and minima succeed

each other in a far from simple manner as the interference system

shifts. On this account it is quite impossible to use any of the nu-

merous direct methods of measuring sound in exp>eriments on rever-

beration. Or, rather, if such methods were used the results would

be a mass of data extremely difficult to interpret. It was for thh

reason that attempts in this direction were abandoned early in the

investigation, and the method already described adopted. In

addition to the fact that this method only is feasible, it has the

advantage of making the measurements directly in terms of those

units with which one is here concerned— the minimum audible
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36 REVERBERATION

with two organ pipes instead of one; then with three pipes; and,

finally, with four. The whole series was then repeated, blit begin-

ning with a different pipe and combining different pipes for the two

and three pipe sets. In this way the series was repeated four times,

the combinations being so made that each pipe was given an equal

weight in the determination of the duration of audibility of the

residual sound under the four different conditions. It is safe to

assume that wu’th experiments conducted in this manner the average

initial intensities of the sound with one, two, three, and four pipes

were to each other as one, two, three and four. The corresponding

durations of audibility shall be called U, U, tz and U, The following

results were obtained:

ti = 8.69 seconds h — h = .45 second

U = 9.14 “ U-ti = .67
“

/, = 9.36 “ U-h^ .86
“

U = 9.55 «

It is first to be observed that the difference for one and two organ

pipes, .45, is, within two-hundredths of a second, half that for one

and four organ pip>es, .86. This suggests that the difference is

proportional to the logarithm of the initial intensity; and further

inspection shows that the intermediate result with three organ

pipes, .67, is even more nearly, in fact well within a hundredth of

a second, proportional to the logarithm of three. This reenforces

the verj’ natural conception that however much the residual sound

at any one point in the room may fluctuate, passing through max-

ima and minima, the average intensity of sound in the room dies

away logarithmically. Thus, if one plots the last part of the residual

sound — that which remains after eight seconds have elapsed —
on the assumption that the intensity of the sound at any instant is

proportional to the initial intensity, the result will be as shown in

the diagram. Fig. 18. The point at which the diminishing sound

crosses the line of minimum audibility in each of the four cases is

known, the corresponding ordinates of the other curves being

multiples or submultiples in proportion to the initial intensity-

ITie results are obviously logarithmic.

Let Ii be the average intensity of the steady sound in the room

when the single organ pipe is sounding, i the intensity at any instant
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RATE OF DECAY OF RESIDUAL SOUND 87

(luring the decay, say i seconds after the pipe has censed, then

—j
Tvill be the rale of decay of the sound, and since the absorption

of sound is proportional to the intensity

— — = wlicre A is the constant of proportionality,
dt

the ratio of the rale of decay of the residual sound to the intensity

at the instant.

— loff, i-hC Att

a result that is in accord with the above experiments. The con-

stant of integration C may be determined by the fact that when t Is

zero t is equal to lii whence

C » togt It, and the above equation becomes

bg. ^
- At.

At the instant of minimum audibility t is equal to it, the whole

iluwlion of the residual sound, and t is equal to t',— as the inten-

sity of the least audible sound will hereafter be denoted. Therefore

log, - At,.

This applied to the experiment with two, three and four pipes gives

similar equations of the form

aliiTe.M is the number of organ pipes in use. By the elimination of

from these equations by pairing the first with each of the others,

A

A

A

log, 2

U-it

tog,S

log, 4

U-U

- 1.54.

*- 1.62.

- 1.61,

J (average) * 1.59,

.( is the ratio between the rate of decay and the average

Hffnsity at any Instant.
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38 REVERBERATION

It is possible also to determine the initial intensity, Zi, in terms

of the minimum audible intensity, i\

z

h = i' hg-^ Ah = i' log-^ (1.59 X 8.69) = 1,000,000 i\

With this value of the initial intensity it is possible to caleulate

the intensity i of the residual sound at any instant during the decay,

by the formula
j ,

and the result when plotted is shown in Figure 19, the unit of in-

tensity being minimum audibility.

A practical trial early in the year had shown that it would be

impossible to use this lecture-room as an auditorium, and the ex-

Fia. 19. Decay of sound in the Iccture-room of the Boston Public
Library beginning immediately after the cessation of one organ
pipe.

periments described above, with others, were in anticipation of

changes designed to remedy the diflaculty. Hair felt, in consider-

able quantities, was placed on the rear wall. The experiments with

the four organ pipes were then repeated and the following results

were obtained:

h = 3.65 h - h = .20 A = 3.41

h = 3.85 U - h = .31 A = 3.54

h = 3.96 u- h = .42 A = 3.29

h - 4.07 A =» 3.41 (average)

h = 250,000 t'
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x\ fc\s n^lils later the apparatus was moved dowTi to the attend-

ant’s reception room near the main entrance— a small room but

similar m proportions to the lecture-room Here a careful experi-

ment extending o\ er se\ eral nights was carried on, and it ga\ e the

following results*

/, » 4 01 19 xi » 3 05

» 4 20 li - - 48 A ^3 00

f, » 4 29 37 A 8 75

- 4 38 yl * 3 7G (average)

7i » 3 800,000 i*

Tlie first interest lies in an attempt to connect the rale of decay,

obtained bj means of the four organ pipe experiments, with the

absolute coefficient of absorption of the walls, obtained by the

experiments xvith the open and closed windows, and to this end

recoutse xmII be had to what shall here be called "the mean free

path between reflections " The residual sound in its process of

tlecax traxels across the room from wall to wall, or ceiling, or floor,

m all conceuablc directions, some paths are thf* whole length of

the toom, some c\en longer, from one comer to the opposite, but

m the mam the free path between reflections is less, becoming even

mfinitesimally small at an angle or a comer. Between the two or

three hundred reflections that occur dunng its audibility the residual

*ound establishes an average distance between reflections that de-

pends merely on the dimensions of the room, and may be called

‘its mean free pith
”

J71 V
“ "

ti

i4 the absorbing power of the room, measured in open-window units

Let

r * surface

y •» xolume

A •• rale of decay of the sound

t » \ elocily of sound, 3 12 in per second at 20 degrees C,

p - length of the mean free path between reflections

iMience
^ = the axerage number of reflections per second, and

,
n the fraction absorbed at each reflection, ^
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av
andp-^

P.171 V
/I5 ti

whence may be calculated the mean free

path, p.

r A 9 t f

Boston Public Library Lecture-room, bare 2,140.0 1.59 1,160 8.69 7.8

« ‘ “ “ with felt .. 2,140.0 3.41 1,160 3.65 8.8

• “ “ Attendant’s Room 63.8 3.76 108 4.01 2.27

The length of the mean free path in the lecture-room, bare or

draped, ought to be the same, for the felt was placed out from

the wall at a distance imperceptibly small in comparison with the

dimensions of the room; but 7.8 and 8.8 differ more than the

experimental errors justify. Again, the attendant’s room had very

nearly the same relative proportions as the lecture-room (about

2:3:6), but each linear dimension reduced in the ratio 3.22 : 1.

The mean free path, obviously, should be in the same ratio; but

when the mean free path in the attendant’s room, 2.27, is multiplied

by 3.22 it gives 7.35, departing again from the other values, 7.8 and

8.8, more than experimental errors justify. The explanation of

this is to be found in the fact that the initial intensity of the sound

in the rooms for the determination of h was not the same but had

the values respectively, 1,000,000 i', 250,000 i' and 3,800,000 t'.

Since ii has been shown proportional to the logarithms of the initial

intensities, these three numbers, 7.8, 8.8 and 7.35, may be corrected

m an obvious manner, and reduced to the comparable values they

would have had if the initial intensity had been the same in all

three cases. The results of this reduction are 7.8, 8.0 and 8.0, a

satisfactory agreement.

The length of the mean free path is, therefore, as was to be ex-

pected, proportional to the linear dimensions of the room, and such

a comparison is interesting. There is no more reason, however, for

comparing it with one dimension than another. Moreover, most

rooms in regjird to which the inquiry might be made are too irregular

in shii|)e to iidinit of any one actual distance being taken as standard.

Ihus, in a semicircular room, still more in a horseshoe-shapied room

such as the common theatre, it is indeterminable what should be
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R/VTE OF DECAY OF RESIDUAL SOUND 41

called Ihe breadth or what the length. On account, therefore, of

the cornpHcaled nature of practical conditions one is forced to the

adoption of an ideal dimension, the cube root of the volume, the

length of one side of a cubical room of the same capacity. The above

data give as the ratio of
P.

yift
the value, .C2.

It now becomes possible to present the subject by exact analysis,

and free from approximations; hut before doing so it will be well to

review from this new standpoint that which has already been done.

It was obvious from the bepnning, even in deducing the hyper-

bolic law, that some account should be taken of the reduction in

the initial intecsity of the sound as more and more absorbing

material was brought into the room, even when the source of sound

remained unchanged. TIius ea<A succeeding value of the duration

of the residual sound was less as more and more absorbing material

was brought into the room, not merely because the rale of decay

was greater, but also because the initial intensity was less. Had the

initial intensity in some way been kept up to the same value through-

out the scries, the resulting curve would have been an exact hj’per-

bola. As it was, however, the curv'c sloped a little more rapidly on

account of the additional reduction m the duration arising from the

fnluction in initial intensity of the sound. At the time, there was

Bfi way to make rUlowauce for this. That it was a very small error,

fiowcver, is shown by the fact that the departures from the true

bjpcrbola that were tabulated arc so small.

Turning now to the parameter, k, it is evident that this also "was

an iipprorimalion, though a close one. In the first place, ns just

fsplained, the experimental curve of calibration sloped a little more

fjpidly than the true hyperbola. It follows that the nearest hyper-

h'U fitting the actual experimental results was always of a little

‘‘nial! parameter. Further, k depended not merely on the uni-

ivmiJty of the initial intensity during the calibration of the room,

also on the absolute value of this inlensity. Thus, k « ah, and

in turn proportional to the logarithm of the initial intensity.

Tin r« fore in order to fully define k we must adopt some standard of

iiiliat mlensily. For this purpose we shall hereafter take as Uie
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standard condition in initial intensity, I = 1,000,000 i', (I = 10® i'),

where i' is the minimum audible intensity, as this is the nearest

round number to the average intensity prevailing during these ex-

periments. If, therefore, during the preceding experiments the

initial intensity was above the standard, the value deduced for 1

would be a little high, if below standard, a little low. This variation

of the parameter. A*, would be slight ordinarily, for k is proportional

to the logarithm, not directly to the value of the initial intensity.

Slight ordinarily, but not always. Attention was first directed to

its practical importance early in the whole investigation by an ex-

periment in the dining-room of Memorial Hall— a very large room

of 17,000 cubic meters capacity. During some experiments in Sanders

Theatre the organ pipe was moved across to this dining-room, and

an experiment begim. The reverberation was of very short duration,

although it would have been long had the initial intensity been

standard, for in rooms constructed of similar materials the rever-

beration is approximately' proportional to the cube roots of the

volumes. There was no opportunity to carry the experiment farther

than to observe the fact that the duration was surprisingly short,

for the frightened appearance of the women from the sleeping-

rooms at the top of the hall put an end to the experiment. Finally.

k is a function not merely of the volume but also of the shajre of the

room; that is to say, of the mean free, path, as has already been

explained.

It wjis early recognized that with a constant source the average

intensity of the sound in different rooms varies with variations in

size and construction, and that proper allowance should be made

therefor. The above results call renewed attention to this, and

point the way. In the following paper the more exact analysis will

be given and applied.
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